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Abstract: In this special issue, we are able to present a selection of high-level contributions showing 
the manifold aspects of the monitoring, modeling, and management of water quality. Monitoring 
aspects range from cyanobacteria in water using spectrophotometry via wide-area water quality 
monitoring and exploiting unmanned surface vehicles, to using sentinel-2 satellites for the near-
real-time evaluation of catastrophic floods. Modeling ranges from small scale approaches by deriv-
ing a Bayesian network for assessing the retention efficacy of riparian buffer zones, to national scales 
with a modification of the MONERIS (Modeling Nutrient Emissions in River Systems) nutrient 
emission model for a lowland country. Management is specifically addressed by lessons learned 
from the long-term management of a large (re)constructed wetland and the support of river basin 
management planning in the Danube River Basin.  
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1. Introduction 
Different types of pressures, such as nutrients [1], micropollutants [2], microbes [3], 

nanoparticles [4], microplastics [5], and antibiotic-resistant genes [6], endanger the quality 
of water bodies. Evidence-based pollution control needs to be built on the three basic ele-
ments of water governance: Monitoring, modeling, and management [7]. Monitoring sets 
the empirical basis by providing space- and time-dependent information on substance 
concentrations and loads, as well as driving boundary conditions for assessing water 
quality trends, water quality statuses, and providing necessary information for the cali-
bration and validation of models [2,7]. Modeling needs proper system understanding and 
helps to derive information for times and locations where no monitoring is done or pos-
sible. Possible applications are risk assessment for the exceedance of quality standards, 
assessment of the regionalized relevance of sources and pathways of pollution, effective-
ness of measures, bundles of measures or policies, and assessment of future developments 
as scenarios or forecasts [8]. Management relies on this information and translates it in a 
socioeconomic context into specific plans for implementation [9]. The evaluation of the 
success of management plans again includes well-defined monitoring strategies [7]. This 
special issue provides an important overview of a hot topic in this context as it is summa-
rized in the following. 

2. Issue Contents  
2.1. Monitoring 

In order to measure the chromaticity of water and the content of dissolved matter 
more accurately, effectively, and cheaply, a chromaticity measurement system based on 
the image method was proposed and applied by Cao et al. [10]. The measurement system 
used a designed acquisition device and image processing software to obtain the red-
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green-blue (RGB) values of the image and converted the color image from RGB color space 
to hue-saturation-intensity (HSI) space to separate the chromaticity and brightness. Ac-
cording to the definition of chromaticity, the hue (H), saturation (S) values, and chroma-
ticity of standard chromaticity solution images were fitted by a non-linear surface, and a 
three-dimensional chromaticity measurement model was established based on the H and 
S values of water images. For the measurement of a standard chromaticity solution, the 
proposed method has a higher accuracy than spectrophotometry. For actual water sample 
measurements, there is no significant difference between the results of the tested method 
and the common spectrophotometer method. This verified the validity of the chromaticity 
method. In addition, the system was tested for measuring the concentration of ammonia 
nitrogen, phosphate, and chloride in water, with satisfactory results [10]. 

Management of cyanobacteria blooms and their negative impact on human and eco-
system health requires effective tools for monitoring their concentration in water bodies. 
Agberien et al. [11] investigated the potential of derivative spectrophotometry for the de-
tection and monitoring of cyanobacteria using toxigenic and non-toxigenic strains of Mi-
crocystis aeruginosa. Microcystis aeruginosa was quantified in deionized water and sur-
face water using traditional spectrophotometry and the first derivative of absorbance. The 
first derivative of absorbance was effective in improving the signal of traditional spectro-
photometry; however, it was not adequate for differentiating between signal and noise at 
low concentrations. Savitzky–Golay coefficients for the first derivative were used to 
smooth the derivative spectra and improve the correlation between concentration and 
noise at low concentrations. Derivative spectrophotometry improved the detection limit 
by as much as eight times in deionized water and as much as four times in surface water. 
The lowest detection limit measured in surface water with traditional spectrophotometry 
was 392,982 cells/mL, while the Savitzky–Golay first derivative of absorbance was 90,231 
cells/mL. The method provided herein provides a promising tool for the real-time moni-
toring of cyanobacteria concentration [11]. 

Water environment pollution is an acute problem, especially in developing countries, 
so water quality monitoring is crucial for water protection. Cao et al. [12] developed an 
intelligent three-dimensional wide-area water quality monitoring and online analysis sys-
tem. The proposed system was composed of an automatic cruise intelligent unmanned 
surface vehicle (USV), a water quality monitoring system (WQMS), and a water quality 
analysis algorithm. An automatic positioning cruising system was constructed for the 
USV. The WQMS consists of a series of low-power water quality detecting sensors and a 
lifting device that can collect the water quality monitoring data at different water depths. 
These data are analyzed by the proposed water quality analysis algorithm based on the 
ensemble learning method to estimate the water quality level. Then, a real experiment was 
conducted in a lake to verify the feasibility of the proposed design. The experimental re-
sults obtained in a real application demonstrated the good performance and feasibility of 
the proposed monitoring system [12]. 

Flooding is among the most common natural disasters in our planet and one of the 
main causes of economic and human life loss worldwide. Evidence suggests an increase 
in floods at a European scale, with the Mediterranean coast being critically vulnerable to 
this risk. The devastating event in the West Mediterranean during the second week of 
September 2019 is a clear case of this risk, when a record-breaking flood (locally called the 
“Cold Drop” (Gota Fría)) was swollen into a catastrophe in the southeast of Spain and 
surpassing previous all-time records [13]. By using a straightforward approach with the 
Sentinel-2 twin satellites from the Copernicus Programme and the ACOLITE atmospheric 
correction processor, Caballero et al. [13] accomplished an initial approximation of the 
delineated flooded zones, including agricultural and urban areas, in quasi-real-time. This 
robust and flexible approach requires no ancillary data for rapid implementation. A com-
posite of pre- and post-flood images was obtained to identify changes and mask water 
pixels. Sentinel-2 identifies not only impacts on land but also on water ecosystems and 
their services, providing information on water quality deterioration and the concentration 
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of suspended matter in highly sensitive environments. Subsequent water quality deterio-
ration occurred in large portions of Mar Menor, the largest coastal lagoon in the Mediter-
ranean. This study demonstrated the potentials brought by the free and open-data policy 
of Sentinel-2, a valuable source of rapid synoptic spatio-temporal information at a local or 
regional scale for supporting scientists, managers, stakeholders, and society in general 
during and after an emergency [13]. 

2.2. Monitoring and Modeling 
The increasing deterioration of aquatic environments has attracted more attention to 

water quality monitoring techniques, with most researchers focusing on the acquisition 
and assessment of water quality data, but seldom on the discovery and tracing of pollu-
tion sources. In the study of Wang et al. [14], a semantic-enhanced modeling method for 
ontology modeling and rules building is proposed, which can be used for river water 
quality monitoring and relevant data observation processing. The observational process 
ontology (OPO) method can describe the semantic properties of water resources and ob-
servation data. In addition, it can provide the semantic relevance among the different con-
cepts involved in the observational process of water quality monitoring. A pollution alert 
can be achieved using the reasoning rules of the water quality monitoring stations. In this 
study, a case is made for the usability testing of the OPO models and reasoning rules by 
using a water quality monitoring system. The system contributes to the water quality ob-
servational monitoring process and traces the source of pollutants using sensors, observa-
tion data, process models, and observation products that users can access in a timely man-
ner [14]. 

Urban river catchments face multiple water quality challenges that threaten the bio-
diversity of riverine habitats and the flow of ecosystem services. Medupin et al. [15] ex-
amined two water quality challenges: runoff from increasingly impervious land covers, 
and effluent from combined sewer overflows, within a temperate zone river catchment in 
Greater Manchester, North-West UK. Sub-catchment areas of the River Medlock were de-
lineated from digital elevation models using a Geographical Information System. By com-
bining flow accumulation and high-resolution land cover data within each sub-catchment 
and water quality measurements at five sampling points along the river, they identified 
which land cover(s) are key drivers of water quality. Impervious land covers increased 
downstream and were associated with higher runoff and poorer water quality. Of the im-
pervious covers, transportation networks had the highest runoff ratios and therefore the 
greatest potential to convey contaminants to the river. We suggest more integrated man-
agement of imperviousness to address water quality and flood risk, while urban well-
being could be achieved working with greater catchment partnerships [15]. 

Hepp and Zessner [16] present a simple mapping key suitable for quick and system-
atic assessments of the type of agricultural and civil engineering structures present in a 
certain agricultural catchment, as well as the impact they may have on the spatial distri-
bution of critical source areas. An application of this mapping key to three small sub-
catchments of a case study catchment, with an area of several hundred square kilometers 
(one-stage cluster sampling), in Austria clearly revealed that road embankments with sub-
surface drainage can exert a major influence on the emission and transport pathways of 
sediment-bound pollutants such as particulate phosphorus (PP). Due to this, the semi-
empirical, spatially distributed PhosFate model is extended to separately model PP emis-
sions into surface waters via storm drains along road embankments. Furthermore, the 
overall share of road embankments with subsurface drainage on all road embankments 
in the case study catchment was inferred with the help of a Bayesian hierarchical model. 
The combination of the results of these two models showed that the share of storm drains 
at road embankments on total PP emissions ranges from about one fifth to one third in the 
investigated area [16]. 
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Water quality in urban streams is highly influenced by emissions from waste water 
treatment plants (WWTP) and from sewer systems, particularly by overflows from com-
bined systems. During storm events, this causes random fluctuations in discharge and 
pollutant concentrations over a wide area. The study by Dittmer et al. [17] focuses on the 
environmental impact of micropollutant loads emitted from combined sewer systems. For 
this purpose, high-resolution time series of river concentrations were generated by com-
bining a detailed calibrated model of a sewer system with the measured discharge of a 
small natural river to a virtual urban catchment. This river base flow represents the re-
mains of the natural hydrological system in the urban catchment. River concentrations 
downstream of the outlets were simulated based on mixing ratios of base flow, WWTP 
effluent, and CSO discharge. The results showed that the standard method of time pro-
portional sampling of rivers does not capture the risk of critical stress on aquatic organ-
isms. The ratio between average and peak concentrations and the duration of elevated 
concentrations strongly depends on the source and the properties of the particular sub-
stance. The design of sampling surveys and evaluation of data should consider these char-
acteristics and account for their effects [17]. 

Bayesian networks (BN) have increasingly been applied in water management but 
not to estimate the efficacy of riparian buffer zones (RBZ). The methodical study of 
Gericke et al. [18] aims at evaluating the first BN for predicting RBZ efficacy in retaining 
sediment and nutrients (dissolved, total, and particulate nitrogen and phosphorus) from 
widely available variables (width, vegetation, slope, soil texture, flow pathway, nutrient 
form). To evaluate the influence of the parent nodes and how the number of states affected 
the prediction errors, they used a predefined general BN structure, collected 580 pub-
lished datasets from North America and Europe, and performed classification tree anal-
yses and multiple 10-fold cross-validations of different BNs. These errors ranged from 
0.31 (two output states) to 0.66 (five states). The outcome remained unchanged without 
the least influential nodes (flow pathway, vegetation). Lower errors were achieved when 
the parent nodes had more than two states. The number of efficacy states influenced most 
strongly by the prediction error as its lowest and highest states were better predicted than 
the intermediate states. While the derived BNs could support or replace simple design 
guidelines, they are limited for more detailed predictions. More representative data on 
vegetation or additional nodes, such as preferential flow, would probably improve the 
predictive power [18]. 

2.3. Monitroing, Modeling, and Management 
The contamination of water with nutrients, especially nitrogen and phosphorus orig-

inating from various diffuse and point sources, has become a worldwide issue in recent 
decades. Due to the complexity of the processes involved, watershed models are gaining 
an increasing role in their analysis. The goal set by the EU Water Framework Directive to 
reach “good status” for all water bodies requires spatially detailed information on the fate 
of contaminants. In a study by Jolánkai et al. [19], the watershed nutrient model MONERIS 
was applied to the Hungarian part of the Danube River Basin. The spatial resolution was 
1078 water bodies (mean area of 86 km2), and two subsequent 4 year periods (2009–2012 
and 2013–2016) were modeled. Various elements/parameters of the model were adjusted 
and tested against surface and subsurface water quality measurements taken from all over 
the country, namely (i) the water balance equations (surface and subsurface runoff), (ii) 
the nitrogen retention parameters of the subsurface pathways (excluding tile drainage), 
(iii) the shallow groundwater phosphorus concentrations, and (iv) the surface water re-
tention parameters. The study revealed that (i) digital-filter-based separation of surface 
and subsurface runoff yielded different values for these components, but this change did 
not influence nutrient loads significantly; (ii) shallow groundwater phosphorus concen-
trations in the sandy soils of Hungary differ from those of the MONERIS default values; 
(iii) a significant change of the phosphorus in-stream retention parameters was needed to 
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approach measured in-stream phosphorus load values. Local emissions and pathways 
were analyzed and compared with previous model results [19]. 

Environmental management decisions should be made based on solid scientific evi-
dence, and which relies on monitoring and modeling. In practice, changing economic, so-
cietal, and political boundary conditions often interfere with management during large, 
long, and complex projects. The result may be a sub-optimal development path that may 
finally diverge from the original intentions and be economically or technically ineffective. 
Nevertheless, unforeseen benefits may be created in the end [20]. The Kis-Balaton wetland 
system is a typical illustration of such a case and has been extensively studied by Honti et 
al. [20]. Despite tremendous investments and huge efforts put in monitoring and model-
ing, the sequence of decisions during implementation can hardly be considered optimal. 
A catchment model and a basic water quality model have been used to coherently review 
the impacts of management decisions during the 30-year history. Due to the complexity 
of the system, science mostly excelled in finding explanations for observed changes after 
the event, instead of predicting the impacts of management measures a priori. In parallel, 
the political setting and sectoral authorities experienced rearrangements during the sys-
tem implementation. Despite being expensive as a water quality management investment, 
originally targeting nutrient removal, the Kis-Balaton wetland system created a huge eco-
logical asset, and thereby became worth the price [20]. 

3. Conclusions 
In this special issue, we are able to present a selection of high-level contributions 

showing the manifold aspects of monitoring, modeling, and management of water qual-
ity. If we look at the chosen subjects we see that four out of the eleven contributions are 
specifically addressing monitoring aspects and five contributions focus on the interface of 
modeling and associated monitoring, delivering the scientific basis for water quality man-
agement. Only two contributions directly address management aspects in their research 
focus, indicating that this element of water governance is somehow underrepresented in 
this special issue. In spite of the small size on the sample, it still points out that the gap 
between science in its conventional sense and science in an inter- and transdisciplinary 
understanding is not yet completely closed.  

Scientists publishing in a scientific journal still tend to focus on “pure” scientific ques-
tions, and use management and policy aspects more for arguing the motivation of their 
research or as an appendix on what should be considered further, rather than directly 
including them in their research focus. Therefore additional efforts are needed to bridge 
the gap between science and policy.  

Nevertheless, directly addressing management in the title of a special issue of a sci-
entific journal clearly gives the right sign, and this special issue provides an important 
overview on a hot topic in water related research. Finally, I would like to thank all the 
authors for their great contributions and remind you that “he (or she) not busy being born 
is busy dying” [21]. 
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