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Abstract: This study aims at analysing the impact of climate change (CC) on the river hydrology
of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and
Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of
this research. A relatively new approach of selecting global climate models (GCMs) for each of
the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing
four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future
climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data
were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year
time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099).
The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional
differences of extreme flows of the simulated baseline period (1983–2012). The results showed that
future long-term average annual flows are expected to increase in all climatic conditions for both
RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and
annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-
maximum and -minimum flows shows increased high flows and decreased low flows in the future.
These results imply the necessity for design modifications in hydraulic structures as well as the
preference of storage over run-of-river water resources development projects in the study basin from
the perspective of climate resilience.

Keywords: climate change; fractional difference; SWAT; quantile mapping; extreme flow

1. Introduction

Traditional energy sources along with human labour and draught transport were
replaced initially by coal and then by oil in the early 1900s for powering machines and
transportation [1,2]. Access to cheaper fossil fuels has been a major milestone for modern
development pathways [3]. Since the beginning of the industrial age, the ability to harness
and use different forms of energy has led to global economic growth and an increase in
production and consumption, which enabled people to perform increasingly productive
tasks and to improve the living standards of billions of people [4,5]. However, scientific
evidence indicates that huge emissions of CO2 and other greenhouse gases (GHGs) in
the atmosphere are associated with the increasing use of fossil fuel [6,7]. The era of the
industrial revolution can, thus, be taken as the starting point of climate change (CC) as the
scientific community has defined it today [8]. With the widespread use of fossil fuels and
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human interventions after the first industrial revolution, global warming has emerged as
an environmental issue that has captured the attention of the world [9].

CC has become a major challenge and threat to the planet, particularly after World War
II. Although alteration to the Earth’s climate has been going on forever, we have started
acknowledging its impacts on humans and the current environment only in the second half
of the 20th century [9]. The first world conference on the environment held in Stockholm
in June 1972 [10] formally opened the doors for a dialogue between industrialized and
developing countries on the link between economic growth; the pollution of the air, water,
and oceans; and the wellbeing of people around the world. Moreover, the formation of the
United Nations Environment Programme (UNEP) is one of the major achievements of the
Stockholm conference. The UN World Meteorological Organization (WMO) and UNEP
established the Intergovernmental Panel on Climate Change (IPCC) with the objective
of conducting and disseminating the findings of scientific research on CC in 1988 [11].
The Second Earth Summit organized by the UN in Rio de Janeiro, Brazil, in June 1992
formed a mechanism for cooperation between states, sectors, and people on issues related
to environmental protection and sustainable economic development [12]. Further, in 1997,
the Kyoto Protocol set the first GHG emission reduction targets for industrialized nations.
In this regard, a total of 192 nations of the world committed to reducing their emissions
by an average of 5.2% by 2012, which is popularly referred to as Kyoto Protocol [13]. The
United Nations Climate Change Conference held in December 2009 documented that CC
is one of the greatest challenges of the present day and prescribed that actions be taken to
keep temperature increases to below 2 ◦C [14]. The 2015 Paris COP 21, a global consensus,
established that average global warming needs to be kept below 1.5 to 2 ◦C to avoid the
irreversible threat to environmental, economic, social, and political challenges by CC for
years and decades to come [15]. The IPCC reports that all currently available global climate
models (GCMs) agree on an increase in global mean temperature over the 21st century. The
latest assessment report by the IPCC (AR6) has recommended limiting global warming to
1.5 ◦C in order to significantly reduce the risks and impacts of CC [16].

The GCMs and regional climate models (RCMs) have been found to be effective tools
in developing a better understanding of CC by predicting future climate projections [17,18].
Scientists of the Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and At-
mospheric Administration (NOAA), developed the first coupled ocean-atmosphere general
circulation climate model (GCM) in the 1960s capable of simulating the temperatures and
precipitation of the past 50 years [19,20]. Following GFDL, many other studies across the
world have developed different climate models. For example, the Hadley Centre Global
Environment Model (HadGEM) [21], the Canadian Earth System Model (CanESM) [22],
and the Max Planck Institute for Meteorology (MPI) [23] are some notable GCMs, while
the Seoul National University Regional Climate Model (SNURCM) [24], the Max Planck
Institute for Meteorology—REMO2009 [25], and the Conformal Cubic Atmospheric Model
(CCAM) [26] are popular RCMs. Lately, it has become very convenient to use these
GCM/RCM datasets in hydrological models such as the Système Hydrologique Européen
(MIKE SHE), the Soil and Water Assessment Tool (SWAT), and the Variable Infiltration
Capacity (VIC), among others, for CC studies. Comparing future climate projections with
the baseline period to reach meaningful conclusions has been a routine procedure in the
hydrological modelling and CC domains. Water availability studies using the output of
climate models have been carried out at global [27], regional [28], and local scales [29].
Several studies have been conducted to assess the water availability and impacts of CC
in the Hindu Kush Himalayan region [30–33] that includes the Budhigandaki River Basin
(BRB) [34–36]. Results of such studies vary considerably across the spatial and temporal
scales, and thus a generic conclusion on the impact of CC in water availability cannot be
reached deterministically. These studies suggest the SWAT model can be a useful tool to
assess the flow and water balance and the impacts of CC on them.

The quantification of available water at the local scale and examining how it is im-
pacted by CC is extremely important from a water management perspective at the river
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basin level. The overarching objective of this study is to analyse the impact of CC on the
hydrology of a complex mountainous river basin, namely the Budhigandaki River Basin
(BRB) of Nepal. The well-calibrated and validated SWAT model (in Part I of this research)
was used to simulate future flows using future CC data [37]. A relatively new approach
of selecting climate models representing four different extreme cases (warm-wet, cold-
wet, warm-dry, and cold-dry conditions) were applied in the study. Generally, analysis
of the impact of CC was limited to annual, monthly, and seasonal flows and based on
people’s perceptions in most of the previous studies [32,34,38–40]. This study has extended
the analyses further to compare with the baseline condition the results of the frequency
analysis of the annual one-day-maximum and -minimum flows for three-time windows,
i.e., immediate, mid, and far futures.

2. Methodology and Data

The methodological framework used in this study is depicted in Figure 1. Future data
of different global climate models (GCMs) to assess the impact of climate change (CC) on
the Budhigandaki River Basin (BRB) was projected for 79 years (2021–2099). These climate
data were considered for two RCPs, 4.5 (stabilization scenario) and 8.5 (high emission
scenario), of the Intergovernmental Panel on Climate Change Fifth Assessment Report
(IPCC AR5) [41]. A brief description of the selected GCMs and their selection criteria, bias
correction methods, impact of CC on climatic parameters and hydrology, and frequency
analysis of extreme flows are given below.

Figure 1. Overall methodological framework.

2.1. Hydrological Modelling

The Soil and Water Assessment Tool (SWAT), a continuous-time, semi-distributed,
process-based river basin simulation model [42,43] capable of simulating hydrology and
other environmental processes, was used in the study to examine the impact of CC on
the basin hydrology. The Budhigandaki River Basin (BRB) was divided into 16 sub-basins
and 344 hydrologic response units (HRUs) to capture the spatial heterogeneity across
the basin. The model was calibrated and validated at the Arughat hydrological station.
Moreover, supplementary validation of the model was done at three locations upstream
and downstream of Arughat. The model performance was evaluated using four widely
used statistical indicators: Nash–Sutcliffe efficiency (NSE), root mean square standard
deviation ration (RSR), percent bias (PBIAS), and Kling–Gupta efficiency (KGE). Details of
the SWAT hydrological model development and its evaluation are discussed in the first
part of this study [37].

2.2. Selection of Climate Models

This study used the advanced envelop-based climate selection method to assess the
projected future climates as described in Lutz et al. [28]. It is based on two general criteria
for the selection of GCMs: (a) GCMs should be common to a pool of models with changes
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in temperature and precipitation, and (b) they must be available on a continuous daily
scale. Based on these two conditions, 105 models for RCP 4.5 and 78 models for RCP 8.5
scenarios were included in the initial pool of models. Climatic data (mean temperature
and precipitation) were obtained from GCMs through the KNMI climate explorer interface
(https://climexp.knmi.nl/start.cgi, accessed on 16 June 2020) for the study area. The
applied method uses three steps connecting future projections with past performance
(1981–2005), as shown in Figure 2.

Figure 2. Climate model selection (adopted and modified from [28]).

Step 1: In the first step, the projected changes in future climate from the baseline period
are computed for each GCM listed in the pool of models considering warm-dry, warm-wet,
cold-wet, and cold-dry corners to form an envelope. The 10th and 90th percentile values for
change in mean temperature (∆T) and percentage change in annual precipitation (∆P) for
each scenario were determined. These values represent the four corners of the spectrum of
the projections for temperature and precipitation change. The tenth percentile value of ∆T
and tenth percentile value for ∆P are in the ‘cold-dry’ corner of the spectrum. Likewise, the
tenth percentile value of ∆T and 90th percentile value for ∆P are in the ‘cold-wet’ corner,
while the 90th percentile value of ∆T and 90th percentile value of ∆P are in the ‘warm-wet’
corner. Similarly, the 90th percentile value of ∆T and tenth percentile value of ∆P fall in the
‘warm-dry’ corner of the spectrum. The proximity of the model running to the 10th and
90th percentile values is derived using the distance metrics recommended by [28]. A total
of 20 models (5 models in each four corners) were selected from this step.

Step 2: Two GCMs in each corner were selected in the intermediate step based on the
projection of changes in climate extremes using four of the Expert Team on Climate Change
Detection and Indices (ETCCDI), as mentioned by [28]. They are R95P [Precipitation due to
extremely wet days (> 95th percentile)], CDD [Consecutive dry days: maximum length
of dry spell (p < 1 mm)], WSDI [Warm spell duration index: count of days in a span of at
least 6 days where TX > 90th percentile (TXij is the daily Tmax on day i in period j)], and
CSDI [Cold spell duration index: count of days in a span of at least 6 days where TN < 10th
percentile (TNij is the daily Tmin on day i in period j)].

https://climexp.knmi.nl/start.cgi
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Step 3: In the final step, the ability of the selected GCMs to hindcast the past obser-
vation is evaluated between the selected two models in Step 2 of each of the four corners.
In this step, the Taylor method [44] was used to evaluate the GCMs on the basis of three
statistics: correlation coefficient, centred root mean squared error (RMS), and the standard
deviation. The most reasonable GCM for each corner was selected as the one having the
average of the highest Taylor score of the precipitation and temperature. In this way, four
models, one in each corner with the highest Taylor score, were selected for each RCP.

2.3. Bias Correction

In order to apply GCM projections at the local scale, bias correction is necessary. This
is because of the following reasons: (a) GCMs have inherent systematic biases which can
be due to the model’s representation of physical processes and their parameterization,
initializations, or human judgement, and (b) they are often incompatible on scales (because
of coarser resolution) that are necessary for local level hydrological impact studies [45].
Different methods for bias correction for climate variables like precipitation and temper-
ature are discussed in the literature that range from simple corrections in the annual or
monthly mean values to complex distribution fitting that corrects the entire distribution.
For example, [46] used the delta change approach in crop modelling in Europe for both
temperature and precipitation. Lenderink et al. [47] used the linear scaling approach for
estimating the future discharges of the Rhine River. Local intensity scaling (LOCI) was
applied by [48], while the power transformation method was used in other studies [47,49].

This study used the distribution mapping approach in which the mean, variance, and
whole distribution is considered [50–52]. The projected climate data at the meteorological
stations were then bias corrected using the quantile mapping (QM) method [51,53]. QM
corrects the quantiles of GCM data to match those of observed data by creating suitable
transfer functions explained in Equation (1):

Xcorr
f uture,t = inverse ecd f obs

baseline

(
ecd f GCM

baseline

(
XGCM

f uture,t

))
(1)

where, ecdf is the empirical cumulative distribution function for the reference time period,
XGCM

f uture,t is the raw GCM (projected value) at future time t, ecd f GCM
baseline is the empirical

cumulative distribution function of GCM for the baseline period, and inverse ecd f obs
baseline

is the inverse empirical cumulative distribution function of observation for the baseline
period. Xcorr

f uture,t is the corrected estimate of XGCM
f uture,t. We used the frequency adaptation

method as described in [54] for the correction of extra dry days when the frequency of dry
days in the baseline period in GCM data is greater than the frequency of dry days in the
observed data.

The bias-corrected times series climatic data from the selected GCMs for each mete-
orological station were averaged for each climate scenario. The projected future CC and
associated impacts were analysed based on those individual climatic scenarios which were
used as input to the SWAT hydrological model.

2.4. Climatology under Climate Change

The percentage change in annual average precipitation and mean temperature under
CC were compared with the baseline data for both emission scenarios (RCPs 4.5 and 8.5).

2.4.1. Climate Change Impact Analysis of Future Flows

The SWAT model developed and discussed in Part I of this study [37] was applied
to simulate the future flows by enforcing the projected GCMs’- CC data. Projected flows
were divided into three 30-year time windows: Immediate Future (IF: 2021–2050), Mid
Future (MF: 2046–2075), and Far Future (FF: 2070–2099). Projected flows were compared
with corresponding monthly, seasonal, annual, and fractional differences of extreme flows
(Q90 and Q10) of the simulated baseline flows (1983–2012). Such comparisons were made
for all four scenarios, three future time windows, and for both RCPs.
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2.4.2. Frequency Analysis

Annual one-day-maximum and -minimum flow series were extracted for each time
window of all four scenarios for both RCPs along with the baseline simulated flow. Gumbel
distribution [55] was fitted to these time series in order to find the magnitude of high and
low flows for the selected return periods. Interestingly, some flood-related studies have
applied hydro-economic [56] and techno-social [57] perspective CC assessment methods.

3. Results
3.1. Climate Model Selection

The first selection was made by comparing the projected mean temperature and annual
precipitation changes (%) of 2021–2050 with the baseline period of 1981–2005 for both RCPs
shown as dots in Figure 3. In RCP 4.5, the projected changes in annual precipitation are in
the range of −9% to +23%, while most models show an increase in precipitation. Similarly,
the change in projected temperature ranges from +0.6 ◦C to +3.1 ◦C with the multi-model
mean showing an increase by approximately +1.7 ◦C. Similarly, in RCP 8.5, most of the
models indicate an increase in annual precipitation, while in some cases, it is decreases
(range of change in precipitation: −11% to +21%). In the case of temperature, the changes
are from +0.7 ◦C to +3.0 ◦C, with the mean value of +1.9 ◦C.

Figure 3. Projected changes in annual precipitation (∆P %) and annual mean temperature (∆T ◦C) for RCP 4.5 and RCP 8.5.
Pink, violet, red, and green dots represent warm-dry, warm-wet, cold-dry, and cold-wet conditions, respectively.

ETCCDI extreme indices, viz. R95P, CDD, WSDI, and CSDI, were used to filter GCMs
from 20 to 8. The two GCMs that have the topmost combined scores for the changes
in precipitation and temperature indices in each corner are selected in the intermediate
selection steps given in Supplementary Tables S1 and S2. Using the Taylor method [44],
four GCMs, one for each corner, are selected (Table 1). HadGEM2 was selected for cold
and dry conditions, GFDL for cold and wet conditions, and CanESM2 for warm and wet
conditions for both RCPs. However, in the case of warm and dry conditions, MPI-ESM for
RCP 4.5 and MIROC-ESM for RCP 8.5 were selected.
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3.2. Bias Correction

Monthly average precipitation and temperature (observed, uncorrected, and bias
corrected) are given in Figure 4 for RCP 4.5 of CanESM2 as a representative graph. The
graph shows that the climate data are well bias corrected.

Table 1. Summary of selected GCMs for RCPs 4.5 and 8.5.

Climatic Condition GCMs for RCP 4.5 GCMs for RCP 8.5

Cold-dry (p10_10) HadGEM2-CC_rcp45_r1i1p1 HadGEM2-ES_rcp85_r1i1p1
Cold-wet (p10_90) GFDL-ESM2G_rcp45_r1i1p1 GFDL-ESM2M_rcp85_r1i1p1

Warm-wet (p90_90) CanESM2_rcp45_r3i1p1 CanESM2_rcp85_r3i1p1
Warm-dry (p90_10) MPI-ESM-LR_rcp45_r3i1p1 MIROC-ESM-CHEM_rcp85_r1i1p1

Note: px_y: xth and yth percentiles of temperature and precipitation.

Figure 4. Observed (black), before bias correction (blue), and after bias correction (red) precipitation
(top) and maximum temperature (bottom) monthly values for RCP 4.5 of CanESM2.
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3.3. Climatology under Climate Change

The percentage changes in annual precipitation and temperature under the two emis-
sion scenarios (RCPs 4.5 and 8.5) with respect to the baseline values are depicted in Figure 5.
The projected precipitation by all GCMs for all time windows (IF, MF and FF) is most likely
to increase in both RCPs except MPI-ESM (MF, FF) and HadGEM2 (IF), in the case of RCP
4.5, and HadGEM2 (IF and MF) for RCP 8.5. The highest increase of about 9% and 20%
from the baseline values are found for RCP 4.5 (in IF) and RCP 8.5 (in FF), respectively,
projected by the CanESM2 model. The lowest projected precipitation by the HadGEM2 is
found in the IF time window. Their values are about 5% and 7% lower than the base case,
respectively, in RCPs 4.5 and 8.5. It can be seen from the figure that the precipitation is
expected to increase with time (IF < MF < FF) in RCP 8.5. However, in the case of RCP 4.5,
the response is mixed, i.e., an increasing trend for HadGEM2 (Cold-dry) and GFDL_ESM2G
(Cold-wet) and a decreasing one in the other two cases (Warm-wet and Warm-dry). This
characteristic is distinctly depicted in Figure 6, i.e., the projected long-term precipitation in
RCP 8.5 shows a clear increasing trend which is not clear for RCP 4.5.

Both the maximum and minimum temperature projections by all the selected GCMs
(in all climatic conditions) are found increasing while moving from IF to FF in both emission
scenarios. The rate of increase of temperature is higher by all projections for RCP 8.5 than
that of RCP 4.5, as expected (Figures 5 and 6). It can also be observed that the increase in
minimum temperature is more than that of maximum temperature in all time windows for
both emission scenarios and in all conditions except the cold-wet condition (GFDL-ESM2G
of RCP 4.5). However, the projected temperatures of selected models are found to be
different. The maximum increase is found for the minimum temperature projected by
MIROC-ESM-CHEM (warm-dry/FF) of RCP 8.5, i.e., 6.5 ◦C. The minimum increase is
found to be 0.6 ◦C projected by the GFDL-ESM2G model in IF (Figure 5).

Figure 5. Change in precipitation (a,d) and change in temperature [maximum (b,e), minimum (c,f)]
pattern of the four selected GCMs and ensemble of RCPs 4.5 (left) and 8.5 (right) with their respective
time windows: blue (IF), red (MF), and green (FF).
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Figure 6. Precipitation and temperature (observed, bias corrected) of RCP 4.5 (a–c) and 8.5 (d–f) of the selected GCMs; black
(baseline), red (MIROC/MPI), blue (GFDL), green (HadGEM), and purple (CanESM2).

3.4. General Hydrology under Climate Change

The simulated average annual flow at the outlet of BRB for the baseline period is
240 m3/s [37]. Table 2 presents the predicted flow and corresponding percentage changes
by all selected GCMs for four climatic conditions (warm-wet: projected by CanESM2;
warm-dry: MPI (RCP 4.5/MIRCO (RCP 8.5), cold-wet: GFDL, and cold-dry: by HadGEM2)
and their ensemble for all time windows.

The maximum increase of annual flow in RCP 4.5 is more than 30% in the cold-dry
condition of FF and the minimum increase is about 10% in IF for the same condition
predicted by the HadGEM2 model. It shows that the HadGEM2 predicted flow has a
higher variability range than other GCMs in terms of annual averages. The increased flow
of the long-term annual average is almost the same for the warm-wet condition projected
by CanESM2 (IF: 29%, MF: 30% and FF 28%), whereas it has a decreasing trend for the
warm-dry condition projected by the MPI model (IF: 26%, MF: 20% and FF: 17%). The
flow of the other remaining two conditions have an increasing trend while moving from IF
to FF [GFDL: 18% (IF), 20% (MF) and 24% (FF); and HadGEM2: 10% (IF), 24% (MF) and
31% (FF)].



Water 2021, 13, 1548 10 of 18

Table 2. Impact of climate change on long-term annual flow.

Conditions Time
Window

RCP 4.5 RCP 8.5

Flow (m3/s) % Change Flow (m3/s) % Change

Baseline 240 - 240 -

Cold-Wet
(GFDL-
ESM2G)

Immediate
Future 283 18 304 27

Mid Future 287 20 317 33
Far Future 297 24 358 49

Warm-Wet
(CanESM2)

Immediate
Future 309 29 311 30

Mid Future 311 30 315 32
Far Future 306 28 377 57

Cold-Dry
(HadGEM)

Immediate
Future 263 10 251 5

Mid Future 297 24 272 14
Far Future 314 31 331 38

Warm-Dry
(MPI-ESM-

LR/MIROC-
ESM)

Immediate
Future 301 26 287 20

Mid Future 288 20 334 39
Far Future 281 17 350 46

Ensemble

Immediate
Future 289 21 288 20

Mid Future 296 23 310 29
Far Future 299 25 354 48

The long-term average annual flow predicted by all GCMs for all time windows in
RCP 8.5 are also more than the baseline flow, in increasing order from IF to FF for all
climatic conditions, similar to RCP 4.5. The increase in annual projected flow is between
5% (cold-dry/IF) and 57% (warm-wet/FF).

Thus, it can be observed that the long-term average annual flows are projected to
increase in all climatic conditions for both RCPs. The range of increment of ensembled
flow is in between 21% and 25% in RCP 4.5 and 20% and 48% in RCP 8.5. This shows
that the magnitude of increment of future flow is expected to be more for the higher
emission scenario.

3.5. Variation in Monthly Flows

Knowledge on the monthly variability under CC is useful for risk assessment of
water resource development projects, such as hydropower, irrigation, and municipal water
supplies. The long-term monthly flow for the three-time windows projected by the four
GCMs representing four climatic conditions of RCP 4.5 and RCP 8.5 emission scenarios are
given in Supplementary Tables S3 and S4, respectively. The data show that the range of
change in monthly projected flow in RCP 4.5 is from −17% (June/MF/cold-dry) to 68%
(March/FF/warm-wet) with respect to the baseline flows. It is noted here that only 4 out of
144 cases (12 months × time windows × 4 climatic conditions) have more than 5% decrease
in monthly flows. In almost 60% of the cases, the flows are in the range of +10% to +25%
of the baseline flows. Monthly flows more than 25% of the baseline flows are found to
be in one fourth of the total number of months in the simulated period. In general, in
three climatic conditions (warm-wet, cold-wet, and warm-dry), more than 25% increase is
found in the month of March. Even for the cold-dry condition, the increased percentage is
high (>15%). The monsoon flow is expected to increase significantly in all time windows
except for the cold-dry condition in June. The highest absolute magnitude of the projected
monthly maximum flow in all time windows for all climatic conditions is found to occur in
August, similar to the baseline, except for the far-future of the cold-wet condition. In this
case, the flow value is at its maximum in July.

In the case of RCP 8.5, the range of change of the monthly flow is from nearly −50%
(July/MF/cold-dry) to 200% (October and November/MF/cold-dry). Almost two-thirds
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of the predicted monthly flows are more than 25% of the baseline values for all climatic
conditions. Almost one-fourth of the cases are between a 10 and 25% increase in monthly
flows. The decrease in predicted flow was found only for cold-dry conditions. It is interesting
to note that this decrease is mainly observed in the monsoon season (June, July, and August)
and in May. The rate of increase is found to be higher in the post-monsoon season (October
and November).

The monthly baseline and predicted ensembled flows as well as the corresponding
percentage changes due to CC for both RCPs are given in Figure 7.

Figure 7. Hydrographs of monthly ensembled and baseline flows and their changes; (a: RCP 4.5 and
b: RCP 8.5) black dashed (baseline), red (Immediate Future—IF), grey (Mid Future—MF), and blue
(Far Future—FF).

The ensembles of the projected mean monthly flow are expected to increase in March,
August, September, October, and November for all scenarios except MF (May) of RCP 4.5
(2021–2099). On the other hand, in RCP 8.5, all the ensembles of the projected monthly flow
increase in all time windows. The relative changes in the projected mean monthly flow
under RCP4.5 are +11 to +28%, −1 to +36%, and +5 to +43% for IF, MF, and FF, respectively.
These figures range from +3 to +52%, + 6 to + 77%, and +18 to + 82% for IF, MF, and FF,
respectively, in the case of RCP 8.5. Ensembled flows are found to be higher in RCP 8.5
than in RCP 4.5, except for a few months (May to August of IF and July and August of MF).
The maximum increases of 43% (September) in RCP 4.5 and 82% in RCP 8.5 occur towards
the end of the century.
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3.6. Variation in High and Low Flows

The 10th percentile (Q10, high flow) and 90th percentile (Q90, low flow) values were de-
rived from the corresponding baseline and flow duration curves predicted by all four GCMs
for the considered time windows. Their fractional differences (Q10:Q90) were calculated
separately for each case. The 10th and 90th percentiles of baseline flow are, respectively,
598 m3/s and 64 m3/s. This means that the fractional difference of the baseline flow is
9. For RCP 4.5, the fractional differences of the ensembled flow are found to be 11, 12,
and 12 for IF, MF, and FF, respectively. However, such ensemble values for RCP 8.5 are,
respectively, 14, 17, and 18 for IF, MF, and FF. This result shows that variability is expected
to increase with time and be of a higher magnitude in RCP 8.5 than in RCP 4.5.

The number of days exceeding Q10 flow and less than Q90 were calculated from the
results to assess the frequency of incidence of high flow and low flow. The number of
days exceeding Q10 or not exceeding Q90 was 1098 for the baseline period. The number
of days (for all the four GCMs) that are expected to have flow exceeding Q10 are more
than 1098 days and not exceeding Q90 are less than 1098 days, except for one case (FF-low
flow-warm dry-RCP 4.5). The increase in the number of such days for IF, MF, and FF are,
respectively, 58%, 66%, and 71% for RCP 4.5 and 43%, 62%, and 97% for RCP 8.5. On the
other hand, the percentage of decrease in number of days in which the flow is expected to
be less than Q90 are 29%, 26%, and 14% for RCP 4.5 and 43%, 20%, and 42% for RCP 8.5
for IF, MF, and FF, respectively. This result indicates that the likelihood of the number of
flooding days would increase during the high flow season, while the number of firm flow
days in the low flow season would decrease, both instances pointing towards the negative
impact of CC.

3.7. Frequency Analysis of Flow

In this study, the frequency analysis of annual one-day-maximum and -minimum
flows at the outlet of the BRB was carried out by the Gumbel Method for the baseline and
CC cases as discussed below.

3.7.1. One-Day-Maximum Flow

Maximum instantaneous flows are generally used to estimate design floods [58,59].
Annual one-day-maximum floods and instantaneous floods are positively correlated [59–61].
Therefore, it is assumed that the impact of CC on instantaneous flows is the same as that in
the annual one-day-maximum flow.

Changes in the one-day-maximum flood for the different conditions and return periods
are given in Table 3, including baseline values. The baseline floods for the 100-, 500-, and
1000-year return period are, respectively, 1544, 1801, and 1911 m3/s. Table 3 shows
that the one-day-maximum flood resulting from CC is higher than the baseline floods
for all climatic conditions and in all time windows for the considered return periods.
However, the magnitude of predicted values are different depending on the selected
GCMs. Such an increase is found in the range of 66% (warm-dry/IF/100 years) to 226%
(warm-wet/MF/1000 years) for RCP 4.5 and 69% (cold-dry/IF/100 years) to 317% (cold-
wet/FF/1000 years) in the case of RCP 8.5. It is noted here that flood magnitudes are more
in RCP 8.5 than RCP 4.5, except in the IF of the cold-dry condition. On an average, the
change in ensembled projected flood is around 110%, 125%, and 140% of baseline floods,
respectively, for IF, MF, and FF time windows in the case of RCP 4.5. These changes are
about 150%, 200%, and 250%, respectively for IF, MF, and FF time windows in RCP 8.5.

3.7.2. One-Day-Minimum Flow

One-day-minimum simulated flows for the different scenarios are given in Table 4.
Results showed that the range of change in one-day-minimum flow due to CC with respect
to the baseline condition is between −27% (warm-dry/FF/20 years) and +9% (warm-
wet/IF/2 years) for RCP 4.5, while it is between −20% (warm-wet/MF/20 years) and
+16% warm-wet/FF/2 years) for the RCP 8.5 scenario. Almost half of the flow values in
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RCP 4.5 are expected to decrease by more than 10%. This phenomenon is mainly observed
in MF and FF. Similar results are obtained in RCP 8.5, i.e., almost 50% of the low flows are
lower than the base case values. It is more prominent in MF. Such a decrease is mainly
clustered for the 10- and 20-year return period flows. The maximum decrease in predicted
ensembled one-day-low flows is observed in FF in the case of RCP 4.5 and MF in the case
of RCP 8.5.

Table 3. One-day-maximum flood frequency analysis.

Time
Window

Return
Period
(Years)

Baseline
Flow
(m3/s)

% Change in Flow (RCP 4.5) % Change in Flow (RCP 8.5)

Warm
and Dry

Cold
and Dry

Warm
and Wet

Cold
and Wet Ensembled Warm

and Dry
Cold

and Dry
Warm

and Wet
Cold

and Wet Ensembled

IF
100 1544 66 101 153 102 106 204 69 159 137 142
500 1801 67 109 163 106 111 226 72 171 145 154
1000 1911 68 111 166 108 113 234 73 175 148 158

MF
100 1544 71 126 205 79 120 215 167 180 200 190
500 1801 72 131 220 79 125 228 183 189 217 204
1000 1911 72 133 226 78 127 233 188 192 223 209

FF
100 1544 114 141 183 97 134 238 175 269 285 242
500 1801 123 149 197 98 142 254 183 280 309 256
1000 1911 126 151 202 98 144 260 186 283 317 262

Table 4. One-day-minimum flow frequency analysis.

Time
window

Return
Period
(Years)

Baseline
Flow
(m3/s)

% Change in Flow (RCP 4.5) % Change in Flow (RCP 8.5)

Warm
and Dry

Cold
and Dry

Warm
and Wet

Cold
and Wet Ensembled Warm

and Dry
Cold

and Dry
Warm

and Wet
Cold

and Wet Ensembled

IF
2 56 7 0 9 4 5 5 2 9 7 6
10 47 2 0 −9 −4 −3 6 −2 −4 4 1
20 45 0 0 −13 −7 −5 7 −2 −7 4 1

MF
2 56 −4 5 4 −7 0 0 −2 4 −2 0
10 47 −11 0 −11 −15 −9 −11 −15 −15 −15 −14
20 45 −13 −2 −16 −16 −12 −13 −20 −20 −18 −18

FF
2 56 −13 2 −2 −5 −4 −5 4 16 4 4
10 47 −23 −4 −17 −15 −15 −15 −13 2 −2 −7
20 45 −27 −7 −20 −18 −18 −18 −18 −2 −4 −11

4. Discussion

Precipitation and temperature are considered to be the most important climatic vari-
ables influencing the water availability of a basin. The influence of CC has significant
implications on water resource planning and management. Recent studies have used
varying models and datasets (GCMs and/or RCMS) and climate scenarios to assess CC
through precipitation and temperature in various parts of Nepal, considering different
time windows to the end of this century [31,62–65]. Expected changes in precipitation
are not consistent across the country; however, all these studies predicted an increase in
precipitation with time. Our results are comparable with these, showing that projected
precipitation by almost all GCMs for all time windows (IF, MF and FF) is most likely to
increase in both RCPs. In the case of temperature, expected changes quantified by the
aforementioned studies are not uniform in this region. Nevertheless, most have predicted a
rise in both maximum and minimum temperature [29,39,64,65]. In this study too, both the
maximum and minimum temperatures projection by all the selected GCMs (in all climatic
conditions) are expected to increase while moving from IF to FF in both emission scenarios.

This study found that the projected annual flows by all GCMs and for all time windows
are greater than the base case. A similar trend has been reported in other studies made
in Nepalese rivers basins: for example, Indrawati [31], in Bagmati [62], Kaligandaki [66],
Bheri [67], Karnali [29], and Koshi [32,40,59], except [39] in Tamor. Among these results, the
trend of increase in ensembled future flows is surprisingly found similar to that of [40]. The
percentage change in flow due to CC in IF/MF/FF of this study and [40] are, respectively,
21/23/25 and 16/22/28 for RCP 4.5 and 20/29/48 and 18/31/57 for RCP 8.5. From the
results presented above, we can see that the range of increase in annual flow is more in



Water 2021, 13, 1548 14 of 18

RCP 8.5 (5–57%) than in RCP 4.5 (10–30%), except in IF and MF of the cold-dry and in IF of
the warm-dry conditions. The lower values of the predicted flows in RCP 8.5 are attributed
to less precipitation in RCP 8.5 in these cases. Although the overall trend of the projected
flow is found increasing, the individual scenarios show differences in the magnitude of
changes in flows. Depending on the GCM used and the location of the studied catchments,
the magnitude (in some cases even the direction) of changes in flow as the impact of CC
are reported differently in previous studies [38,40,68–70]. For example, in the study by [69]
using the SWAT model, the authors found that the annual runoff of the Yinma River Basin
(China) in the future (2021–2050) would increase by 88% for RCP 4.5 and by 48% for RCP
8.5 in comparison to the baseline period (1981–2010). On the other hand, decreases of mean
annual runoff are projected by the VIC model in all future time windows of 2010–2039,
2040–2069, and 2070–2099 in a similar study by [70] conducted in the Upper Yangtze River
Basin of China (the decrease in mean annual flow was 7.84% under RCP 8.5 and 9.81%
under RCP 4.5, in their case). Phi Hoang et al. [68] found that the ensemble flow due to CC
shows increases in annual river flows between +5 and +16% in the Mekong river. Results
from these studies highlight the need for the localized prediction of future flows for water
resource management considering the uncertainties.

Except in May and June, the future flows predicted by all GCMs are likely to increase
in all other months of the year for all time windows. This is similar to the results of the
Koshi Basin in Nepal [40]. As in the case of annual flows, the range of predicted changes
in future flows shows a high level of uncertainty depending on the choice of GCM. Such
variation is quite high in RCP 8.5 (–50% to +200%). However, similar monthly variations
in flow between −70% and +190% are found in Wagener et al. [71]. Similarly, maximum
monthly flow increases of 143% and 99%, respectively, for RCP 4.5 and 8.5 were reported
in [69]. On the other hand, [72] found that the mean monthly river flow varies from −16%
to +55%, with the greatest decreases in July and August and the greatest increases in May
and June.

Our results predict a higher increase in high flows than that of low flows. The average
increases (predicted by all GCMs for all time windows) of high flow (Q10) are 23 and 26%,
and those of low flow (Q90) are 14 and 17% with respect to the baseline for RCP 4.5 and
RCP 8.5, respectively. This shows that the negative impacts of CC can be expected in both
the high flows (increasing) and low flows (decreasing). Similar results are reported for the
Ljubljanica River of Slovenia in all three investigated future time windows, i.e., 2011–2040,
2041–2070, and 2071–2100 under RCP 4.5 [73]. The highest change in one-day-maximum
flood is expected in the warm-wet climatic condition for the case of RCP 4.5 in all time
windows. w However, for RCP 8.5, the warm-dry condition in IF and MF predicts higher
values of flood, while the cold-wet does so in the FF.

The expected rise in temperature will most likely lead to increase in water demand:
for example, ET. This will further stress the water availability of the basin. On the other
hand, increased snow melt during the dry season and thus addition to the current water
availability might be beneficial to some users, such as hydropower projects. Moreover, the
projected shift in precipitation patterns will most likely impact floods and droughts by
altering their timing and magnitude. These consequences are further exacerbated by the
various uncertainties in the method of analysis and results. Nevertheless, the increase in
predicted floods by all the GCMs in our study show that the flood disposal structure should
be designed at a higher capacity than the one designed based on baseline flood values to
achieve climate resilience. Additionally, the projected decrease in the future low-flows
due to CC strongly indicates the need for storage over run-of-river projects for optimal
water use planning. Overall, it is seen that the impacts of CC are essential for the design of
hydraulic structures, flood and drought management, and overall water resource planning
and development of the basin.
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5. Conclusions

The impact of CC on future water availability in the BRB was analysed by using a
well-calibrated and validated SWAT hydrological model. Climate data were projected
by four GCMs representing cold-dry, warm-dry, cold-wet, and warm-wet conditions for
two emission scenarios, i.e., RCPs 4.5 and 8.5, adopting an envelope method. Most of
the selected GCMs predict an increase in annual precipitation and temperature for RCP
4.5. In the case of RCP 8.5, most of the GCMs predict higher annual precipitation and
temperature compared with the baseline condition, while some project a decrease in annual
precipitation. The projected precipitation by almost all GCMs for all time windows (IF,
MF, and FF) is most likely to increase in both RCPs. Both the maximum and minimum
temperature projections by all the selected GCMs (in all climatic conditions) are found
increasing while moving from IF to FF in both emission scenarios.

This study concludes that the increasing temperature and variation in precipitation
patterns in the BRB resulting from CC will impact the water resource availability in the
future. The monsoon flow is expected to increase significantly for all time windows in
the case of both RCPs. While the variation in the monthly flows from the baseline values
of RCP 8.5 is projected to be higher than that of RCP 4.5, the rate of increase is found to
be more in the post-monsoon season. The greatest magnitude of the projected monthly
maximum flow in all time windows for all climatic conditions except FF of the cold–wet
condition is found to occur in August, similar to the baseline condition. The long-term
average annual flow predicted by all GCMs for all time windows in RCP 4.5 and 8.5 is
projected to continuously increase from IF to FF. The relative change in the mean monthly
flow under RCP 4.5 and 8.5 is projected to increase for IF, MF, and FF. Ensembled flows are
expected to be higher in RCP 8.5 than in RCP 4.5.

The fractional differences (Q10:Q90) for the projected flow were found to be progres-
sively increasing with RCPs and over time. Additionally, the number of days exceeding the
10th percentile (Q10, high flow) and not exceeding the 90th percentile (Q90, low flow) are
predicted to be more by all the GCMs. Likewise, the one-day-maximum floods of different
return periods are projected to be higher than those of the baseline floods for all climatic
conditions and for all time windows in both RCPs. Similarly, the one-day-minimum flows
for different return periods are most likely to be lower than the base case. However, the
predicted values are different in magnitude and direction depending on the selected GCMs.

The increase in future predicted floods implies the designing of flood disposal struc-
tures at a higher capacity than those designed based on historical data. Furthermore, the
decrease in projected firm flows in the future suggests that storage-type water resource
projects are preferred over run-of-river projects for optimal water use planning from the
perspective of climate resilience.
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flow of three-time windows projected by four GCMs representing four climatic conditions of RCP 4.5
emission scenario; Table S4. The long-term monthly flow of three-time windows projected by four
GCMs representing four climatic conditions of RCP 8.5 emission scenario
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