
water

Article

Flood Stage Forecasting Using Machine-Learning Methods:
A Case Study on the Parma River (Italy)

Susanna Dazzi * , Renato Vacondio and Paolo Mignosa

����������
�������

Citation: Dazzi, S.; Vacondio, R.;

Mignosa, P. Flood Stage Forecasting

Using Machine-Learning Methods: A

Case Study on the Parma River (Italy).

Water 2021, 13, 1612. https://

doi.org/10.3390/w13121612

Academic Editor: Gonzalo Astray

Received: 20 April 2021

Accepted: 7 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Engineering and Architecture, University of Parma, Viale Parco Area delle Scienze 181/A,
43124 Parma, Italy; renato.vacondio@unipr.it (R.V.); paolo.mignosa@unipr.it (P.M.)
* Correspondence: susanna.dazzi@unipr.it

Abstract: Real-time river flood forecasting models can be useful for issuing flood alerts and reducing
or preventing inundations. To this end, machine-learning (ML) methods are becoming increasingly
popular thanks to their low computational requirements and to their reliance on observed data
only. This work aimed to evaluate the ML models’ capability of predicting flood stages at a critical
gauge station, using mainly upstream stage observations, though downstream levels should also be
included to consider backwater, if present. The case study selected for this analysis was the lower
stretch of the Parma River (Italy), and the forecast horizon was extended up to 9 h. The performances
of three ML algorithms, namely Support Vector Regression (SVR), MultiLayer Perceptron (MLP), and
Long Short-term Memory (LSTM), were compared herein in terms of accuracy and computational
time. Up to 6 h ahead, all models provided sufficiently accurate predictions for practical purposes
(e.g., Root Mean Square Error < 15 cm, and Nash-Sutcliffe Efficiency coefficient > 0.99), while peak
levels were poorly predicted for longer lead times. Moreover, the results suggest that the LSTM
model, despite requiring the longest training time, is the most robust and accurate in predicting peak
values, and it should be preferred for setting up an operational forecasting system.

Keywords: flood forecasting; river stage; machine learning; support vector regression; artificial
neural networks; multi-layer perceptron; long short-term memory

1. Introduction

Floods are natural disasters that severely impact on the communities in terms of
economic damages and casualties all over the world [1]. Flood risk management is therefore
a crucial task for preventing and/or mitigating the adverse impacts of floods, and it should
include both structural and nonstructural measures. Early-warning systems [2] and the
real-time forecasting of river stages are certainly among the most important nonstructural
measures that can contribute to implement efficient emergency strategies in the case of
severe floods, such as alerting (and possibly evacuating) the population, protecting goods,
and placing flood barriers and sandbags at critical sections.

Available tools for forecasting hydrological variables can be divided into conceptual
models, physically based models, and “black-box” models [3]. The first two categories
require some knowledge on the underlying physics of the problem, which can be described
by means of either simplified relations or partial differential equations in one or two di-
mensions (solvable using several numerical techniques). Moreover, the application of these
kinds of models to predict rainfall/runoff processes and/or river routing also requires a lot
of information on topography, land use, etc., which may not be available. Besides, real-time
forecasting obtained from physically based models is often prevented by the long computa-
tional times that characterize this approach, especially when two-dimensional models are
required. On the other hand, “black-box” models, sometimes called “data-driven” mod-
els [4] or machine learning (ML) models, are only based on historical observed data, and
completely disregard the physical background of the process, thanks to their capability of
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capturing the complex (possibly unknown) nonlinear relationships between predictor (in-
put) and predictand (output) variables. Another advantage of these flexible models is their
relatively high computational efficiency, which has enhanced their popularity over the past
two decades, also thanks to the increasing advances in computational power. Commonly
used ML algorithms were summarized by Mosavi et al. [4], and they include Artificial
Neural Networks (ANN) and MultiLayer Perceptron (MLP) [5], Adaptive Neuro-Fuzzy In-
ference System (ANFIS) [6], Wavelet Neural Networks (WNN) [7], Support Vector Machine
(SVM) [8], Decision Tree (DT) [9], and hybrid models [10,11]. More recently, advanced
methods such as deep learning (e.g., Convolutional Neural Networks (CNN) [12,13]), Ex-
treme Machine Learning (EML) [14], dynamic or recurrent neural networks (e.g., Nonlinear
Autoregressive network with exogenous inputs (NARX) [15,16], and Long Short-Term
Memory (LSTM) [17]) are also gaining popularity in the hydrological field.

Examples of applications of ML models for water-related problems are listed in re-
cent comprehensive reviews on the subject [3,4,18]. Focusing on flood forecasting, ML
models are widely applied for predicting rainfall-runoff [5,19–22], flash floods [23,24],
discharge routing [25,26], and, more recently, even inundation maps [13,27,28]. In river
flood forecasting, the predictand variable (i.e., output of the ML model) is often the dis-
charge [17,20,29–31], even if the river stage at a given station is actually more easily mea-
surable and more suited for operational flood warning [32]. The forecast horizon highly
depends on the catchment concentration time and/or on the length of the river: it can vary
between less than one hour [33] up to a few hours [11,12,19,30,34], and up to a few days
for large rivers [35]. Regarding the predictor variables (i.e., input to the ML model), these
often include rainfall observations in the upstream catchment and stages measured at the
target station in the preceding time interval [11,12,19,36,37], though sometimes observed
stages at upstream river stations are also considered [32]; for small tributaries in flat areas,
the importance of including, among the input variables, the levels measured on the main
river downstream is also acknowledged [38]. Previous works on flood stage predictions
based only on observed levels at river stations are very limited [39,40]. Leahy et al. [39]
presented an ANN for the 5 h-ahead prediction of river levels in an Irish catchment, but
the work was more focused on the network optimization than on the operational forecast.
Panda et al. [40] compared the performance of an ANN model and a hydrodynamic model
(MIKE11) in simulating river stages in an Indian river branch: the ANN provides results
that are closer to observations than MIKE11, also on peak levels, but the analysis is limited
to 1 h-ahead predictions. The adoption of an ML algorithm for flood stage forecasting based
on upstream level observations has not been thoroughly analyzed for longer lead times.

In this work, we aimed to explore the capabilities of ML techniques of predicting flood
stages at a river station, using stage measurements in an upstream station as predictors and
considering lead times up to a few hours. We focused on the case study of the Parma River
(Italy), where an operational forecasting system could be very useful for issuing flood warn-
ings for the river station of Colorno, which is a critical section. The performances of three
ML models, namely Support Vector Regression (SVR), MLP, and LSTM, were compared,
considering the accuracy of the prediction (including the peak level) and computational
times. An example of an application for a real event was also presented.

The paper is structured as follows. The case study is presented in Section 2, while the
ML models considered in this work are briefly recalled in Section 3, which also describes
the data used in this study and the models’ setup. Section 4 is dedicated to the presentation
and discussion of the main results, while conclusions are drawn in Section 5.

2. Case Study and Problem Statement

The Parma River (Italy, see Figure 1a) is roughly 92 km long from the headwaters
to the confluence with the Po River (Figure 1b), but, in this work, we focused only on
the lower stretch (32 km long) between the gauge stations of Ponte Verdi and Colorno
(Figure 1c), which is fully bounded by artificial embankments that protect the surrounding
lowlands. The most critical section of the river is inside the urban area of Colorno, where
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the condition of almost-zero freeboard was observed in the past during severe flood
events, and where overtopping was experienced in 2017 with the subsequent flooding of a
portion of the town. However, critical spots are very limited and well known by hydraulic
authorities; hence, local overflows can be reduced or avoided by placing sandbags and
flood barriers, provided that flood warnings are issued with adequate notice. Therefore, a
reliable flood stage forecasting system can be particularly useful for supporting decision-
makers about if/when to organize these emergency operations and to alert the population.
For this specific case study, a few hours (6–9 h) can be considered sufficient to protect the
vulnerable spots of the levee, also thanks to the activation of the town’s well-structured
civil protection plan in case the weather forecasts indicate the possibility of an upcoming
flood event.

Water 2021, 13, x FOR PEER REVIEW 3 of 22 
 

 

2. Case Study and Problem Statement 
The Parma River (Italy, see Figure 1a) is roughly 92 km long from the headwaters to 

the confluence with the Po River (Figure 1b), but, in this work, we focused only on the 
lower stretch (32 km long) between the gauge stations of Ponte Verdi and Colorno (Figure 
1c), which is fully bounded by artificial embankments that protect the surrounding low-
lands. The most critical section of the river is inside the urban area of Colorno, where the 
condition of almost-zero freeboard was observed in the past during severe flood events, 
and where overtopping was experienced in 2017 with the subsequent flooding of a portion 
of the town. However, critical spots are very limited and well known by hydraulic author-
ities; hence, local overflows can be reduced or avoided by placing sandbags and flood 
barriers, provided that flood warnings are issued with adequate notice. Therefore, a reli-
able flood stage forecasting system can be particularly useful for supporting decision-
makers about if/when to organize these emergency operations and to alert the population. 
For this specific case study, a few hours (6–9 h) can be considered sufficient to protect the 
vulnerable spots of the levee, also thanks to the activation of the town’s well-structured 
civil protection plan in case the weather forecasts indicate the possibility of an upcoming 
flood event. 

 
Figure 1. Overview of the study area: (a) locations of the Po and Parma basins in Italy; (b) location 
of the study area (white) in the Parma River watershed (green), with identification of the rivers 
(blue) and of the town of Parma (black); (c) sketch of the study area and of the river stations con-
sidered in this work. 

In this study, we tested the performance of machine-learning methods in forecasting 
the flood stages in Colorno up to 9 h ahead, by exploiting the stage observations at the 
upstream station of Ponte Verdi. In fact, the catchment area between the two stations is 
negligible compared to the upstream basin, closed at the section of Ponte Verdi (approxi-
mately 600 km2); hence, the flood waves simply propagate without significant additional 
contributions along the river. 

On the other hand, the water levels in Colorno can also increase due to backwater 
during flood events on the Po River, whose confluence is only 7 km downstream. For this 
reason, stage observations at the nearby station of Casalmaggiore (located on the Po River, 
roughly 5 km upstream of the confluence, see Figure 1c) are also considered when setting 
up the forecast model, as also suggested by Sung et al. [38] for tributaries. Indeed, the Po 

Figure 1. Overview of the study area: (a) locations of the Po and Parma basins in Italy; (b) location of
the study area (white) in the Parma River watershed (green), with identification of the rivers (blue)
and of the town of Parma (black); (c) sketch of the study area and of the river stations considered in
this work.

In this study, we tested the performance of machine-learning methods in forecasting
the flood stages in Colorno up to 9 h ahead, by exploiting the stage observations at the
upstream station of Ponte Verdi. In fact, the catchment area between the two stations is
negligible compared to the upstream basin, closed at the section of Ponte Verdi (approxi-
mately 600 km2); hence, the flood waves simply propagate without significant additional
contributions along the river.

On the other hand, the water levels in Colorno can also increase due to backwater
during flood events on the Po River, whose confluence is only 7 km downstream. For this
reason, stage observations at the nearby station of Casalmaggiore (located on the Po River,
roughly 5 km upstream of the confluence, see Figure 1c) are also considered when setting
up the forecast model, as also suggested by Sung et al. [38] for tributaries. Indeed, the
Po River is much larger than the Parma River: its catchment area, closed at the section of
Casalmaggiore, is around 54,000 km2 (the full basin is 71,000 km2, see Figure 1a). While
its low/moderate flows do not generate any backwater along the tributaries, its flood
events, characterized by long durations and large water level excursions, often affect the
downstream stretch of the tributaries for a few kilometers, also thanks to the low terrain
slopes. As a qualitative example, Figure 2 reports the level time series at the three gauging
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stations for two flood events: the first is a flood event on the Parma River, while the second
one is on the Po River. In the latter example, the high correlation of flood stages on the Po
River (Casalmaggiore) and in Colorno is evident (a full correlation analysis including many
flood events is presented in Section 3.3.1). The longer duration (and more gradual level
variation) of Po River floods makes these events less critical for issuing alerts in Colorno,
as the available modelling chain of the Po River basin can provide timely predictions of
upcoming levels along this watercourse. However, even if this work aimed mainly at
forecasting levels for the more “sudden” and short-lasting Parma River floods, considering
stage observations in Casalmaggiore and Po River floods in the analysis is important to
include the possibility of “combined” events.
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Finally, we need to point out that rainfall data from the upstream catchment area of
the Parma River cannot be easily used for real-time predictions in this case study. In fact,
the presence of a flood control reservoir (a few kilometers upstream of the city of Parma),
which is regulated on-line during flood events, can modify the response to rainfall in the
downstream stretch of the river. Unfortunately, historical recordings of the gate regulations
are currently not available; hence, we could not build a reliable forecast model based on all
the relevant watershed data.

3. Materials and Methods
3.1. Machine Learning (ML) Models
3.1.1. Support Vector Regression (SVR)

SVR is an extension of the SVM method, based on the principle of structural risk
minimization and originally developed for classification problems, to the case of regression
problems. Here, the algorithm is very briefly recalled, while more details can be found, for
example, in [41,42].

The key idea is to find a regression function f (x) that can approximate the target
output y with an error tolerance ε. For nonlinear problems, the input vector x is previously
mapped into a feature space by means of a nonlinear function φ(x), so the regression
function becomes:

f (x) = wT ·φ(x) + b, (1)

where w is the vector of weights, and b is a bias. The Vapnik’s ε-insensitive loss function is
used to determine the penalized losses Lε as follows:

Lε(yi) =

{
0 if |yi − f (xi)| < ε,

|yi − f (xi)| − ε if |yi − f (xi)| ≥ ε,
(2)
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which indicates that only deviations larger than ε (i.e., values lying outside the ε-tube in
Figure 3a) are unacceptable. The optimization problem aims to reduce these deviations
while keeping the function as flat as possible, and it can be formulated as follows:

minimize 1
2 wT ·w + C ∑

i

(
ξi + ξ∗i

)
,

subject to

yi − f (xi) ≤ ε + ξi

f (xi)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

i = 1, . . . , N,
(3)

where ξi and ξi* are slack variables that express the upper and lower errors above the
tolerance (Figure 3a), respectively, which are penalized via the positive constant C. The
optimization problem in Equation (3) is then solved by introducing a dual set of Lagrangian
multipliers αi and αi*, and it can be re-formulated as:

minimize 1
2 ∑

i,j

(
αi − α∗i

)(
αj − α∗j

)
k
(
xi, xj

)
+ ε ∑

i

(
αi + α∗i

)
−∑

i
yi
(
αi − α∗i

)
,

subject to
∑
i

(
αi − α∗i

)
= 0,

αi, α∗i ∈ [0, C], i = 1, . . . , N,

(4)

where k
(
xi, xj

)
= φ(xi)·φ

(
xj
)

is a kernel function that avoids the necessity of computing
dot products in the feature space. Finally, the regression function can be rewritten as:

f (x) = ∑
i
(αi − α∗i )k(xi, x) + b, (5)
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and neuron sketch); (c) LSTM (sketch of a memory cell).

The main parameters for SVR are the error tolerance ε, which influences the generaliza-
tion ability of the model, and the regulation constant C, which controls the smoothness of
the regression function. Moreover, the kernel function may include additional parameters.
For example, the radial basis function is frequently used as the kernel, and it requires the
definition of the parameter γ (γ > 0):

k
(
xi, xj

)
= exp

(
−γ ‖ xi − xj ‖ 2

)
. (6)

3.1.2. MultiLayer Perceptron (MLP)

ANNs [41] are ML tools that were inspired by the ability of the human brain to learn
from experience thanks to the biological neurons, which are connected and activated based
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on the input signals. In ANNs, neurons are actually computational units that receive input
data, process them, and deliver an output signal. Among the ANN architectures, one of the
most widely used is MLP, where neurons are arranged in three types of layers: one input
and one output layer, and one or more hidden layers in between (see Figure 3b). These
layers are usually fully connected, i.e., each neuron is linked to all neurons in the adjacent
layers. The input layer has a number of nodes equal to the number of input features, which
are read and passed on to the hidden layer, where the actual computations take place;
finally, the output nodes deliver the final outcome. This type of network, characterized
by a one-directional flow of data, is called a “feed-forward” network. Overall, the MLP
model can be represented in compact form as a function that maps an input vector x into
an output y (which may be either a single value or a vector):

y = fMLP(x). (7)

This expression actually encompasses the computations performed in several nodes.
In fact, each neuron k in the hidden layers (see inset in Figure 3b) performs a weighted sum
(with weights wk,1, . . . , wk,n) of the n inputs from the previous layer (x1, . . . , xn), plus a
bias bk, and gives an output yk through an activation function g:

yk = g

(
n

∑
i=1

wk, ixi + bk

)
, (8)

The activation function is introduced to capture nonlinearity. If the MLP architecture
is fixed, the optimization process (known as “training”) of the network consists of adjusting
the weights and biases of all neurons in order to minimize the loss function between
the output of the model in Equation (7) and the target output. The training of ANNs is
commonly performed using the back-propagation algorithm (for more details, see [41]).

The most important parameters of the MLP model are its architecture (i.e., the number
of neurons and hidden layers), and the activation function g. Commonly used activation
functions are the sigmoid or logistic function (σ), the hyperbolic tangent function (tanh),
and the Rectified Linear Unit (ReLU) function:

Sigmoid : g(X) = σ(X) =
1

1 + e−X , (9)

Tanh : g(X) = tanh(X) =
eX − e−X

eX + e−X , (10)

ReLU : g(X) = max{0, X}. (11)

3.1.3. Long Short-Term Memory (LSTM)

The class of neural networks that include loops in the inter-neural connections are
called Recurrent Neural Networks (RNN), as opposed to feed-forward networks. RNNs
were introduced to allow learning temporal sequences, even if long-term dependencies
could not be handled due to the vanishing gradient problem. To overcome this drawback,
Hochreiter and Schmidhuber [43] presented a special type of RNNs, called LSTM.

In between the input and output layers, LSTM networks are composed of one or more
memory cells (Figure 3c) with structures called “gates,” namely the input (i), forget (f ),
and output (o) gates, whose function is to control the cell state. The forget and input gates
control the information to be removed or added to the cell state, while the output gate
determines the output in a selective way. At each time step t, the gates are fed with both
the input xt and the output yt−1 from the memory cell at the previous time step t − 1. The
following operations are performed:

ft = σ
(

W f ·
[
xt, yt−1

]
+ b f

)
, (12)
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it = σ
(
Wi·

[
xt, yt−1

]
+ bi

)
, (13)

St
′ = tanh

(
WS·

[
xt, yt−1

]
+ bS

)
, (14)

St = ft ◦ St−1 + it ◦ St
′, (15)

ot = σ
(
Wo·

[
xt, yt−1

]
+ bo

)
, (16)

yt = ot ◦ tanh(St), (17)

where ft, it, and ot, are the states of forget, input, and output gates at time t, respectively; St
and St−1 are the cell states at times t and t − 1, respectively; σ and tanh are the activation
functions in Equations (9) and (10), respectively; Wf, Wi, Wo, WS, and bf, bi, bo, bS, are the
weights and biases of the forget, input, and output gates and candidate state variable St

′,
respectively; finally, the symbol ◦ indicates the element-wise multiplication. Similar to other
neural networks, once its architecture (number of unit cells) is defined, the LSTM network
is trained to adjust the weights and biases by means of algorithms trying to minimize the
loss function between target output and model output, which can be expressed in compact
form as:

y = fLSTM(x). (18)

3.1.4. Metrics for Model Evaluation

The evaluation of the forecasting abilities of the ML models in this study is based
on the root-mean-square error (RMSE), the mean absolute error (MAE), the coefficient of
correlation (CC), and the Nash–Sutcliffe efficiency coefficient (NSE). These goodness-of-fit
metrics are defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi, pred − yi,obs

)2
; (19)

MAE =
1
N

N

∑
i=1

∣∣∣yi, pred − yi,obs

∣∣∣; (20)

CC =
∑N

i=1

(
yi, pred − ypred

)
(yi, obs − yobs)√

∑N
i=1

(
yi, pred − ypred

)2
∑N

i=1(yi, obs − yobs)
2

; (21)

NSE = 1−
∑N

i=1

(
yi, pred − yi,obs

)2

∑N
i=1(yi, obs − yobs)

2 ; (22)

where N is the number of samples in the dataset, and yi,obs and yi,pred are the observed and
predicted stages, respectively, while yobs and ypred are the mean values of observations and
predictions, respectively. RMSE and MAE have the same units as the original variables
(meters in this case), while CC and NSE are non-dimensional measures. A perfect match
between observations and predictions is characterized by RMSE and MAE equal to 0, and
CC and NSE equal to 1. For the evaluation of the models based on these metrics, we refer
to the criteria suggested by [44], where a performance rating of “very good” is assigned to
models providing NSE ≥ 0.9 and RMSE ≤ 0.31·SD, where SD is the standard deviation
of observations; when NSE ≥ 0.8 and RMSE ≤ 0.45·SD, the model is classified as “good,”
while values of NSE ≥ 0.65 and RMSE ≤ 0.83·SD identify an “acceptable” performance;
otherwise, the model rating is “unsatisfactory.”

Additionally, the models’ performance in forecasting the peak level for each flood
event was considered. To this aim, the predicted peak of each event was extracted from the
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dataset, and the errors were quantified using the RMSE, the NSE, and the mean absolute
percentage error (MAPE):

MAPE =
1

Nev

Nev

∑
i=1

∣∣∣yPEAK
i, pred − yPEAK

i, obs

∣∣∣
di,obs

% , (23)

where Nev is the number of events, and the percentage error is relative to the peak water
depth di,obs.

3.2. Availability of Data

The recorded water stages at the stations of Colorno, Ponte Verdi, and Casalmaggiore
are available from 2012 to 2020, at time intervals of 10 min. The original data were down-
sampled to hourly values.

Data for 47 flood events were extracted from this time series. Actually, among these,
only 25 events were characterized by a peak level exceeding the first “alert threshold” at
Colorno (i.e., 27.7 m a.s.l.), but smaller floods (with peaks up to 1 m below this alert level)
were additionally included in order to enlarge the dataset. All events were categorized
in four groups (see Table 1): large, medium, and small floods on the Parma River, and Po
River floods causing backwater in Colorno. Large floods were identified as those with
a peak level that exceeds the highest alert threshold (i.e., 30.7 m a.s.l.). All events with
backwater from the Po River were included in the same group, regardless of the peak level.
Please notice that the values of the above-mentioned alert thresholds are those officially
defined by the hydraulic authorities. The complete list of events is reported in Table S1 in
Supplementary Materials.

Table 1. Groups of flood events considered in this work.

Type of Event N◦ Events Duration (Days) Peak Level (m a.s.l.) Criteria for Selection

Group 1: Large floods on
the Parma River 4 6–7 30.88–32.12 Peak above the highest alert threshold

(30.7 m a.s.l.)

Group 2: Po River floods 16 6–29 26.99–30.10 Events with backwater from the
Po River

Group 3: Medium floods on
the Parma River 12 4–20 27.80–30.07 Peak above the first alert threshold

(27.7 m a.s.l.)

Group 4: Small floods on
the Parma River 15 4–11 26.73–27.68 Peak above 26.7 m a.s.l.

(i.e., 1 m below the first alert threshold)

The original recorded water levels at Ponte Verdi station were characterized by small
unphysical oscillations (5–10 cm), attributable to the instrumentation. Despite the down-
sampling to hourly data, preliminary tests showed that these fluctuations may influence
the predictions of ML models, especially for the longer lags (6–9 h ahead). Therefore,
the original water level time series at Ponte Verdi (at 10 min intervals) was filtered and
only later down-sampled to hourly values. An example of original and processed data is
shown in Figure 4. We used a smoothed particle hydrodynamics [45] interpolation of the
original data:

〈yi〉 =
n

∑
j=1

yjωij∆t, (24)

where 〈yi〉 is the filtered water stage at the i-th time step, ∆t is the original time interval
(10 min), n is the number of time steps in the smoothing window (I− L, I + L) (with L = 40 min
in this case), and ωij is the cubic spline kernel [46].
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3.3. Model Setup

All ML models were built in Python 3.8 using Tensorflow (version 2.2) and scikit-learn
(version 0.23) libraries. In the following, the main steps for setting up the models are detailed.

3.3.1. Input Selection

The aim of each ML model was to forecast the water stage in Colorno at time t + X
(where X varies between 1 and 9 h). Input variables for the ML model included the stage
observations at Ponte Verdi and Casalmaggiore at times t − T, . . . , t (where T is the size of
the past time window of relevant observations), but the stage observations at Colorno at
previous time steps were also considered, given their high correlation with the output value.

A correlation analysis was performed in order to identify the correct size of the past
time window (i.e., T). We indicate the water stages with H, and the subscripts “P.V.”,
“Cas.”, and “Col.” are used to identify the river stations of Ponte Verdi, Casalmaggiore,
and Colorno, respectively. The coefficient of correlation between the values HCol.(t) and
each candidate input variable (HP.V.(t − i), HCas.(t − i), and HCol.(t − i), with i = 1, . . . ,
24) was calculated. Results are reported in Figure 5. If we consider data from all events
(thick lines), the correlation with the stage in Ponte Verdi has a maximum (CC = 0.66) at
−9 h, which is approximately the flood travel time between the two stations along the river.
However, if we limit the analysis only to flood events on the Parma River, the correlation is
much higher (maximum CC = 0.93, still at −9 h), and the CC remains larger than 0.9 up
to −12 h; in this case, the stage in Casalmaggiore does not show a significant correlation
with the stage in Colorno (CC < 0.5). Conversely, if we only analyze data from the Po River
flood events, the CC related to the stage in Casalmaggiore is in the range 0.7–0.8 between
−12 and −1 h, showing a larger correlation. Finally, past observations in Colorno have
a significant correlation with the current stage (CC > 0.8 up to −12 h if we consider all
events), which confirms that these data should be included among the input variables.
Overall, as the objective was to set-up a model able to predict stages in Colorno for all
types of events (Parma and Po River floods, and possibly “combined” events), a time lag of
12 h was selected for data from all stations. In addition, the correlation analysis supports
the choice of the maximum time lag for future predictions as Xmax = 9 h.

In summary, the output of the ML model was only one, i.e., HCol.(t + X), while the
following 36 input variables were used:

• HP.V.(t − 11), . . . , HP.V.(t − 1), HP.V.(t);
• HCas.(t − 11), . . . , HCas.(t − 1), HCas.(t);
• HCol.(t − 11), . . . , HCol.(t − 1), HCol.(t).

As we are interested in multiple predictions (X = 1, . . . , 9 h), 9 models were defined for
each ML method. It is worth mentioning that, while SVR only allows one output, both
ANN and LSTM can provide multiple outputs, and only one model could have been set-up
to provide the full prediction (with outputs HCol.(t + 1), . . . , HCol.(t + 9)). However, we
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decided to set-up separate models for each time lag to ensure a fair comparison between the
three ML approaches herein adopted. In fact, Campolo et al. [19] showed that predictions at
the same time lag using single- or multiple-output models are different, as the loss function
to be minimized during training is not the same.

Water 2021, 13, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 5. Correlation coefficients between the current water stage at Colorno and the preceding 
water stage at Ponte Verdi, Casalmaggiore, and Colorno stations. 

In summary, the output of the ML model was only one, i.e., HCol.(t + X), while the 
following 36 input variables were used: 
• HP.V.(t − 11),…, HP.V.(t − 1), HP.V.(t); 
• HCas.(t − 11),…, HCas.(t − 1), HCas.(t); 
• HCol.(t − 11),…, HCol.(t − 1), HCol.(t). 
As we are interested in multiple predictions (X = 1,…, 9 h), 9 models were defined for each 
ML method. It is worth mentioning that, while SVR only allows one output, both ANN 
and LSTM can provide multiple outputs, and only one model could have been set-up to 
provide the full prediction (with outputs HCol.(t + 1),…, HCol.(t + 9)). However, we decided 
to set-up separate models for each time lag to ensure a fair comparison between the three 
ML approaches herein adopted. In fact, Campolo et al. [19] showed that predictions at the 
same time lag using single- or multiple-output models are different, as the loss function 
to be minimized during training is not the same. 

3.3.2. Training Process 
Overall, 9484 hourly data are available for X = 1 h, while for the longer time lags, this 

value slightly decreases due to few missing values at the end of each event (e.g., 9108 data 
for X = 9 h). 

In order to align stage observations (expressed in m a.s.l.) from different stations, all 
data were normalized to the interval (0, 1), where the minimum and maximum values 
were selected according to the gauged river cross-sections. In particular, for each station, 
the minimum allowable value was set equal to the bed elevation, while the maximum was 
set equal to the local levee crown elevation, incremented by 50 cm to consider possible 
overtopping. Regarding Colorno station, the highest recorded level (during a severe flood 
that occurred in 2017) corresponds to the normalized value of 0.95. After training the 
model and making predictions, forecasted data were scaled back to their original units to 
perform comparisons with the observed values and compute error metrics. 

Data from the 47 flood events considered in this work were divided into sets for 
training (32 events), validation (7 events), and testing (8 events). The splitting was per-
formed randomly, but we ensured that the mean and standard deviation of data from 

Figure 5. Correlation coefficients between the current water stage at Colorno and the preceding
water stage at Ponte Verdi, Casalmaggiore, and Colorno stations.

3.3.2. Training Process

Overall, 9484 hourly data are available for X = 1 h, while for the longer time lags, this
value slightly decreases due to few missing values at the end of each event (e.g., 9108 data
for X = 9 h).

In order to align stage observations (expressed in m a.s.l.) from different stations, all
data were normalized to the interval (0, 1), where the minimum and maximum values
were selected according to the gauged river cross-sections. In particular, for each station,
the minimum allowable value was set equal to the bed elevation, while the maximum was
set equal to the local levee crown elevation, incremented by 50 cm to consider possible
overtopping. Regarding Colorno station, the highest recorded level (during a severe flood
that occurred in 2017) corresponds to the normalized value of 0.95. After training the model
and making predictions, forecasted data were scaled back to their original units to perform
comparisons with the observed values and compute error metrics.

Data from the 47 flood events considered in this work were divided into sets for
training (32 events), validation (7 events), and testing (8 events). The splitting was per-
formed randomly, but we ensured that the mean and standard deviation of data from
different sets were comparable, and that different types of events were represented in each
dataset, according to the partition reported in Table 2. The percentage of data included in
each dataset slightly depends on the duration of the events (selected randomly), but, on
average, 65% of data belong to the training set, 16% to the validation set, and 19% to the
testing set. The training set was used to fit the models’ internal parameters (weights, biases,
etc.), while the validation set was used here to tune the models’ hyperparameters and
prevent overfitting. Finally, the testing set was used to evaluate the models’ performance
on unseen data.
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Table 2. Number of events in training, validation, and testing sets for each type of flood event.

Type of Event Training Events Validation Events Testing Events

Group 1 3 0 1
Group 2 10 3 3
Group 3 8 2 2
Group 4 11 2 2

Total 32 7 8

Usual strategies reported in the literature were adopted to avoid overfitting. The SVR
model was trained using 5-fold cross-validation to prevent overfitting, while, for the MLP
and LSTM models, overfitting was avoided by implementing an early stopping procedure,
which interrupts the training when the loss function for the validation dataset no longer
improves or starts to increase. These latter models were trained using the efficient Adam
optimizer and selecting the mean squared error as the loss function.

Moreover, both the MLP and LSTM are known to provide unreproducible results, due
the random initialization of weights. Berkhahn et al. [28] tested an ensemble approach
to capture this uncertainty, i.e., the training of the MLP model was repeated Nens times,
and the mean prediction of the Nens realizations for each data sample was used as final
prediction. In this work, the same approach was adopted for both the MLP and LSTM
models, with Nens = 10.

3.3.3. Model Structure Definition

For all models, some important hyperparameters need to be optimized. Three random
train/validation/test splits were considered in order to select the “best” configuration
for each model as that providing the lowest RMSE on average. In order to reduce the
computational burden, only the models with lag times equal to 3, 6, and 9 h were optimized.
However, for all models, we observed that the best set of hyperparameters was almost
insensitive to the time lag, so the same set was finally adopted for all time lags.

The SVR model requires the optimization of hyperparameters C and ε (see Section 3.1.1),
and the additional parameter γ for the kernel function used for this application, i.e., the
radial basis function (Equation (6)), which is widely used for regression problems [32]. The
best hyperparameters were determined using a grid-search procedure, which ultimately
provided the following set: C = 20, ε = 0.005, and γ = 0.1.

The MPL model requires the definition of the best architecture for the network (number
of hidden layers and neurons). The Rectified Linear Unit (ReLU) activation function was
adopted in this work. A trial-and-error optimization was performed, by increasing the
network complexity until additional neurons and layers did not further improve the results.
The best configuration is characterized by only one hidden layer with 16 neurons.

Similarly, the LSTM model requires the definition of the number of units. By trial-and-
error, we selected the configuration with 10 units: increasing the number of units did not
improve the results significantly.

4. Results and Discussion
4.1. Comparison of Models’ Performance

Table 3 summarizes the performance metrics (RMSE, MAE, CC, and NSE) of the
different ML models for three time lags, namely 3, 6, and 9 h ahead. Depending on the
random splitting of flood events into training, validation, and testing sets, the metrics
chosen to evaluate the models’ performance can have slightly variable values. For this
reason, the comparison here was based on the average measures obtained from 20 different
splits (see Table S2 in Supplementary Materials).
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Table 3. Comparison of ML models’ performance for training, validation, and testing dataset. The units of RMSE and MAE
are (m).

Time Lag Model
Training Validation Testing

RMSE MAE CC NSE RMSE MAE CC NSE RMSE MAE CC NSE

3 h
SVR 0.066 0.031 0.9978 0.9989 0.060 0.033 0.9976 0.9988 0.072 0.036 0.9971 0.9986
MLP 0.080 0.044 0.9967 0.9984 0.075 0.043 0.9963 0.9982 0.088 0.047 0.9956 0.9979

LSTM 0.065 0.036 0.9979 0.9990 0.061 0.035 0.9976 0.9988 0.075 0.039 0.9967 0.9984

6 h
SVR 0.112 0.058 0.9935 0.9968 0.115 0.066 0.9912 0.9957 0.131 0.070 0.9904 0.9953
MLP 0.134 0.081 0.9907 0.9954 0.133 0.083 0.9884 0.9942 0.151 0.089 0.9870 0.9937

LSTM 0.120 0.072 0.9926 0.9964 0.120 0.073 0.9905 0.9953 0.138 0.080 0.9891 0.9948

9 h
SVR 0.225 0.108 0.9737 0.9870 0.211 0.117 0.9707 0.9859 0.250 0.126 0.9642 0.9827
MLP 0.238 0.135 0.9709 0.9855 0.223 0.139 0.9672 0.9836 0.259 0.149 0.9613 0.9809

LSTM 0.226 0.129 0.9735 0.9869 0.211 0.129 0.9707 0.9854 0.250 0.144 0.9640 0.9826

The training and validation results were slightly better than those concerning the
testing dataset, as expected. In general, the predictive performance of all models (testing
dataset) was quite good, as we obtained a 3 h-ahead forecast with an RMSE of the order of
7–9 cm, which increased to 13–15 cm (25–26 cm) for the time lag of 6 h (9 h). For the purpose
of forecasting, these errors are totally acceptable. In this case study, the SD of water level
observations in Colorno was equal to 1.37 m (full dataset); hence, the RMSE and MAE were
in the range 0.05–0.19 and 0.03–0.11 times the SD, respectively: these results indicate an
overall “very good” performance for all models and time lags, based on the classification
reported by [44]. Moreover, the CC and NSE were very close to 1: the NSE was higher
than 0.98 for all models and time lags (NSE > 0.99 for 3–6 h), while the CC was below that
threshold only for the longest time lag (still, it remained higher than 0.96). This confirms
the “very good” model performance according to [44], as NSE≥ 0.9. Incidentally, the study
of Leahy et al. [39], who also exploited water level observations for flood forecasting with
an ANN model, reported CC and NSE values around 0.98–0.99 for a 5 h-ahead prediction,
which is in line with our findings for the 3–6 h forecasts, despite some differences between
the two case studies.

Even if all models ensure a good prediction accuracy, when the performances of
different models are compared, we can observe that SVR and LSTM provided lower errors
(in terms of both RMSE and MAE) compared to MLP, which performed consistently worse
for all time lags, although the differences were less significant for the time lag of 9 h.
Overall, the best performance was provided by the SVR model, which was characterized
by a slightly lower RMSE than the LSTM model; moreover, the MAE was always lower,
even when the RMSE, CC, and NSE values were very close (e.g., time lag of 9 h).

As anticipated from Table 3, the adherence of predictions to observations decreased
with the time lag. This finding was expected, as it was observed in a number of previous
studies about flood forecasting [19,32]. Figure 6 shows the trend of two goodness-of-fit
measures (RMSE and NSE) as the forecast horizon grows. Similar trends could be observed
for MAE and CC (not shown here, for brevity). The RMSE was of the order of 3 cm for the
1 h-ahead prediction and grew almost linearly up to 7 h ahead (15–17 cm for the testing
dataset): for longer time lags, the error seemed to grow more quickly with the forecast
horizon. The NSE also dropped below 0.98 for the 8 and 9 h-ahead predictions. Overall, the
SVR and LSTM models performed comparably for all time lags, while the MLP consistently
provided slightly worse metrics. Moreover, the vertical bars in Figure 6 indicate the range
of variability of the error metrics for the 20 different train/validation/test splits. Compared
to the training dataset, the variabilities of RMSE and NSE for the validation and testing
datasets were more pronounced, as (i) the ML models are fit based on the training dataset,
and (ii) the larger size of the training dataset can “mask” a few inaccurate predictions. The
range of variability was larger for the longest time lags. Indeed, it remained roughly below
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5 cm up to 7 h ahead for all models regarding the testing dataset, and then increased up to
9 cm for the 9 h-ahead prediction—in this case, the RMSE could be larger than 30 cm.
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The errors on the peak levels are also of great interest to evaluate the flood forecasting
performance of the ML models. We limited the analysis to flood events with an observed
peak level higher than the first alert threshold. The SD of these peak values was equal
to 1.25 m. Table 4 reports the RMSE, NSE, and MAPE of predicted peaks (obtained from
20 random train/validation/test datasets) for three time lags (3, 6, and 9 h). As expected,
these results confirm that the errors evaluated for the training dataset were lower than those
for validation and testing also for the peak levels, and that the errors grew with the forecast
horizon. Focusing on peak levels obtained from the testing datasets, the best performing
model was undoubtedly LSTM, which provided a lower RMSE and a higher NSE for all
time lags, compared to the other models. SVR and MLP had a similar performance for
the 3 h-ahead prediction, while for the longer time lags, the SVR model provided a higher
NSE and lower RMSE (though the MAPE of the MLP model remained slightly larger than
that of SVR). More in detail, Figure 7 shows the scatter diagrams of the observed and
predicted peak levels for SVR, MLP, and LSTM for the same three time lags, limited to the
testing sets (for training and validation, similar plots are reported in Figures S1 and S2 in
Supplementary Materials). These plots confirm that SVR was the worst performing model,
especially for the longer forecast horizons, where the largest peaks were systematically
overestimated, with errors higher than 20% of the observed peak water depth for 9 h-ahead
predictions. The MLP predictions were closer to the observations than those of SVR for
the time lags of 6 and 9 h. On the other hand, LSTM forecasted the peak levels with errors
below 50 cm for the time lags of 3 and 6 h (with RMSEs of the order of 13–15 cm, and NSE
> 0.98). Similar to the other ML models, however, its predictions became less accurate for
the forecast horizon of 9 h. According to the model evaluation criteria [44], all models
provided a “very good” performance for the time lags of 3 and 6 h, while only MLP and
LSTM could still be classified as “good” models (NSE > 0.8, and RMSE < 0.45·SD) for the
time lag of 9 h. Actually, all models seemed to predict the peak levels 9 h ahead quite
inaccurately, with RMSEs of the order of 40–50 cm, which may be too large an error for
a reliable forecast. Besides, a common tendency to overestimation of the peaks around
28–29 m a.s.l. could be identified. Most of these peaks correspond to Po River flood events
(this behavior is briefly discussed in the next section).
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Table 4. Comparison of ML models’ performance in predicting peak levels for training, validation, and testing dataset.

Time Lag Model
Training Validation Testing

RMSE (m) NSE MAPE RMSE (m) NSE MAPE RMSE (m) NSE MAPE

3 h
SVR 0.084 0.9958 0.98% 0.101 0.9805 1.28% 0.147 0.9847 1.46%
MLP 0.132 0.9898 1.55% 0.141 0.9619 1.63% 0.148 0.9844 1.69%

LSTM 0.103 0.9938 1.15% 0.115 0.9744 1.40% 0.135 0.9870 1.48%

6 h
SVR 0.121 0.9914 1.51% 0.145 0.9596 1.65% 0.258 0.9527 2.11%
MLP 0.187 0.9793 2.32% 0.229 0.8994 2.67% 0.211 0.9683 2.45%

LSTM 0.153 0.9861 1.74% 0.173 0.9424 1.76% 0.150 0.9839 1.64%

9 h
SVR 0.437 0.8874 4.27% 0.395 0.6994 4.40% 0.557 0.7791 4.74%
MLP 0.425 0.8938 4.88% 0.461 0.5911 5.23% 0.473 0.8405 4.91%

LSTM 0.385 0.9128 4.47% 0.427 0.6497 4.53% 0.424 0.8719 4.66%

Water 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

cm, and NSE > 0.98). Similar to the other ML models, however, its predictions became less 
accurate for the forecast horizon of 9 h. According to the model evaluation criteria [44], all 
models provided a “very good” performance for the time lags of 3 and 6 h, while only 
MLP and LSTM could still be classified as “good” models (NSE > 0.8, and RMSE < 0.45∙SD) 
for the time lag of 9 h. Actually, all models seemed to predict the peak levels 9 h ahead 
quite inaccurately, with RMSEs of the order of 40–50 cm, which may be too large an error 
for a reliable forecast. Besides, a common tendency to overestimation of the peaks around 
28–29 m a.s.l. could be identified. Most of these peaks correspond to Po River flood events 
(this behavior is briefly discussed in the next section). 

Table 4. Comparison of ML models’ performance in predicting peak levels for training, validation, and testing dataset. 

Time Lag Model 
Training Validation Testing 

RMSE (m) NSE MAPE RMSE (m) NSE MAPE RMSE (m) NSE MAPE 

3 h 
SVR 0.084 0.9958 0.98% 0.101 0.9805 1.28% 0.147 0.9847 1.46% 
MLP 0.132 0.9898 1.55% 0.141 0.9619 1.63% 0.148 0.9844 1.69% 

LSTM 0.103 0.9938 1.15% 0.115 0.9744 1.40% 0.135 0.9870 1.48% 

6 h 
SVR 0.121 0.9914 1.51% 0.145 0.9596 1.65% 0.258 0.9527 2.11% 
MLP 0.187 0.9793 2.32% 0.229 0.8994 2.67% 0.211 0.9683 2.45% 

LSTM 0.153 0.9861 1.74% 0.173 0.9424 1.76% 0.150 0.9839 1.64% 

9 h 
SVR 0.437 0.8874 4.27% 0.395 0.6994 4.40% 0.557 0.7791 4.74% 
MLP 0.425 0.8938 4.88% 0.461 0.5911 5.23% 0.473 0.8405 4.91% 

LSTM 0.385 0.9128 4.47% 0.427 0.6497 4.53% 0.424 0.8719 4.66% 

 
Figure 7. Comparison of observed and forecasted peak levels in Colorno (testing dataset) for time lags of 3, 6, and 9 h. 
Dashed lines indicate a ±20% error (relative to the peak level above the river bed, i.e., peak water depth). 

Figure 7. Comparison of observed and forecasted peak levels in Colorno (testing dataset) for time lags of 3, 6, and 9 h.
Dashed lines indicate a ±20% error (relative to the peak level above the river bed, i.e., peak water depth).

4.2. Predictive Validity

In this section, some examples of forecasts of flood levels are reported. In this case, we
focus on the results obtained from two selected train/validation/test splits. Full details on
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the data splitting and on the performance metrics for these two examples are reported in
Tables S3 and S4 in Supplementary Materials.

The first example is taken from a split characterized by error metrics (Table S3) below
the average values previously reported in Table 3 for all ML models. The testing dataset
includes the flood event that occurred in March 2015, which is characterized by the third
largest peak ever recorded in Colorno (31.03 m a.s.l.), while the influence of the Po River
levels is negligible. Figure 8a compares the forecasted levels 3, 6, and 9 h ahead with
the observed values for this event. In these plots, the series of levels obtained from SVR,
MLP, and LSTM models simply consist of the sequence of single predictions at different
times. All models provided excellent level forecasts for the time lag of 3 h; moreover, the
6 h-ahead prediction was still very good for MLP and LSTM, while SVR overestimated
the peak (roughly 30 cm); finally, the 9 h-ahead forecasts were less accurate for all models,
though still acceptable. Overall, SVR seemed to predict the beginning of the falling limb of
the flood event with a few hours’ delay for the longer time lags.

In Figure 8b,c, two additional events from the testing set of this split are shown. Figure 8b
refers to the October 2012 flood event (“medium” Parma River flood): all ML models provided
similar level forecasts, with a slight tendency to underestimate the peak for the shorter time
lag (3 h), and to overestimate it for the longer time lag (9 h). Figure 8c shows observed and
predicted levels for the flood event of February 2014 on the Po River; while, overall, the
3 h-ahead forecasts were good for all models, peak overestimations can be observed for the
longer time lags (with MLP performing the worst for this event). This inaccuracy was due to
the high correlation of levels in Colorno with the simultaneous levels in Casalmaggiore
for Po River floods (see Section 3.3.1): the stage in Colorno increased almost “in phase”
with the levels downstream during this type of flood; hence, forecasts with long time lags
are not expected to be very accurate for these events. Conversely, for Parma River floods,
the relatively long travel time of the flood wave from Ponte Verdi to Colorno (roughly 9 h)
ensures that ML models are capable of providing acceptably accurate forecasts up to a few
hours ahead for these events.

We also analyzed the ML models’ forecast for a split where the event with the largest
peak ever recorded in Colorno was included in the testing set, with the aim of verifying
the ability of the models to predict flood levels exceeding the largest values seen during
training. For this split, the overall error metrics (Table S4) were close to the average values
of Table 3 for MLP and LSTM, and slightly higher for SVR. Observations and forecasts for
the most severe flood event of Colorno (occurred in December 2017 and characterized by a
peak level equal to 32.12 m a.s.l.) are compared in Figure 9a. While all models were capable
of predicting the flood stages well with a time lag of 3 h, for the longer time lags, the peak
was reached with some delay (about 3 h for 6 h-ahead forecasts, and 6 h for 9 h-ahead ones),
and SVR largely overestimated the peak levels. Forecasted levels for two additional events
from this testing set were also plotted, namely the events of November 2012 (Figure 9b)
and November 2019 (Figure 9c). The first one is a “medium” Parma River flood, and ML
models performed similarly to the case of the previous split (Figure 8b), even if the peak
overestimation for the 9 h-ahead prediction was more pronounced. The second event is
a Po River flood: in this case, the forecasted levels were quite good even for the longer
time lags, probably thanks to the very slow and gradual level variation. The SVR model
performed particularly well in predicting flood stages for this event.
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Figure 9. Comparison of observed water levels in Colorno with the forecasted values by SVR, MLP, and LSTM models for
the time lags of 3, 6, and 9 h: (a) event of 11–14 December 2017 (large Parma River flood); (b) event of 5–7 November 2012
(medium Parma River flood); (c) event of 23 November–2 December 2019 (Po River flood). In all plots, vertical grid lines are
spaced every 3 h, and the time axis is limited in order to improve readability.
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4.3. Example of Application

In this section, an example of an application of ML models for flood forecasting is
presented. We selected the flood event of 28 February–1 March 2016, whose peak level
(30.88 m a.s.l.) was the fourth largest peak ever recorded at Colorno station. For this event,
the influence of levels downstream (Casalmaggiore) was not significant; hence, Figure 10a
only reports the recorded levels at the river stations of Ponte Verdi and Colorno. The ML
models’ forecasts (1 to 9 h ahead) are shown in Figure 10b–g at selected times.
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Figure 10. Example of application for real-time forecasting of flood stages in Colorno: (a) observed levels for the event of
28 February–1 March 2016 (large Parma River flood) at Colorno and Ponte Verdi stations; (b–g) 1 to 9 h-ahead forecasted
levels by SVR, MLP, and LSTM. In all plots, vertical grid lines are hourly spaced.
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In all phases of the flood, the trend of water levels in Colorno (rising, falling, peak)
was correctly identified by all models. The early stages were underestimated (Figure 10b),
probably due to the very gradual initial increase in levels at Ponte Verdi station. The rising
limb was very well predicted for all time lags (Figure 10c), while the ML models provided
slightly more variable results close to the peak, which, however, deviated from the actual
observations less than 30 cm even for the 8–9 h-ahead prediction (Figure 10d,e). In the
falling limb of the hydrograph (Figure 10f,g), there was a tendency to underestimate the
water stages for the longer time lags. Overall, all ML models appeared suitable to provide
real-time forecasts for this large flood event in Colorno.

4.4. Computational Times

The ML models were also compared regarding the computational time required
for training (including pre- and post-processing data). An average value was obtained
from multiple runs of training (>100), including different train/validation/test splits and
different forecast horizons. Table 5 reports the average times for SVR, MLP, and LSTM. For
the two latter models, both the computational times required for training a single model
and for training an ensemble of 10 models were reported. The training time increased
with the model’s complexity; hence, MLP took roughly three times more than SVR to be
trained, and LSTM five times more than MLP. Obviously, the training time for an ensemble
of 10 models (for MLP and LSTM) could be largely reduced by running computations on
parallel cores.

Table 5. Average computational times (expressed in seconds) for training and prediction.

Model Training Time (s)
(Single Model)

Training Time (s)
(Ensemble 10 Models) Prediction Time (s)

SVR 7.8 - 1.1
MLP 23.8 245.7 11.5

LSTM 120.7 1230.8 67.1

However, the longer training times of MLP and LSTM may not be an issue for practical
purposes, as the trained models can be saved and later used for forecasting. For this reason,
Table 5 also reports the average time necessary for providing the full prediction (1 to 9 h
ahead) with data pre- and post-processing. Again, MLP and LSTM required slightly longer
prediction times than SVR did due to the choice of adopting an ensemble of 10 models. In
any case, all models only took a few seconds (up to one minute) to deliver their forecasts,
thus confirming the suitability of ML models for real-time applications.

5. Conclusions

In this work, we selected the case study of the Parma River (Italy) to evaluate the
applicability of machine-learning algorithms to set-up a real-time flood forecasting model
that is only based on observed water stages. This kind of “data-driven” approach has
the advantage of avoiding the setup and calibration of physically based rainfall-runoff
and/or flood routing models, and of being characterized by much lower execution times
compared to these latter models. This work is particularly focused on the prediction of
flood stages at a critical river station (Colorno) based on upstream stage observations (Ponte
Verdi), though downstream stages (Casalmaggiore) were also included in order to consider
possible level increases due to backwater from the Po River. The forecast horizon for this
specific case study was limited to 9 h, which is the approximate flood travel time between
Ponte Verdi and Colorno. Accurate stage predictions with a lead time of a few hours can
be particularly useful for issuing flood warnings and taking timely actions to prevent local
levee overtopping (e.g., placing sandbags and flood barriers at some well-known critical
spots along the levee).
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We compared three different ML models, namely SVR, MLP, and LSTM. Our results
showed the following:

• In general, all models are able to provide sufficiently accurate stage forecasts up to 6 h
ahead (RMSE < 15 cm, and NSE > 0.99), while prediction errors increase for longer lead
times. The error on the peak levels also becomes very large for 9 h-ahead forecasts;

• SVR is characterized by the best RMSE values, and also by the shortest computational
time. However, its accuracy on the peak levels is lower than those of the other models,
especially for intermediate (6 h) and long (9 h) lead times;

• MLP presents the largest errors among the three models considered here, but the
analysis of its predictive validity shows that it can still be considered suitable for
practical purposes;

• LSTM performs similarly to SVR regarding the goodness-of-fit measures for the testing
dataset, but it appears much more accurate in predicting the peak levels. Hence,
despite the longer computational times required for the training phase, this ML model
can be considered the best candidate for setting up a robust operational model for
real-time flood forecasting.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13121612/s1. Table S1: List of flood events considered in this work (ordered by descending
peak level for each type of event), Table S2: Random splitting of flood events into train/validation/test
for each of the 20 runs (t = training; v = validation; x = testing), Table S3: Split #3 (example of Figure 8):
comparison of ML models’ performance for training, validation, and testing dataset, Table S4: Split
#20 (example of Figure 9): comparison of ML models’ performance for training, validation, and
testing dataset, Figure S1: Comparison of observed and forecasted peak levels in Colorno (training
dataset) for time lags of 3, 6, and 9 h, Figure S2: Comparison of observed and forecasted peak levels
in Colorno (validation dataset) for time lags of 3, 6, and 9 h.
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