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Abstract: With improvements in data quality and technology, the statistical downscaling data of
General Circulation Models (GCMs) for climate change impact assessment have been refined from
monthly data to daily data, which has greatly promoted the data application level. However, there
are differences between GCM downscaling daily data and rainfall station data. If GCM data are
directly used for hydrology and water resources assessment, the differences in total amount and
rainfall intensity will be revealed and may affect the estimates of the total amount of water resources
and water supply capacity. This research proposes a two-stage bias correction method for GCM
data and establishes a mechanism for converting grid data to station data. Five GCMs were selected
from 33 GCMs, which were ranked by rainfall simulation performance from a baseline period in
Taiwan. The watershed of the Zengwen Reservoir in southern Taiwan was selected as the study area
for comparison of the three different bias correction methods. The results reveal that the method
with the wet-day threshold optimized by objective function with observation rainfall wet days had
the best result. Error was greatly reduced in the hydrology model simulation with two-stage bias
correction. The results show that the two-stage bias correction method proposed in this study can be
used as an advanced method of data pre-processing in climate change impact assessment, which
could improve the quality and broaden the extent of GCM daily data. Additionally, GCM ranking
can be used by researchers in climate change assessment to understand the suitability of each GCM
in Taiwan.

Keywords: general circulation model; GCMs ranking; statistical downscaling daily data; probability
of precipitation; two-stage bias correction method

1. Introduction

Water resources management is a crucial issue in climate change research. To analyze
the impact of climate change on future water resources, researchers need to follow several
procedures to obtain appropriate information. In Taiwan, for example, the first step is
to obtain the Global Circulation Models (GCMs) climate change projection data, such as
temperature and rainfall in future scenarios. After downscaling calculations to improve
the spatial resolution of the data, the detailed climate of the region can be assessed. The
Water Resource Agency (2011) [1] uses the statistical downscaling monthly data produced
by a project of the National Science Council (NSC), the “Taiwan Climate Change Projection
Information and Adaptation Knowledge Platform (TCCIP)”, as inputs of the weather
generator, and uses the output daily temperature and daily rainfall data to simulate the
flow of watersheds. It then uses the system dynamic model to evaluate the baseline and
future changes in the supply and demand of water resource systems in different areas of
Taiwan. The above methods can indeed provide future daily rainfall. However, the daily
data from the weather generator are based on the statistical characteristics of the observed
rainfall, which cannot truly reflect the changes in future rainfall characteristics (Jones et al.,
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2010) [2], so indicators such as changes in probability of precipitation, consecutive dry
days (CDD), and other important assessment results related to water sources still need to
be refined.

The TCCIP released GCM statistical downscaling gridded daily data (hereinafter GCM
data) in 2019 (Tung et al., 2018) [3]. The data provide 33 groups of GCMs in Taiwan under
warming scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the fifth assessment report
(AR5) of the Intergovernmental Panel on Climate Change (IPCC). Liu et al. (2019) [4] used
TCCIP GCM data, in combination with the World Meteorological Organization (WMO)
Climate Change Detection Index (CCDI), to select key indicators of climate change related
to Taiwan, and they mapped the indicator charts for different regions under warming
scenarios. Li et al. (2019) [5] used high-resolution gridded data to analyze the changes in
the frequency and intensity of drought events in future scenarios in Taiwan; Huang and
Liu (2019) [6] analyzed the relationship between the historical loss of grapes and the crop
loss threshold of rainfall and used GCM data to analyze the changes in the threshold under
warming scenarios.

However, Tung et al. (2019) [7] also pointed out that although the GCM data have
undergone bias correction, comparing the GCM data with the nearest station data will
reveal that the average rainfall of the GCM data in the baseline period is underestimated.
The alternative method is to use the station data multiplied by the future change rate
((future value − baseline value)/baseline value) instead of using gridded data directly.
However, the method of applying the change rate is more suitable for monthly scale data,
such as monthly rainfall, annual rainfall, etc. The daily scale data are relatively difficult to
apply (the daily rainfall rate of change is difficult to obtain).

In response to the above problems, this research proposes a two-stage bias correction
method for GCM data, which is used to correct the rainfall gap of GCM data relative to
the station data while retaining the rainfall trend provided by the GCM data. The practice
refers to the quantile mapping empirical cumulative distribution function (ECDF) method
(Ines and Hansen, 2006 [8], Johnson and Sharma, 2011 [9], Su et al., 2016 [10]) used in the
current climate model bias correction. In addition, the probability of precipitation of the
station data is used as the objective function, and the wet-day threshold value of the GCM
data is adjusted to make the probability equal to the station data to ensure an effective
correction result. This study uses the Zengwen Reservoir watershed in southern Taiwan as
the research area to study GCM rainfall data bias correction research analysis. Detailed
steps will be described below.

2. Materials and Methods
2.1. Future Scenario and GCM Data

IPCC (2013) [11] uses Representative Concentration Pathways (RCPs) to define future
scenarios, with the difference in radiative forcing between 2100 and 1750 as the criterion.
In the future scenario, RCP2.6 represents a slight warming scenario; RCP4.5 and RCP6.0
represent a stable warming scenario; and RCP8.5 represents a scenario where greenhouse
gas emissions are relatively high.

TCCIP project released AR5 statistical downscaling daily data in 2019, including
meteorological data such as daily temperature and rainfall on a 5-km grid in Taiwan. The
project uses ESGF’s CMIP5 data, and then performs downscaling, time window, spatial
interpolation, and bias correction methods to produce data that match the climate pattern
of Taiwan (Tung et al., 2018) [3].

2.2. GCMs Ranking and Selection

Although IPCC AR5 uses the most advanced models developed by each center, each
model has different responses to various climate factors, and will have different results
for future projections, and multi-model assessments are usually used to cover uncertainty.
However, in order to simplify the number of simulations and evaluations, researchers try
to lower the number of GCM to represent future projections.
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Tung et al. (2020) [12] analyzed the correlation between the rainfall pattern of the GCM
baseline period and the observed rainfall pattern in Taiwan, and they also evaluated the
performance with the performance index score (Reichler and Kim, 2008) [13] for statistical
downscaling of monthly data and ranking of the performances of GCMs. This research
refers to this method to sort GCM statistical downscaling daily data.

This method evaluates the rainfall performance of GCMs in the baseline period. The
observation data are selected grid data with similar time and space resolutions; the area is
shown in Figure 1a. After the model is processed into the same format as the observation
data, Fourier analysis is performed to filter out high-frequency signals (especially during
the Meiyu and typhoon seasons) (Wang and Lin, 2002) [14] (Figure 2).
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This study uses the method of Reichler and Kim (2008) [13] to target the seasonal cycle
of rainfall in the GCM model, using the performance index as the evaluation standard. The
formula is shown below.

em = ∑
n
(wn(smn − on)

2)/σ2
n (1)

Im = em/ ∑
m

em (2)
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where n = total grid points; m = model; wn = weight index of individual grid points;
s = model simulation value (average of the selected period); o = observed value (average of
the selected period); and σ2 = variance of observation data.

Formula (1) was used to calculate the difference between the simulated grid and the
observation data in all GCMs where the total number of grids (n) = 6 (Figure 1b), the
number of models (m) = 33, and wn = 1. Formula (2) was used to standardize the variance,
calculate the scores of all GCMs, and then sort them. The list of 33 GCMs and the ranking
results of the performance index are shown in Table 1.

Table 1. The list of 33 GCMs (refer to PCMDI website (https://pcmdi.llnl.gov/mips/cmip5/availability.html, accessed on
24 May 2021)) and the results of performance ranking (ranking was made by this study).

Model Name GCM Center Description Ranking

ACCESS1-0
CSIRO-BOM

Australian Community Climate and Earth System Simulator 1.0 13

ACCESS1-3 Australian Community Climate and Earth System Simulator 1.3 30

bcc-csm1-1
BCC

Beijing Climate Center Climate System Model version 1.1, China 22

bcc-csm1-1m Beijing Climate Center Climate System Model version 1.1, China, high
resolution 9

BNU-ESM BNU College of Global Change and Earth System Science, China, Beijing
Normal University Earth System Model 8

CanESM2 CCCMA Canadian Earth System Model version 2 1

CCSM4 NCAR NCAR Community Climate System Model version 4.0 18

CESM1-BGC
NCAR

NCAR Community Earth System Model version 1 with carbon cycle 27

CESM1-CAM5 Coupled simulations from CESM1 using the atmosphere model of
Community Atmosphere Model version 5 19

CMCC-CESM
CMCC

Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) Carbon
Earth System Model 26

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici Climate Model 3

CNRM-CM5 CNRM-CERFACS Centre National de Recherches Meteorologiques (CNRM) Earth System
Model version 5, France 15

CSIRO-Mk3-6-0 CSIRO-QCCCE CSIRO Atmospheric Research, Australia, Mk3.6 Model 23

EC-EARTH ICHEC Canadian Earth System Model version 2 29

FGOALS-g2 LASG-CESS European Earth System Model 33

GFDL-CM3

NOAA-GFDL

Geophysical Fluid Dynamics Laboratory Coupled Model, version 3 24

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System Model couple
TOPAZ ocean model 11

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth System Model couple
MOM4 ocean model 20

HadGEM2-AO NIMR-KMA Hadley Global Environment Model 2, National Institute of
Meteorological Research, Seoul, South Korea 10

HadGEM2-ES
MOHC

Met Office Hadley Centre, Hadley Global Environment Model 2—Earth
System 6

HadGEM2-CC Met Office Hadley Centre, Hadley Global Environment Model
2—Carbon Cycle 12

inmcm4 INM Institute for Numerical Mathematics, Russia, INMCM4.0 Model 28

IPSL-CM5A-LR

IPSL

Institute Pierre-Simon Laplace, France, with LMDZ4 atmosphere model 16

IPSL-CM5A-MR IPSL-CM4A with medium resolution 17

IPSL-CM5B-LR Institute Pierre-Simon Laplace, France, with LMDZ5 atmosphere model 14

https://pcmdi.llnl.gov/mips/cmip5/availability.html
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Table 1. Cont.

Model Name GCM Center Description Ranking

MIROC5

MIROC

CCSR/NIES/FRCGC, Japan, MIROC Model V5 4

MIROC-ESM CCSR/NIES/FRCGC, MIROC, Japan, Earth System Model 31

MIROC-ESM-
CHEM

CCSR/NIES/FRCGC, MIROC, Japan Earth System Model with
Chemistry 32

MPI-ESM-LR

MPI-M

Max Planck Institute for Meteorology, Germany, Earth System Model-
low resolution grid 2

MPI-ESM-MR Max Planck Institute for Meteorology, Germany, Earth System
Model-medium resolution grid 5

MRI-CGCM3
MRI

Meteorological Research Institute, Japan, CGCM3 25

MRI-ESM1 Meteorological Research Institute, Japan, Earth System Model version 1 21

NorESM1-M NCC Norwegian Earth System Model 1—medium resolution 7

According to the GCMs performance ranking, the top five GCMs, CanESM2, CMCC-
CM, MIROC5, MPI-ESM-LR, and HadGEM2-ES, were selected for follow-up analysis
and discussion.

2.3. Study Area and Observation Data

In this study, an important water resource facility in southern Taiwan, the watershed
of the Zengwen Reservoir, was selected as the analysis objective. The daily rainfall data
observed by the rainfall station (hereinafter station data) are applied in this study.

Four rainfall stations in the watershed, namely, Lijia (H1M220), Shuishan (H1M230),
Leye (H1M240), and Biaohu (H1P970), were selected. All had valid records for 30 years
(1976–2005). Figure 3 shows the geographical location of the watershed and rainfall stations
of the Zengwen Reservoir.
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The average annual rainfall (1976–2005) of the selected four rainfall stations is about
2622–3189 mm, and the average rainfall in the watershed is about 2910 mm (Thiessen’s
Polygon Method was applied). The rainfall is concentrated in the wet season (May to
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October) and accounts for about 85% of the total annual rainfall, and the dry season
(November to April) accounts for 15% of the rainfall. Table 2 shows the basic data of the
rainfall stations in the watershed of the Zengwen Reservoir.

Table 2. Basic data of rainfall stations in the watershed of Zengwen Reservoir.

Station ID
x

Coordi-
nate

y
Coordi-

nate

Weight of
Thiessen’s

Polygon

Averaged
Daily

Rainfall
(mm)

Averaged
Annual
Rainfall

(mm)

Lijia H1M220 221,379 2,587,086 0.33 8.74 3189
Shuishan H1M230 231,675 2,596,636 0.2 7.18 2622

Leye H1M240 221,871 2,595,420 0.24 8.12 2963
Biaohu H1P970 219,259 2,574,930 0.23 7.39 2698

Coordinate system: TWD97 (Taiwan Datums 1997), TM2 (2-degree Transverse Mercator). Data source: Water
Resources Agency, Taiwan.

2.4. Hydrological Model

To evaluate the bias of the watershed runoff simulation, the Generalized Watershed
Loading Function (GWLF) (Haith et al., 1992) [15] was used in this study. The input of
GWLF water balance mechanism is mainly from precipitation. When the rainfall reaches
the ground, part of the rainfall goes underground through the infiltration mechanism, and
some forms direct runoff. The infiltration rainfall supplements the water of the unsaturated
zone. When the soil moisture in the unsaturated zone reaches the field capacity, the excess
water will pass through the percolation mechanism to the shallow saturated zone, and
finally the shallow saturated zone will produce base flow. The stream flow is the sum of
the direct runoff and base flow. The concept of the water balance model is illustrated in
Figure 4.
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The parameters required by the GWLF include the area and the land use (represented
by the CN value) of the watershed which is shown as Table 3.

Table 3. Parameters of GWLF in the watershed of Zengwen Reservoir.

River Control Point Watershed
Area (KM2)

CN
Value

Coefficient of
Recession

Zengwen River Zengwen Reservoir 481 74 0.042
(Source: made by this study).
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3. Two-Stage Bias Correction Method

Comparing the rainfall data of the four rainfall stations with five selected GCMs in
the baseline (1976–2005) period, the rainfall data of five selected GCMs are underestimated
compared to the four stations, with an average underestimation of about 12% and the
largest gap being more than 20%. The average rainfall of the watershed calculated with grid
data (Thiessen’s Polygon Method) is also underestimated, with an average underestimation
of about 13% (Table 4). The annual rainfall comparison between the station data and the
GCM data is shown in Figure 5.

Table 4. Comparison between the station data and GCM data (annual rainfall).

Model Name Lijia Shuishan Leye Biaohu Watershed Average

CanESM2 −13% −1% −8% −7% −8%
CMCC-CM −19% −8% −14% −13% −14%

MIROC5 −22% −12% −17% −17% −10%
MPI-ESM-LR −15% −3% −9% −9% −18%
HadGEM2-ES −15% −4% −10% −9% −14%

Average −17% −6% −12% −11% −12%
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Figure 5. Annual rainfall of the station data and GCM data.

In order to correct the rainfall gap between GCM data and station data, this study
proposes a two-stage bias correction method. A quantile mapping empirical cumulative
distribution function (ECDF) procedure is the basis of this method as the first stage. In
addition, the wet-day threshold of the GCM data is optimized to fit the probability of
precipitation of the station data to achieve an effective rainfall bias correction result as the
second stage. Detailed descriptions are provided below.

3.1. Quantile Mapping Bias Correction Method

In view of the gap between the GCM data and station data, this study refers to the
quantile mapping empirical cumulative distribution function (ECDF) method used in bias
correction of a climate model and adjusts the ECDF curve of the GCM data to conform to
the ECDF curve of the station data.

First, the ECDF curve of the daily rainfall data (wet days) of the GCM baseline period
and the ECDF curve of the station daily rainfall data (wet days) are calculated, and then
the GCM baseline period daily rainfall events are corrected according to the ECDF value
corresponding to the station daily rainfall data. The schematic diagram of bias correction is
shown in Figure 6.
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Taking into account the differences in the rainfall amount and patterns of each month,
this study uses wet days from individual months to establish the ECDF curves, and the
ECDF curves from stations and GCMs differ. The probability of exceeding on a wet days is
calculated using the Weibull method. The formula is as follows:

probability of exceeding (%) =
m

n + 1
× 100% (3)

where m is the ranking of wet days from small to large, and n is the total number of
wet days.

3.2. Wet-Day Threshold Optimization

However, although the correction method can make the two sets of data consistent
with the rainfall of the same ECDF value, there is still a gap in comparison to the total
rainfall. This study found that the gap is caused by the different numbers of wet days
in the two groups of data. Because the input of the bias correction is wet-day data, then
even though the wet days are corrected by the quantile mapping method, the monthly and
annual rainfall of the corrected GCM data will not fit the station data due to the difference
in the numbers of wet days.

For example, in Figure 7, Case 1a represents the original GCM grid daily data (not
corrected yet) (Figure 7a), Case 1b represents the GCM gridded daily data that has been
corrected by the traditional quantile mapping method (Figure 7b), and Case 2 represents the
station data (Target) (Figure 7c). Although the ECDF curve of Case 1a has been corrected
to fit the target Case 2 (Figure 7a is corrected to Figure 7b), the total rainfall amounts of
the corrected result Case 1b and the target value Case 2 are still different. Therefore, it is
necessary to redefine the wet-day determination method for GCM data if consistency in
the total rainfall amount is a consideration.
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Figure 7. Example of quantile mapping bias correction and the bias of wet days. (a) demonstrates the sample of uncorrected
GCM data in a certain month, (b) demonstrates the sample of station data in the same month, (c) demonstrates the sample
of corrected GCM data in the same month, and (d) shows the correction process of ECDF of sample data. The bias correction
corrects GCM data from (a–c), by considering the ECDF characteristic of station data (b). The bias correction makes the
ECDF of GCM data corrected to match the ECDF of station data (d), therefore correcting the rainfall value, but the number
of wet days is still unchanged.

Although there is no specific method for determining wet days, it is common to define
the threshold of a wet day for specific purposes to collate meteorological data. WMO
(Karl et al., 1999 [16], Peterson et al., 2001 [17]) uses the wet-day threshold of 1.0 mm as the
basis for calculating consecutive wet days and consecutive dry days, and the agricultural
department in Taiwan uses the threshold value of 0.6 mm as the basis for calculating the
number of consecutive dry days.

The above problem (the difference in total rainfall between the two groups of data)
is caused by the inconsistency of wet days. Therefore, this study attempts to use the
probability of precipitation of the station data as the objective function and adjusts the
wet-day threshold value of the GCM data such that the probability of the GCM data fits
the station data.

However, the mechanisms of rainfall of the two systems are not identical. The rainfall
in the GCM data is the spatial average of the rainfall in the entire grid, not the actual
measured value. Thus, extremely small amounts rainfall (such as daily rainfall = 0.0001
mm) may occur, and the probability of precipitation is therefore much higher than indicated
by the station data. In addition, the rainfall in the station data is measured by an instrument,
and different instruments may have different minimum values.

Based on the assumption that the probability of precipitation of the GCM data under
the same location should be equal to the probability of the station data, this study establishes
the wet-day threshold optimization mechanism of the GCM data corresponding to the
station data to filter out the extra small rainfall events of the GCM data and make the
probabilities of rainfall identical.

The calculation process of the optimized wet-day threshold first calculates the proba-
bility of precipitation of the station data, and then optimizes the wet-day threshold value
under the same probability of the GCM data to achieve equality in the rainfall probabilities
of the GCM data and the station data. Then, the optimized value of the wet-day threshold
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is used as an input for bias correction. The results of the bias correction will be similar
to the station data in both the average daily rainfall and the number of rainfall days in
each month.

4. Analysis and Discussion

In this study, a two-stage bias correction method was established for GCM data of
the Zengwen Reservoir watershed. The key issue is that precipitation threshold will affect
the result of the bias correction. Therefore, the different methods for different wet-day
thresholds were applied to the second stage of bias correction.

4.1. Analysis with Different Wet-Day Thresholds

Rainfall station Lijia (H1M220) of the Southern Region Water Resources office was
selected as the target, and the bias correction results of three different wet-day thresholds
were compared, as follows: No-Threshold method (wet-day threshold = 0 mm); Fixed-
Threshold method (threshold = 1 mm); and Optimized-Threshold method (GCM data
wet-day threshold optimized by the probability of precipitation of the station data). The
studied period was 1976–2005. The results were compared in three hydrological amounts,
such as average daily rainfall, probability of precipitation, and annual runoff, to reveal the
bias of different wet-day thresholds.

4.1.1. Comparison to Averaged Daily Rainfall

For the bias correction results of the No-Threshold method, the daily rainfall of the
five GCMs was significantly higher than the station data (Figure 8). The results of the
Fixed-Threshold method were lower than the station data (Figure 9), and the Optimized-
Threshold method produced results basically identical to the station data (Figure 10).
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4.1.2. Comparison to Probability of Precipitation

This study also presents the difference in the probability of precipitation (number of
wet days/total number of days) in the results of the three correction methods. With the
No-Threshold method, the probability of the GCM data was significantly higher than the
station data, so the bias correction results were overestimated (Figure 11). With the Fixed-
Threshold method, it was generally lower than the station data; therefore, the correction
results were underestimated (Figure 12). With the Optimized-Threshold method, the
rainfall probabilities of the two groups of data were identical, so the correction results were
basically the same (Figure 13).
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4.1.3. Comparison to Annual Average Runoff of the Watershed

Three different kind of rainfall data (station data, original GCM data, and corrected
GCM data) were used to simulate the flow and water resources amount in the watershed
of the Zengwen Reservoir. With the original GCM data used as the input of GWLF, the
results of the five GCMs show that the annual average flow depth of the watershed is
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1655–1860 mm. The result of the No-Threshold method is 3155–3651 mm, that of the
Fixed-Threshold method is 1609–1673 mm, and that of the Optimized-Threshold method is
2217–2202 mm (Table 5).

Table 5. Results of different rainfall sources (annual runoff of watershed).

Model Name

Sources of Rainfall

Station
Data Uncorrected No-Threshold Fixed-

Threshold
Optimized-
Threshold

CanESM2

2093

1860 3548 1609 2156
CMCC-CM 1717 3155 1622 2171

HadGEM2-ES 1800 3336 1620 2127
MIROC5 1655 3651 1651 2202

MPI-ESM-LR 1836 3388 1673 2176
Unit: mm/year (source: made by this study).

For the annual average flow volume of the catchment area (maximum available
water resources), the result of the original GCM data is 796–894 million m3/year, that
of the No-Threshold method is 1.518–1.756 billion m3/year, that of the Fixed-Threshold
method is 774–805 million m3/year, and that of the Optimized-Threshold method is 1.023–
1.059 billion m3/year (Table 6).

Table 6. Results of different rainfall sources (annual flow volume of watershed).

Model Name

Sources of Rainfall

Station Data Uncorrected No-Threshold Fixed-
Threshold

Optimized-
Threshold

CanESM2

1007

894 1707 774 1037
CMCC-CM 826 1518 780 1044

HadGEM2-ES 866 1605 779 1023
MIROC5 796 1756 794 1059

MPI-ESM-LR 883 1630 805 1047

Unit: million m3/year (source: made by this study).

Comparing the above results, the flow simulation results of the original GCM data
underestimate the water resources by nearly 150 million m3/year. The No-Threshold
method overestimates them by about 640 million m3/year; the Fixed-Threshold method,
by about −220 million m3/year; and the Optimized-Threshold method, by only about
35 million m3/year (Table 7).

Table 7. Comparison of gap in water resources between different rainfall sources.

Model Name

Sources of Rainfall

Uncorrected No-Threshold Fixed-
Threshold

Optimized-
Threshold

CanESM2 −112 700 −233 30
CMCC-CM −181 511 −226 37

HadGEM2-ES −141 598 −228 16
MIROC5 −211 749 −213 52

MPI-ESM-LR −124 623 −202 40

Unit: million m3/year (source: made by this study).

4.2. Discussion

The GCM data were inconsistent with the station data before they were corrected and
underestimated compared with the station data. Based on the quantile mapping method,
the wet-day threshold determines the fitness of the correction result between the GCM data
and the station data. Whether a wet-day threshold of 0 or 1 mm is used, it cannot effectively
match the rainfall characteristics of the station data. Only by considering the probability of
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precipitation of the station data (Optimized-Threshold method) can an effective correction
of the bias of GCM data be achieved.

However, during the research process, it was also found that this method still has
limitations. For example, the probability of precipitation of GCM data can only be reduced
and not increased. The analysis of the five GCMs shows that the probability of precipitation
is much higher than the station data, for which two-stage bias correction still works.
However, if the probability of the GCM data is already lower than the station data, the
method of optimizing the wet-day threshold cannot be used to make the probabilities
of rainfall equal because the rainfall event cannot be created to increase the probability
of precipitation.

In addition, this study assumes that the probability of precipitation of the station data
under the same location is equal to that of the GCM data. A numerical method is used to
make the two sets of data equal. Although the correction result can be achieved, it does
change the number of physical rainfall events in the GCM. The number of wet days in the
GCM data is reduced, and some rainfall events are missing, because such rainfall events
are below the threshold and calculated as dry days.

Whether this approach has perfect physical significance will require further research
to determine. However, in terms of a water resources system, the rainfall that is filtered
out is a relatively small value. Whether it is filtered out or not does not affect the overall
catchment flow or the performance of the water resources system, and its advantages
make it easier to analyze and compare GCM data and station data. It is also an alternative
method to deal with climate change data.

5. Conclusions

Even though the statistical downscaling skill has improved and refined GCMs for
climate change impact assessment from monthly data to daily data, there is still bias
between GCM data and station data. This gridded data to point data issue will affect the
result of water resources amount assessment.

The quantile mapping bias correction method is usually adopted to reduce the bias
between GCM data and station data; however, there is still a gap after bias correction which
is caused by the different wet days in these two sets of data.

This study proposed the two-stage bias correction method to convert GCM gridded
data to station data which optimized the wet-day threshold value of the GCM data to
achieve equality in the rainfall probabilities of the GCM data and the station data. After
two-stage bias correction, the GCM data will fit to the station data in both the average daily
rainfall and the number of rainfall days in each month.

Because of the bias between GCM data and station data, there will be quite an amount
of bias after applying data to the watershed runoff simulation. In the case of the Zengwen
reservoir inflow simulation, with regard to the result of applying original GCM data as
input, there is a bias of about 154 million m3/year, which is an about 15% bias compared to
the result with the input of station data. Applying the data with a two-stage bias correction
to the Zengwen reservoir inflow simulation, the bias was reduced to 3%. This result
indicates that the GCM data can be directly applied to water resources amount evaluation
after two-stage bias correction; however, the bias still needs to be counted to establish the
uncertainty of climate change assessment.

To reveal the effectiveness of two-stage bias correction and the bias after converting
gridded data to station data, the GCM selection method was used in this study to reduce
the running cases. The result of the GCM performance ranking can also apply to other
studies that uses CMIP5 GCMs daily data in Taiwan.
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