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Abstract: In this special issue, we are able to present a selection of high-level contributions showing
the manifold aspects of the monitoring, modeling, and management of water quality. Monitoring
aspects range from cyanobacteria in water using spectrophotometry via wide-area water quality
monitoring and exploiting unmanned surface vehicles, to using sentinel-2 satellites for the near-real-
time evaluation of catastrophic floods. Modeling ranges from small scale approaches by deriving a
Bayesian network for assessing the retention efficacy of riparian buffer zones, to national scales with
a modification of the MONERIS (Modeling Nutrient Emissions in River Systems) nutrient emission
model for a lowland country. Management is specifically addressed by lessons learned from the
long-term management of a large (re)constructed wetland and the support of river basin management
planning in the Danube River Basin.

Keywords: effectiveness of measures; scenarios and forecasts; socioeconomic context; sources and
pathways of water pollution; system understanding; water governance; water quality statuses and
trends; water pollution control

1. Introduction

Different types of pressures, such as nutrients [1], micropollutants [2], microbes [3],
nanoparticles [4], microplastics [5], and antibiotic-resistant genes [6], endanger the quality
of water bodies. Evidence-based pollution control needs to be built on the three basic
elements of water governance: Monitoring, modeling, and management [7]. Monitoring
sets the empirical basis by providing space- and time-dependent information on substance
concentrations and loads, as well as driving boundary conditions for assessing water qual-
ity trends, water quality statuses, and providing necessary information for the calibration
and validation of models [2,7]. Modeling needs proper system understanding and helps
to derive information for times and locations where no monitoring is done or possible.
Possible applications are risk assessment for the exceedance of quality standards, assess-
ment of the regionalized relevance of sources and pathways of pollution, effectiveness
of measures, bundles of measures or policies, and assessment of future developments
as scenarios or forecasts [8]. Management relies on this information and translates it in
a socioeconomic context into specific plans for implementation [9]. The evaluation of
the success of management plans again includes well-defined monitoring strategies [7].
This special issue provides an important overview of a hot topic in this context as it is
summarized in the following.

2. Issue Contents
2.1. Monitoring

In order to measure the chromaticity of water and the content of dissolved matter
more accurately, effectively, and cheaply, a chromaticity measurement system based on the
image method was proposed and applied by Cao et al. [10]. The measurement system used
a designed acquisition device and image processing software to obtain the red-green-blue
(RGB) values of the image and converted the color image from RGB color space to hue-
saturation-intensity (HSI) space to separate the chromaticity and brightness. According

Water 2021, 13, 1523. https://doi.org/10.3390/w13111523 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-1231-4253
https://www.mdpi.com/article/10.3390/w13111523?type=check_update&version=1
https://doi.org/10.3390/w13111523
https://doi.org/10.3390/w13111523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13111523
https://www.mdpi.com/journal/water


Water 2021, 13, 1523 2 of 6

to the definition of chromaticity, the hue (H), saturation (S) values, and chromaticity of
standard chromaticity solution images were fitted by a non-linear surface, and a three-
dimensional chromaticity measurement model was established based on the H and S
values of water images. For the measurement of a standard chromaticity solution, the
proposed method has a higher accuracy than spectrophotometry. For actual water sample
measurements, there is no significant difference between the results of the tested method
and the common spectrophotometer method. This verified the validity of the chromaticity
method. In addition, the system was tested for measuring the concentration of ammonia
nitrogen, phosphate, and chloride in water, with satisfactory results [10].

Management of cyanobacteria blooms and their negative impact on human and
ecosystem health requires effective tools for monitoring their concentration in water bodies.
Agberien et al. [11] investigated the potential of derivative spectrophotometry for the
detection and monitoring of cyanobacteria using toxigenic and non-toxigenic strains of
Microcystis aeruginosa. Microcystis aeruginosa was quantified in deionized water and
surface water using traditional spectrophotometry and the first derivative of absorbance.
The first derivative of absorbance was effective in improving the signal of traditional
spectrophotometry; however, it was not adequate for differentiating between signal and
noise at low concentrations. Savitzky–Golay coefficients for the first derivative were used
to smooth the derivative spectra and improve the correlation between concentration and
noise at low concentrations. Derivative spectrophotometry improved the detection limit
by as much as eight times in deionized water and as much as four times in surface water.
The lowest detection limit measured in surface water with traditional spectrophotome-
try was 392,982 cells/mL, while the Savitzky–Golay first derivative of absorbance was
90,231 cells/mL. The method provided herein provides a promising tool for the real-time
monitoring of cyanobacteria concentration [11].

Water environment pollution is an acute problem, especially in developing countries,
so water quality monitoring is crucial for water protection. Cao et al. [12] developed
an intelligent three-dimensional wide-area water quality monitoring and online analysis
system. The proposed system was composed of an automatic cruise intelligent unmanned
surface vehicle (USV), a water quality monitoring system (WQMS), and a water quality
analysis algorithm. An automatic positioning cruising system was constructed for the
USV. The WQMS consists of a series of low-power water quality detecting sensors and a
lifting device that can collect the water quality monitoring data at different water depths.
These data are analyzed by the proposed water quality analysis algorithm based on the
ensemble learning method to estimate the water quality level. Then, a real experiment
was conducted in a lake to verify the feasibility of the proposed design. The experimental
results obtained in a real application demonstrated the good performance and feasibility of
the proposed monitoring system [12].

Flooding is among the most common natural disasters in our planet and one of the
main causes of economic and human life loss worldwide. Evidence suggests an increase
in floods at a European scale, with the Mediterranean coast being critically vulnerable to
this risk. The devastating event in the West Mediterranean during the second week of
September 2019 is a clear case of this risk, when a record-breaking flood (locally called
the “Cold Drop” (Gota Fría)) was swollen into a catastrophe in the southeast of Spain and
surpassing previous all-time records [13]. By using a straightforward approach with the
Sentinel-2 twin satellites from the Copernicus Programme and the ACOLITE atmospheric
correction processor, Caballero et al. [13] accomplished an initial approximation of the
delineated flooded zones, including agricultural and urban areas, in quasi-real-time. This
robust and flexible approach requires no ancillary data for rapid implementation. A
composite of pre- and post-flood images was obtained to identify changes and mask water
pixels. Sentinel-2 identifies not only impacts on land but also on water ecosystems and their
services, providing information on water quality deterioration and the concentration of
suspended matter in highly sensitive environments. Subsequent water quality deterioration
occurred in large portions of Mar Menor, the largest coastal lagoon in the Mediterranean.
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This study demonstrated the potentials brought by the free and open-data policy of Sentinel-
2, a valuable source of rapid synoptic spatio-temporal information at a local or regional
scale for supporting scientists, managers, stakeholders, and society in general during and
after an emergency [13].

2.2. Monitoring and Modeling

The increasing deterioration of aquatic environments has attracted more attention to
water quality monitoring techniques, with most researchers focusing on the acquisition
and assessment of water quality data, but seldom on the discovery and tracing of pollution
sources. In the study of Wang et al. [14], a semantic-enhanced modeling method for
ontology modeling and rules building is proposed, which can be used for river water
quality monitoring and relevant data observation processing. The observational process
ontology (OPO) method can describe the semantic properties of water resources and
observation data. In addition, it can provide the semantic relevance among the different
concepts involved in the observational process of water quality monitoring. A pollution
alert can be achieved using the reasoning rules of the water quality monitoring stations.
In this study, a case is made for the usability testing of the OPO models and reasoning
rules by using a water quality monitoring system. The system contributes to the water
quality observational monitoring process and traces the source of pollutants using sensors,
observation data, process models, and observation products that users can access in a
timely manner [14].

Urban river catchments face multiple water quality challenges that threaten the biodi-
versity of riverine habitats and the flow of ecosystem services. Medupin et al. [15] examined
two water quality challenges: runoff from increasingly impervious land covers, and efflu-
ent from combined sewer overflows, within a temperate zone river catchment in Greater
Manchester, North-West UK. Sub-catchment areas of the River Medlock were delineated
from digital elevation models using a Geographical Information System. By combining
flow accumulation and high-resolution land cover data within each sub-catchment and
water quality measurements at five sampling points along the river, they identified which
land cover(s) are key drivers of water quality. Impervious land covers increased down-
stream and were associated with higher runoff and poorer water quality. Of the impervious
covers, transportation networks had the highest runoff ratios and therefore the greatest
potential to convey contaminants to the river. We suggest more integrated management of
imperviousness to address water quality and flood risk, while urban well-being could be
achieved working with greater catchment partnerships [15].

Hepp and Zessner [16] present a simple mapping key suitable for quick and systematic
assessments of the type of agricultural and civil engineering structures present in a certain
agricultural catchment, as well as the impact they may have on the spatial distribution of
critical source areas. An application of this mapping key to three small sub-catchments
of a case study catchment, with an area of several hundred square kilometers (one-stage
cluster sampling), in Austria clearly revealed that road embankments with subsurface
drainage can exert a major influence on the emission and transport pathways of sediment-
bound pollutants such as particulate phosphorus (PP). Due to this, the semi-empirical,
spatially distributed PhosFate model is extended to separately model PP emissions into
surface waters via storm drains along road embankments. Furthermore, the overall share
of road embankments with subsurface drainage on all road embankments in the case study
catchment was inferred with the help of a Bayesian hierarchical model. The combination of
the results of these two models showed that the share of storm drains at road embankments
on total PP emissions ranges from about one fifth to one third in the investigated area [16].

Water quality in urban streams is highly influenced by emissions from waste water
treatment plants (WWTP) and from sewer systems, particularly by overflows from com-
bined systems. During storm events, this causes random fluctuations in discharge and
pollutant concentrations over a wide area. The study by Dittmer et al. [17] focuses on the
environmental impact of micropollutant loads emitted from combined sewer systems. For
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this purpose, high-resolution time series of river concentrations were generated by combin-
ing a detailed calibrated model of a sewer system with the measured discharge of a small
natural river to a virtual urban catchment. This river base flow represents the remains of
the natural hydrological system in the urban catchment. River concentrations downstream
of the outlets were simulated based on mixing ratios of base flow, WWTP effluent, and CSO
discharge. The results showed that the standard method of time proportional sampling of
rivers does not capture the risk of critical stress on aquatic organisms. The ratio between
average and peak concentrations and the duration of elevated concentrations strongly de-
pends on the source and the properties of the particular substance. The design of sampling
surveys and evaluation of data should consider these characteristics and account for their
effects [17].

Bayesian networks (BN) have increasingly been applied in water management but not
to estimate the efficacy of riparian buffer zones (RBZ). The methodical study of Gericke
et al. [18] aims at evaluating the first BN for predicting RBZ efficacy in retaining sediment
and nutrients (dissolved, total, and particulate nitrogen and phosphorus) from widely
available variables (width, vegetation, slope, soil texture, flow pathway, nutrient form). To
evaluate the influence of the parent nodes and how the number of states affected the predic-
tion errors, they used a predefined general BN structure, collected 580 published datasets
from North America and Europe, and performed classification tree analyses and multiple
10-fold cross-validations of different BNs. These errors ranged from 0.31 (two output states)
to 0.66 (five states). The outcome remained unchanged without the least influential nodes
(flow pathway, vegetation). Lower errors were achieved when the parent nodes had more
than two states. The number of efficacy states influenced most strongly by the prediction
error as its lowest and highest states were better predicted than the intermediate states.
While the derived BNs could support or replace simple design guidelines, they are limited
for more detailed predictions. More representative data on vegetation or additional nodes,
such as preferential flow, would probably improve the predictive power [18].

2.3. Monitroing, Modeling, and Management

The contamination of water with nutrients, especially nitrogen and phosphorus orig-
inating from various diffuse and point sources, has become a worldwide issue in recent
decades. Due to the complexity of the processes involved, watershed models are gaining
an increasing role in their analysis. The goal set by the EU Water Framework Directive
to reach “good status” for all water bodies requires spatially detailed information on the
fate of contaminants. In a study by Jolánkai et al. [19], the watershed nutrient model
MONERIS was applied to the Hungarian part of the Danube River Basin. The spatial reso-
lution was 1078 water bodies (mean area of 86 km2), and two subsequent 4 year periods
(2009–2012 and 2013–2016) were modeled. Various elements/parameters of the model
were adjusted and tested against surface and subsurface water quality measurements taken
from all over the country, namely (i) the water balance equations (surface and subsurface
runoff), (ii) the nitrogen retention parameters of the subsurface pathways (excluding tile
drainage), (iii) the shallow groundwater phosphorus concentrations, and (iv) the surface
water retention parameters. The study revealed that (i) digital-filter-based separation
of surface and subsurface runoff yielded different values for these components, but this
change did not influence nutrient loads significantly; (ii) shallow groundwater phosphorus
concentrations in the sandy soils of Hungary differ from those of the MONERIS default
values; (iii) a significant change of the phosphorus in-stream retention parameters was
needed to approach measured in-stream phosphorus load values. Local emissions and
pathways were analyzed and compared with previous model results [19].

Environmental management decisions should be made based on solid scientific ev-
idence, and which relies on monitoring and modeling. In practice, changing economic,
societal, and political boundary conditions often interfere with management during large,
long, and complex projects. The result may be a sub-optimal development path that may
finally diverge from the original intentions and be economically or technically ineffective.
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Nevertheless, unforeseen benefits may be created in the end [20]. The Kis-Balaton wetland
system is a typical illustration of such a case and has been extensively studied by Honti
et al. [20]. Despite tremendous investments and huge efforts put in monitoring and model-
ing, the sequence of decisions during implementation can hardly be considered optimal. A
catchment model and a basic water quality model have been used to coherently review
the impacts of management decisions during the 30-year history. Due to the complexity of
the system, science mostly excelled in finding explanations for observed changes after the
event, instead of predicting the impacts of management measures a priori. In parallel, the
political setting and sectoral authorities experienced rearrangements during the system
implementation. Despite being expensive as a water quality management investment, orig-
inally targeting nutrient removal, the Kis-Balaton wetland system created a huge ecological
asset, and thereby became worth the price [20].

3. Conclusions

In this special issue, we are able to present a selection of high-level contributions
showing the manifold aspects of monitoring, modeling, and management of water qual-
ity. If we look at the chosen subjects we see that four out of the eleven contributions are
specifically addressing monitoring aspects and five contributions focus on the interface of
modeling and associated monitoring, delivering the scientific basis for water quality man-
agement. Only two contributions directly address management aspects in their research
focus, indicating that this element of water governance is somehow underrepresented in
this special issue. In spite of the small size on the sample, it still points out that the gap
between science in its conventional sense and science in an inter- and transdisciplinary
understanding is not yet completely closed.

Scientists publishing in a scientific journal still tend to focus on “pure” scientific
questions, and use management and policy aspects more for arguing the motivation of
their research or as an appendix on what should be considered further, rather than directly
including them in their research focus. Therefore additional efforts are needed to bridge
the gap between science and policy.

Nevertheless, directly addressing management in the title of a special issue of a
scientific journal clearly gives the right sign, and this special issue provides an important
overview on a hot topic in water related research. Finally, I would like to thank all the
authors for their great contributions and remind you that “he (or she) not busy being born
is busy dying” [21].

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
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