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Abstract: Coastal landscapes are sensitive to changes due to the interplay between surface and sub-
marine geological processes, climate variability, and relative sea level fluctuations. The sedimentary
archives of such marginal areas record in detail the complex evolution of the paleoenvironment
and the diachronic biota response. The Elefsis Bay is nowadays a landlocked shallow marine basin
with restricted communication to the open Saronikos Gulf. A multi-proxy investigation of a high-
resolution sediment core recovered from the deepest part of the basin offered a unique opportunity to
record the paleoenvironmental and aquatic ecosystem response to climate and glacioeustatic sea level
changes since the Late Glacial marine transgression. The retrieved sedimentary deposits, subjected
to thorough palynological (pollen, non-pollen palynomorphs, dinoflagellates), micropaleontological
(benthic foraminifera, calcareous nannoplankton, ostracods), and mollusc analyses, indicates isolation
of the Elefsis Bay from the Saronikos Gulf and the occurrence of a shallow freshwater paleolake since
at least 13,500 cal BP, while after 11,350 cal BP the transition towards lagoon conditions is evidenced.
The marine transgression in the Elefsis Bay is dated at 7500 cal BP, marking the establishment of the
modern marine realm.

Keywords: paleoenvironment; sea level rise; pollen spectra; dinoflagellate cysts; benthic foraminifera;
calcareous nannoplankton; ostracods; molluscs; alkenone-based SSTs

1. Introduction

The complex Mediterranean coastal landscape includes rocky shorelines, bays, river
deltas, coastal marshes, or lagoons, continuously shaped by geological processes, climate,
and increasing human activity. Coastal areas, marginally located between land and sea,
comprise a wide range of habitats and natural resources, thus, being continuously exploited
by human populations since prehistoric times. The coastal zone is a dynamic environment,
which is, however, particularly vulnerable in the context of global change [1] that has been
dramatically transformed by the relative sea level changes in response to the Quaternary
glacial/interglacial cycles (e.g., [2,3]).

Sedimentary records retrieved from coastal areas provide valuable evidence concern-
ing past environmental changes, such as climate variability or sea level fluctuations, and
ecosystem response. The study of such archives is critical for in-depth understanding
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the forcing and the controlling processes in order to suggest the required adaptation and
mitigation policies [4,5]. During the last decades, a big boost in the paleoenvironmental
studies of coastal contexts is observed [6–18]. Coastal marshes and lagoons have been
extensively investigated for their sedimentological, geochemical, micropaleontological, or
palynological content in Greece, providing valuable knowledge concerning the evolution
of their physical condition, the biota response to environmental shifts, and the impact
of human activities on them (e.g., [14,19–22]). Changes in the micro- and macrofauna
(foraminifera, ostracods, and gastropods) abundance, diversity, and species distribution
can provide evidence of environmental factor fluctuations in water mass characteristics
such as temperature, salinity, food availability, substrate, dissolved oxygen, and water
quality [9,22–24]. The composition and distribution of phytoplankton (coccolithophores
and dinoflagellates) are closely related to the conditions of the upper photic zone such
as sea surface temperature, sea surface salinity, and nutrient availability, therefore their
succession in the various Aegean Sea basins has been widely applied for the reconstruction
of palaeoenvironmental conditions [25–30].

However, the coastal lagoon deposits suffer from deficiencies because their genesis is
connected with the Holocene marine transgression and their sedimentary record mainly
covers only the last 5000–8000 years [21,31,32]. During the Last Glacial, extensive areas
were exposed [7,33,34] and, therefore, subject to erosion, because the sea level was ~120 m
lower than present [35]. In contrast to lagoons, sedimentation processes continued in
deeper coastal sites such as semi-enclosed gulfs and embayments. Being bounced by
shallow sills, the gulfs of Saronikos, Amvrakikos, and Pagasitikos or the Gulf of Corinth
became isolated during the glacial lowstand and reconnected to the Mediterranean Sea
in the following /interglacial highstand cycle, while significant changes in sedimentary
processes and environmental conditions were evidenced [36–42]. Elefsis Bay is a landlocked
restricted shallow marine basin connected to the Saronikos Gulf by two shallow straits.
The inner Saronikos Gulf, including Elefsis Bay, became isolated during the Last Glacial
Maximum lowstand [37,43,44] and reconnected to the Aegean Sea during the Late Glacial–
Holocene marine transgression. The metropolitan urban center of Attiki, one of the most
populated areas in the Mediterranean, is located in the northern borderland of the inner
Saronikos Gulf that receives the treated sewage of the entire region, whereas in Elefsis
area significant industrial and shipbuilding activities take place. Following the Water
Framework Directive 2000/60 concerning the ecological status of European waters [45],
extensive research and continuous monitoring of the coastal water quality in Elefsis Bay has
been conducted during the last decades, based on biotic and abiotic quality criteria [46–54].

This study applies systematic benthic foraminiferal, ostracod, calcareous nannoplank-
ton, dinoflagellate cyst, and mollusc analyses, complemented by sedimentological analysis,
selected lipid biomarkes, and absolute dating of the Late Glacial–Holocene Elefsis Bay
deposits, aiming to investigate the temporal environmental conditions and decipher the
role of the terrestrial and marine processes in the ecosystem, decode the response of the
biota, and record the timing of the establishment of the marine environment in Elefsis Bay.

2. Regional Setting

Saronikos Gulf is a semi-enclosed neotectonic basin marked by low subsidence rates
ranging from 0.03 to 0.31 m/ka [44] communicating to the south with the Aegean Sea and
to the northwest with the Gulf of Corinth through the manmade Canal of Isthmus. The gulf
is divided into a western and an eastern section by Methana, Angistri, Aegina, and Salamis
islands (Figure 1), which are situated on a shallow N–S oriented platform. The western
section of Saronikos Gulf comprises the deep (>400 m) Epidaurus Basin and the relatively
shallow (<250 m) Megara Basin. The history of the eastern section of Saronikos Gulf reflects
a low energy, shallow and rather stable marine basin throughout the Quaternary, with
marginal faults at the northern and southern limits of Salamis basin displaying modest
activity [55]. Several volcanoes and volcanic outcrops of Plio-Quaternary age, being part of
the western active Aegean Volcanic Arc, are situated in the gulf [56].
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Figure 1. Location maps of the study area: (a) the Saronikos Gulf; and (b) the Elefsis Bay and the S2P
coring location (source Hellenic Navy Hydrographic Service).

The Elefsis Bay lies in the northern part of Saronikos Gulf, covers an area of ~68 km2

and forms a natural embayment between western Attiki and Salamis Island (Figure 1).
The bay is relatively shallow with a maximum depth of 33 m and communicates with the
Saronikos Gulf through two straits, a western and an eastern one, having depths of 8 m
and 12 m, respectively [43]. The water circulation is from west to east during summer,
influenced by temperature difference between the water in the bay and the Saronic Gulf,
while a reversed attenuated surface flow is recorded during winter, caused by differences
in salinity [57].The torrents of Sarantapotamos and Katsimidis, which drain the mountains
of Pastra and Pateras, respectively, are the main sources of sediment and freshwater inputs
to the basin [58]. Limestones and clastic sediments are found on land around the bay,
associated with the Pliocene/Pleistocene substrate, while the Elefsis Plain is covered by
recent post-alpine sediments, mostly talus, cones and scree [59].

The physical parameters of the water column in Elefsis Bay show a typical seasonal
variation. The annual maximum temperature (25 ◦C) occurs during summer, while the
minimum one (10 ◦C) is recorded in February/March. Salinity varies from 37.5 in March
to 39 in summer (e.g., [60,61]). The reduced freshwater input and the restricted water
mass exchange between the Elefsis Bay and Saronikos Gulf during summer leads to the
development of a persistent thermocline down to a depth of 15 m. The dissolved oxygen
stratification along the thermocline is also pronounced, featured by an upper layer (<15 m)
of oxygen supersaturation and consequent bottom water anoxia. During winter, an intense
vertical mixing of the water masses occurs and the entire water column is enriched with
oxygen (e.g., [51,62]). Finally, the trophic status of the Elefsis Bay is characterized as
eutrophic [50,51], even though a general environmental improvement has been recorded
over the last 30 years [63].

3. Materials and Methods

The gravity core S2P was recovered from the deepest part of Elefsis Bay (38◦00.50′ N,
23◦27.48′ E; see Figure 1) at a depth of 35 m during an expedition with the R/V Aegaeo
of the Hellenic Centre for Marine Research. The lithology and physical characteristics of
the 342-cm-long core have already been presented by Petropoulos et al. [43]. Five major
sedimentary units have been identified, based on their sand and biogenic debris content
as well as their color (Figure 2): (i) the Unit A (0–192 cm), consists of light olive grey to
olive grey mud with shell fragments; (ii) the Unit B (192–231 cm), mainly comprising
grey clay; (iii) the Unit C (231–297 cm), demonstrates a variety of colors (yellowish, light
grey, grey, dark grey, olive grey) and alternations of mud and sandy mud layers, while
biogenic fragments occur within the upper portion of the bed; (iv) the Unit D (297–300 cm),
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including an organic black sandy mud; and, finally, (v) the Unit E (300–342 cm), is composed
of grey sandy mud with biogenic debris.

In addition to the previous sedimentological analysis, the relative proportion of sand
and mud throughout the length of the core S2P was determined in detail by dry sieving of
two hundred and thirty-one samples, while the total inorganic carbon (TIC) profile was
derived by applying the equation of Jiang et al. [64].

3.1. Core Chronology

The chronostratigraphic framework of the core was defined using accelerator mass
spectrometry (AMS) radiocarbon (14C) dating, carried out in the Beta Analytic laboratory.
The AMS 14C dates were obtained from seven marine mollusc shells and one terrestrial
plant material (Table 1). Calibration of the conventional 14C ages to calendar years was
made using the Marine13 calibration curve, by applying a ∆R correction of 73 ± 61 years
for the marine reservoir effect in Piraeus (Saronikos Gulf), and the terrestrial IntCal13
calibration curve, respectively [65,66].

Table 1. AMS 14C ages and reservoir-corrected1 and calibrated ages for the S2P core.

Lab Code Depth (cm) Material 14C yr BP cal BP

Beta—496147 8–9 Turritella communis 970 ± 30 451–563 1

Beta—441157 40–42 Turritella communis 2270 ± 30 1706–1872 1

Beta—496148 70–72 Turritella communis 3930 ± 30 3711–3904 1

Beta—441158 120–121 Turritella communis 4260 ± 30 4179–4378 1

Beta—453192 155–156 Turritella communis 5840 ± 30 6113–6268 1

Beta—453193 180–181 Turritella communis 6640 ± 30 6992–7163 1

Beta—441159 242–244 Cerastoderma glacum 10,220 ± 30 11,083–11,218 1

Beta—441160 297–300 peat 11,650 ± 40 13,439–13,496
1 ∆R correction 73 ± 61 [65].

Finally, the age-depth model of the core was derived from the package rbacon [67] in
the R console (v. 3.5.0).

3.2. Foraminifera and Ostracod Analysis

One hundred and fifty sediment samples (with the dry weight of each sample being
10 g) were treated with hydrogen peroxide (H2O2) solution 10%to remove the organic
matter, washed through 63 µm and 125 µm stainless steel sieves and dried at 70 ◦C.

Seventy-two of the samples were analyzed for their benthic foraminiferal content in the
>63 µm fraction. A subset containing at least 200 individuals per sample was obtained using
an Otto microsplitter. The individuals were identified under a Zeiss Stemi 305 stereoscope,
following the generic classification of Loeblich and Tappan [68,69], and based on the studies
of Cimerman and Langer [70], Hottinger et al. [71], Sgarrella and Moncharmont-Zei [72],
and Dimiza et al. [73]. The total foraminiferal density (FD; number of specimens/g) and the
relative abundances in the benthic foraminiferal assemblages were calculated. For samples
containing less than 25 individuals, the countings were excluded from the quantitative
analysis. Further, the Shannon–Wiener diversity index (H′) was calculated, using the
Past.exe 1.23 software package [74]. Additionally, all broken-reworked specimens were
selected, without, however, being included in the counting.

Eventually, the >125 µm fraction in each of the one hundred and fifty samples was
examined for the qualitative determination of its ostracod content. Ostracod species were
identified under a Leica stereo microscope, based on the studies of Bonaduce et al. [75],
Stambolidis [76], Tsourou [77], and Tsourou et al. [78].

3.3. Calcareous Nannoplankton Analysis

Seventy-five samples have been prepared for Calcareous Nannoplankton (CN), follow-
ing the standard smear slide techniques. Out of them, only forty samples in the last 186 cm
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of the core, were bearing CN assemblages. Detailed descriptions of the quantitative count-
ing methods and taxonomy of CN analysis are presented in the studies of Triantaphyllou
et al. and Triantaphyllou [25,26,79]. The results of the analysis are expressed as percentages
in order to avoid any dilution effects, e.g., lithogenic input [80]. The variation in the joint
abundance of Helicosphaera carteri and Syracosphaera spp. is used as a paleotracer of fresher
upper water layer (e.g., [80–82]). Helicospahera carteri has been reported exhibiting high
frequencies in modern regions influenced by riverine discharge [83], as a coastal water
taxon (e.g., [84]). Hints for an opportunistic behavior in estuarine environments, have been
already given by Cachão et al. [10,85,86]. The abundances of reworked taxa from older
sedimentary units are used as a lithogenic input proxy.

3.4. Palynological Analysis

One hundred and four samples were investigated via a meticulous palynological anal-
ysis. The samples were weighted, spiked, and chemically treated, following the standard
palynological protocol including sieving through a 10 µm sieve (e.g., [87]. During the mi-
croscopic analysis, pollen, dinoflagellate cysts, green algae coenobia, and spores, as well as
non-pollen palynomorphs (NPPs), were identified and counted. The six bottom samples of
the S2P sedimentary sequence, corresponding to the 295–334 cm core-depth interval, were
excluded from the analysis due to their low and poorly-preserved palynomorph content.
An average of 300 pollen grains, excluding pollen from aquatics and spores, was counted
in each of the ninety-eight examined samples [87], while dinoflagellate cysts were counted
in approximately every second sample. An average of 120 dinoflagellate cysts was counted
in each examined sample from the upper 247 cm of the core, while below that core depth
only pollen, green algae, and NPPs were identified. The dinoflagellate cyst identification
was based on the studies of Mudie et al. and Van Nieuwenhove et al. [88–90]. Cysts of the
Lingulodinium machaerophorum with processes length shorter than 10 µm (L. machaerophorum
sh.p.) were separately counted, based on the work of Mertens et al. [91,92]. Finally, the
results derived from the analysis of pollen, dinoflagellate and NPPs are presented in both
percentage and concentration diagrams.

3.5. Mollusc Analysis

The invertebrate specimens of the S2P core were retrieved from one hundred and forty-
three samples, spaced at 1–3 cm core-depth intervals. Following the standard wet-sieving
procedure, a maximum of 10 g of dry sediment from each sample was chemically treated
with water-diluted H2O2 (Perhydrol, 30% v/v H2O2) and sieved through a 63 µm sieve.
Treated samples were inspected under a Leitz Wetzlar stereo microscope and identified
based on the WoRMs database [93], the MSIP database [94] and the study of Sakellariou [95].
The shell selection was based on the minimum number of individuals (MNI) criterion, while
rounded/reworked specimens from specific core depths were also examined. Moreover,
the collected specimens were distinguished to fresh or etched, depending on the shell
conservation, which was considered as a paleoenvironmental condition parameter.

3.6. Organic Geochemistry

Selected lipid biomarkers, i.e., aliphatic hydrocarbons, long-chain alkenones and
aliphatic alcohols, were determined in thirty-eight samples of the sedimentary Unit A as
indices of paleoenvironmental conditions and land–sea interactions. Lipids were extracted
from freeze-dried sediments by ultrasonication with a mixture of dichloromethane/methanol
(4:1, v/v) and individual compounds were identified and quantified by means of gas chro-
matography, following Gogou et al. [96]. Estimates of past sea surface temperatures (SSTs)
were made using the unsaturation ratios of alkenones (Uk’

37) [97]. The Uk’
37 index was

converted into SST using the global calibration of Conte et al. [98]. High molecular weight
odd-carbon number n-alkanes (n-C27, n-C29, n-C31 and n-C33) and even-carbon number
n-alkanols (n-C24, n-C26, n-C28 and n-C30), major components of epicuticular higher plant
waxes, are used as proxies of allochthonous natural (terrestrial) inputs [99,100]. The sums of
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their concentrations are defined as ΣTerNA and ΣTerN-OH, respectively. Variations of the
average chain length of terrestrial n-alkanes, i.e., ACL index [101], are commonly related
to changes in the temperature and humidity/aridity in the growing environment, since
plants tend to synthesize longer chain length waxes in response to elevated temperatures.
The proportion of ΣTerN-OH in the sum of ΣTerNA and ΣTerN-OH (HPA index [101]) can
be used to evaluate the proportions of labile and refractory organic matter delivered in the
marine environment as well as in situ preservation vs degradation.

4. Results
4.1. Sedimentology/Age Depth Model

The mud fractions prevail in the S2P sedimentary record; however, increased sand
content is observed within the 0–100 cm and 250–342 cm core-depth intervals (Figure 2).
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age-depth model (for the 0–297 cm core-depth interval) derived from the R package rbacon (see Blaauw and Christen [67]).

In the bottom Unit E, calcite layering is an outstanding feature, possibly indicating
the substrate of the area that is most probably associated with the “Marls of Piraeus”
considered of Pliocene age [102].

Upwards in Unit D, the occurring 3-cm-thick layer shows increased TOC values
(~1.78%) despite its high sand content (Figure 2). This in combination with the black
color of the sediment suggests a peat material, formed by incomplete decomposition of
organic matter due to waterlogging and the subsequent anoxic condition. In addition, it
is remarkable that Unit D disconformably overlies the eroded upper limit of Unit E (see
photograph in Figure 4 of Petropoulos et al. [43]), thus, revealing a hiatus within the S2P
depositional sequence. For this reason, a valid age-depth model for the S2P sequence could
only be derived for the 0–300 cm core-depth interval, with the indicated ages ranging from
13,500 to 107 cal BP (see Figure 2).

TOC/Ntotal ratios of pure marine organic matter are usually less than 8, while those
between 8 and 12 indicate a mixed source of organic matter from land and sea [103]. There-
fore, considering the relevant profile in Figure 2, Unit D and most of Unit C (248–297 cm)
can be interpreted as terrestrial environments (C/N: 16–21.5), while the signal in Unit A
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reveals a marine environment, which, however, is affected by terrestrial processes (C/N:
10.8–13). Eventually, Unit B and the rest of Unit C display C/N values (13–14.6) that imply
a transitional depositional system, e.g., estuarine or lagoon.

Finally, in Unit A, the age model indicates a higher sedimentation rate at ~4000 cal BP
(Figure 2). This could imply the occurrence of an upper shoreface depositional environment
at that time.

4.2. Foraminiferal and Ostracod Analysis

The benthic foraminiferal assemblages in the S2P deposit are generally well preserved
and a total of 67 species, belonging to 29 genera, were identified. The FD values demon-
strate a high variability, ranging from 5 to 3908 specimens/g, while the H’ index displays
great fluctuations as well (0–2.76). The assemblages (see Figure 3) are mostly composed
of Ammonia beccarii, A. tepida, Aubignyna perlucida, other small rotaliids (mainly Nonionella
turgida, Rosalina brady, and Planorbulina mediterranensis), bolivininds (mainly Bolivina elon-
gata), elphidiids (mainly Elphidium translucens and E. gunteri), miliolids (mainly Triloculina
trigonula and T. tricarinata), and agglutinant species (mainly Textularia bocki and T. conica).

Figure 3. Profiles of the (i) relative abundances (%) of the most common benthic foraminiferal taxa, (ii) total foraminifera
density, (iii) Shannon–Wiener diversity index (H’) and (iv) qualitative charophyte and ostracod data in the S2P sedimen-
tary sequence.

The interval from the bottom to 297 cm is characterized by the presence of calcified
benthic foraminiferal specimens, mostly of A. tepida. The ostracod assemblage is charac-
terized by the scarce presence of Cyprideis torosa calcified valves, which just below the
peat material of Unit D (300–301 cm) occur in high numbers, exceeding 100 individuals/g.
Other ostracod taxa, such as Xestoleberis and Hiltermannicythere, are also present, but are
considered to be reworked.

Between 297 and 248 cm (13,500–11,350 cal BP), scarce E. gunteri specimens constitute
the assemblage, being actually the only species observed in most samples (Figure 3). In
this interval, only the upper two samples fulfilled the criterion to be included in the
quantitative analysis, with E. gunteri appearing to be dominant and A. tepida showing a low
abundance (11.6%). The FD parameter varies from 118 to 316 specimens/g, even though
the H’ index exhibits very low values (max 0.36). The ostracod assemblage is marked by
the high occurrence of C. torosa, with many noded specimens (mainly juveniles), forming
monospecific assemblages; in addition, charophytes were encountered.

Within 248–187 cm (11,350–7500 cal BP), an abrupt increase in A. tepida values is
evidenced, exceeding 90% in the assemblage for the majority of the samples. Elphidium
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gunteri shows a lower abundance, while A. perlucida and other small rotaliids, miliolids,
and agglutinated taxa participate in the assemblage composition with minor values, mainly
occurring within the upper part of the interval. The FD parameter demonstrates the highest
values in the S2P sequence (max 977 specimens/g), while the H’ index still presents a low
level (max 1.75). In the same interval the ostracod assemblage are more diversified but they
still remain oligospecific. Cyprideis torosa is the most abundant species, mainly accompanied
by Xestoleberis sp., Aurila woodwardii, Leptocythere lagunae, and Cytherois fischeri.

From 187 cm to the top, a decrease in A. tepida values is observed. However, A.
beccarii shows an enhanced abundance (max 32.4%), while each of the miliolid and small
rotaliid assemblage constitute ~23% of the total assemblage, mainly represented by T.
trigonula, T. tricarinata and R. bradyi, and P. mediterranensis and N. turgida, respectively. In
addition, A. perlucida (max 14.7%), B. elongata (max 20%), E. translucens (max 25.5%), and
T. bocki (max 28.6%) contribute significantly to the microfauna composition, displaying a
continuous presence and their highest values in the S2P core. Finally, the FD parameter
decreases (71 specimens/g on average), while, in contrast, the H’ index increases (2.44 on
average). The ostracod assemblages demonstrate a completely different composition.
Cytheridea neapolitana is the most abundant species, mainly accompanied by Palmoconcha
agilis, Leptocythere spp. (primarily L. multipunctata), and Sagmatocythere versicolor. Finally,
the fauna is characterized by the scarce presence of Hiltermannicythere rubra.

4.3. Calcareous Nannoplankton Analysis

All samples taken from Units B–E were barren of nannofossils. CN specimens begin to
sporadically appear in the S2P record at 186 cm core depth, since ~7500 cal BP (Figure 4) and
their assemblage is marked by a low number of species. Emiliania huxleyi is the dominant
species throughout the studied interval (Figure 4), contributing to the total assemblage
with frequencies up to 85%. Rhabdosphaera clavigera is the second most abundant species,
representing 15%, on average, of the total coccolithophore assemblage. Its relative abundance
varies between 5% and 18% during 7500–4000 cal BP (Figure 4), while afterwards shows
an increase with a distinct peak (30%) centered at ~1300 cal BP and a relatively constant
decreasing trend from 20% to less than 2% between 1000 and 100 cal BP. The distribution
pattern of the species group Helicosphaera carteri + Syracosphaera spp. demonstrates relatively
high values at ~7000 cal BP and between 3500 and 2000 cal BP (Figure 4). Finally, reworked
taxa are present at low frequencies since 3800 cal BP, reaching their maximum abundances
after 2000 cal BP with a prominent peak (up to 5%) at ~600 cal BP (Figure 4).

Figure 4. Abundance diagram of the Calcareous Nannoplankton assemblages in the S2P sedimen-
tary sequence.
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4.4. Palynological Analysis

The 0–300 cm interval of the S2P deposit yielded abundant pollen, dinoflagellate
cysts, green algae, and other palynomorphs with significant temporal variability (see
Figure 5). During the last 13,300 cal years BP the mean pollen concentration was 14,000 g/g
(grains/g), while maximum values of 46,000 g/g were recorded at ~12,000 cal BP. A detailed
description of the pollen assemblages and inferred vegetation development has already
been presented in the study of Kyrikou et al. [87]. Dinoflagellate cysts are continuously
evidenced since 11,350 cal BP with a mean concentration of 6250 c/g (cysts/g), while green
algae, mainly represented by Botryococcus coenobia, are present throughout the studied
interval. Based on the aquatic palynomorphs encountered, three zones, i.e., PZ-I to PZ-III,
may be determined, each one corresponding to a distinct palynomorph assemblage:

Figure 5. Percentage (line) and concentration (red bar) diagram of dinoflagellate cyst, green algae and other palynomorph
assemblages in the S2P sedimentary sequence.

(a) PZ-I (297–248 cm; 13,500–11,350 cal BP): Botryoccocus coenobia are the dominant aquatic
palynomorphs within this zone, displaying a mean concentration of 150,000 c/g (coeno-
bia/g) and a distinct maximum concentration of 330,000 c/g. The mean concentration
of aquatic vascular plants is 870 g/g, while dinoflagellate cysts are absent.

(b) PZ-II (248–187 cm; 11,350–7500 cal BP): this zone is marked by a high dinoflagellate
cyst concentration (15,300 c/g) and Botryoccocus decrease to 320 c/g. The morphotype
of L. machaerophorum sh.p. dominates the dinoflagellate assemblage (60%), which is
complemented by Spiniferites cruciformis (mean of 3%, max 5.7%) and Pyxidiniopsis psi-
lata (max 2%). The aquatic palynomorph assemblages are complemented by the long
processes morphotype of L. machaerophorum (4%) and S. bentorii (3%). Foraminifera
test linings are recorded for the first time in the record with a mean concentration of
780 p/g. A decrease in the aquatic vascular plant mean concentration (310 g/g) is
also observed.

(c) PZ-III (187–1.5 cm; 7500–158 cal BP): the dinoflagellate cyst and Botryococcus concen-
trations decrease to 3000 c/g and 180 c/g, respectively, while foraminifera test linings
increase to 1550 p/g. The zone is characterized by a diverse dinoflagellate assemblage,
including: L. machaerophorum (mean of 14%, max 35%, min 3%), S. membranaceus (16%),
S. delicatus (13%), Polysphaeridium zoharyi (9%), and Operculodinium centrocarpum (9%).
The L. machaerophorum sh.p. sharply decreases to 7% at the bottom of the zone and
disappears after 4600 cal BP. The abundance of Pinus, both relative and absolute,
gradually increases from the bottom of the zone, reaching maximum values since
3500 cal BP. Aquatic vascular plants are present until 4000 cal BP and reoccur after
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1700 cal BP, while Pseudoschizaeae spores follow a similar pattern. Finally, after
2500 cal BP, Glomus reaches maximum concentrations of 1700 p/g.

4.5. Mollusc Analysis

A total of 10,500 mollusc specimens were collected, which resulted (MNI) in 7710 in-
dividuals (7251 fresh and 459 etched shells) belonging to 45 genera and 47 bivalve and
gastropod species (see Figure 6).

Figure 6. Relative abundances (%) of the most common mollusc taxa (bivalves and gastropods) in the S2P sedimentary sequence.

From the bottom to 297 cm the fauna includes exclusively rounded and possibly
“fossilized” marine mollusc fragments, belonging mainly to bivalves but also to gastropods.
Although the taxonomic attribution is not possible in a large amount of the specimens,
some was possible to identify and they belong to Cerastoderma, Veneridae, Loripes, small
Hydrobiidae, and few internal casts of hydrobiid gastropods. However, a few core-depth
intervals showed a lack of any molluscan fauna.

Between 297 and 248 cm (13,500 to 11,350 cal BP), the monotonous fauna is dominated
by the high abundances of the gastropods Hydrobia sp. (98.7–100%) and Theodoxus sp.
(2.2–100%). The bivalve species Cerastoderma glaucum and Mytilaster marioni occur in two
samples at 11,400 cal BP, showing, however, considerable values (max 10% and 28.6% of
the total molluscan assemblage, respectively).

The 248–187 cm interval (11,350–7500 cal BP) is featured by the high occurrences of
the bivalves C. glaucum (max 53.3%) and Mytilaster marioni (max 52%), and the gastropod
Hydrobia sp. (max 75%). Occasionally, the bivalve Abra segmentum (max 20%) and the
gastropod Rissoa sp. (max 24%) reach high values.

Finally, from 187 cm to the top (after 7500 cal BP), a rich variety of species is observed,
including the dominant bivalves Bornia sebetia, Corbula gibba, Myrtea spinifera, Nucula niti-
dosa, and Timoclea ovata, and the gastropods Bittium reticulatum and Turritella communis. The
previous species show abundances varying between 60% and 94% of the total assemblage.

4.6. Alkenone-Based SSTs and Paleoenvironmental Indices

The alkenone-derived SST measurements provide an average of 24.6± 0.8 ◦C, ranging
from 22.3 to 25.7 ◦C. SSTs in Elefsis Bay increase (by ~1 ◦C) from 7500 to 7100 cal BP
(Figure 7), reaching 25.2 ◦C at ~5500 cal BP and 25.7 ◦C at ~1600 cal BP, which is the highest
value of the record. Afterwards, SST values decrease from 1300 to 600 cal BP (average
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of 24.7 ± 0.3 ◦C), while a distinct decrease in SST is evident after 250 cal BP, reaching
values as low as 22.3 ◦C (Figure 7). ΣTerNA and ΣTerN-OH concentrations present minor
fluctuations from 7700 to 250 cal BP, with negative shifts at ~7500 and 4000 cal BP. Finally,
an increasing trend is evident from ~1400 cal BP up to the top of the sequence.

Figure 7. Profiles of alkenone-based SSTs as well as paleoenvironmental indices based on lipid
biomarkers. Abbreviations are defined in the main text.

The HPA index sharply increases to 0.76 at 4200 cal BP, while an increasing trend, up
to a 0.71, is also observed at ~1200 cal BP. Further, minor fluctuations around a value of 0.65
are noticed up to the top of the record. The ACL profile demonstrates an increasing trend
from 7700 to 7100 cal BP and afterwards to ~5500 cal BP. Then, after a sharp reduction at
~2400 cal BP, ACL rises to 31.1 at ~1800 cal BP, displaying a secondary peak at ~1200 cal BP;
the previous maxima are the highest of the record. Finally, ACL displays a distinct decline
from ~700 cal BP towards the top of the sequence (Figure 7).

5. Paleoenvironmental Interpretation

The multi-proxy record derived from the S2P core sheds light on the temporal envi-
ronmental variability in Elefsis Bay since the Late Glacial.

The investigated sequence starts with the sedimentary Unit E, which is featured by
calcite layering. The most common process for the development of this feature is the one
driven by microorganisms, e.g., blue-green algae, which grow in a tidal environment. These
organisms flourish as filaments and form mats by trapping and binding microcrystalline
carbonates during the incoming tides that sweep over the sand. This leads to the formation
of calcite laminations that consist of organic tissue interbedded with mud [104]. Therefore,
Unit E could reflect a tidal depositional system. This is further supported by the presence
of heavily reworked and rounded mollusc fragments. These macrofossils rather represent
material, which was most probably derived from the post-alpine sediments of the broader
study area and, subsequently, reworked during its transport to the Elefsis Bay through
the local torrents that drain the catchment area, while later, after its deposition in the
tidal environment, it was subjected to further reworking and alteration. The timing of the
deposition of Unit E was not feasible to be determined due to the lack of autochthonous
biogenic material. However, the striking erosion surface on top of Unit E, revealing a well-
defined disconformity with the overlying Unit D, implies that the depositional environment
of Unit E could be a paleobeach, being significantly older than the rest of the S2P sequence.

Based on the results of the multidisciplinary analysis of the 0–300 cm interval of
the S2P deposit, the paleoenvironmental evolution of the Elefsis Bay may be interpreted
as follows.
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5.1. Stratigraphic Interval of 300–248 cm: The Elefsis Paleolake (13,500–11,350 cal BP)

The postglacial sedimentation in Elefsis bay actually begins with the formation of the
3-cm-thick peat horizon (Unit D) at 13,500 cal BP.

Above this level, the occurring aragonite-rich sediment is dominated by the presence
of the colonial freshwater green alga Botryococcus (see PZ-1 in Figure 5). Botryococcus
coenobia are commonly found in freshwater lakes, even though they can tolerate salinities
up to 8 [105,106]. The high concentrations of Botryococcus in this stratigraphic interval can
be related with green algae blooms, suggesting the existence of a freshwater to oligohaline la-
custrine depositional environment, probably associated with the paleolake of Kyrheia [107].
In addition, the high relative and absolute abundances of pollen originating from terrestrial
aquatic plants (see Figure 5) support the interpretation for the establishment of wetland
conditions in the bottom part of the suggested paleolake environment, which, consequently,
explains the peat formation. According to the glacio-hydro-isostatic model of Lambeck [3],
the sea level stand was −80 m at 13,000 yr BP and −57 m at 11,000 yr BP, apparently
favoring the formation of a paleolake within the enclosed depression of Elefsis.

In the current interval, the high TOC and C/N values (see Figures 2 and 8) are
indicative of a terrestrial origin of the organic matter, while the recorded aragonite enrich-
ment [4] suggests a shallow freshwater environment of high productivity and sulphate
reduction [108]. Also, a typical inorganic precipitation of calcium carbonate in the form of
aragonite frequently occurs in freshwater bodies affected by salinity increments. Hence,
all previous interpretations as well as the pronounced rise in the carbonate contents
(see Figure 2) further support the perception of a freshwater to oligohaline depositional
environment for this sediment.

Figure 8. Paleoenvironmental interpretation of the S2P sedimentary sequence. Younger Dryas (YD), Preboreal oscillation
(PBO), and Mid-Holocene warm period (MH) climatic intervals are marked with grey bands. Light blue: oligohaline/fresh
water, green: brackish, navy blue: marine assemblages.

The gastropod Theodoxus sp., often associated with “hard” water [109], is the main
mollusc species encountered within the present interval (see Figure 6). Thus, this is an extra
indication of low salinity to freshwater conditions. Such conditions are also concluded
from the coeval presence of perilithosis elements, etched specimens, and charophytes that
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never occur in marine habitats or under long-term conditions of high salinity, but they are
usually found in freshwater and brackish water bodies [110].

Only the scarce occurrence of the foraminifer Elphidium gunteri was recorded during
most of this stratigraphic interval (Figure 3). However, after 11,580 cal BP an evident
increase of the FD values is observed, characterized by the concomitant presence of E.
gunteri and Ammonia tepida. Elphidium gunteri is a common and, sometimes, dominant
species in marshes and brackish lagoons and waters [23,111–113], which is, however,
capable not only surviving but even thriving in lacustrine environments of extremely low
salinities (even <2) [114]. Also, it is generally recorded in intertidal environments along
with A. tepida, which is an euryhaline opportunistic taxon exceptionally tolerant in salinity
and temperature fluctuations [115,116]. Therefore, the simultaneous increased occurrence
of the previous species in the current stratigraphic interval should be related to a high
abundance of blue-green algae since the aforementioned species feed on these algae [117].
This actually reflects a very low salinity paleoenvironment [118].

More evidence that an oligohaline and shallow depositional environment had de-
veloped during this interval is further provided by the identified abundant monospecific
assemblage of the ostracod species C. torosa with many noded individuals (see Section 4.2),
which is a reliable indicator of such an environment. In detail, C. torosa is highly euryhaline
and common in brackish waters showing an adaptability ranging from oligohaline to
hypersaline waters [119], while dense assemblage of the species occur when salinity fluc-
tuates between 2 and 17 [120]. Noded valves of C. torosa represent an ecologically-driven
phenotypic variability developing under very low salinities [121]. In particular, nodes are
usually present when salinity is less than 14, while more than 20% of noded valves point to
a salinity of less than 5 [122].

The development of the Elefsis paleolake is further validated by the Late Glacial terres-
trial vegetation succession in the area. The presence of well-developed open thermophilous
deciduous and Mediterranean evergreen woodlands, implies relatively wet and mild cli-
matic conditions in the Elefsis region during c.a. 13,500–11,500 cal BP [87]. Such relatively
humid conditions are also supported by the occurrence of the continuous and extensive
aquatic vegetation around the paleolake (see Figure 5) as well as the high abundances of
the hydrophilous big Poaceae, recorded by Kyrikou et al. [87]. Interestingly, the Younger
Dryas climatic event interval (12,900–11,700 cal BP; [123]), documented as a cold and arid
period in the Aegean records [124,125] and terrestrial sites from northern Greece [126,127],
coincides with the Elefsis paleolake phase. However, there is no signs of increasing aridity
in the high-resolution Elefsis paleovegetation record [87], indicating the occurrence of
milder conditions in south Greece. Increased humidity in southern sites across the Hellenic
peninsula during the Younger Dryas is also supported by the glacial record of Chelmos
Mountain (in Peloponnese) [128] compared to that of Pindus Mountain Range [129–131].

5.2. Stratigraphic Interval of 248–187 cm: The Isolated Brackish Environment
(11,350–7500 cal BP)

After 11,350 cal BP, a shift in the aquatic biota assemblages is evidenced as new taxa
are introduced and the concentrations of the green algae Botryococcus abruptly decline (see
PZ-II in Figure 5). A distinct dinoflagellate assemblage, dominated by L. machaerophorum
sh.p. and complemented by S. cruciformis and Pyxidiniopsis psilata, is recorded, indicat-
ing the establishment of brackish conditions in the area. These autotrophic species are
known from brackish deposits in the Black and Caspian seas [30,88,132] and are common
in low salinity environments [133]. Lingulodinium machaerophorum is known to have a
widespread distribution in coastal environments with increased river discharges [88]. The
L. machaerophorum sh.p, with length of processes <10 µm, is typical of waters with reduced
see surface salinity (SSS) [88,92,134], associated with annual SSTs of ~17–20 C and SSS val-
ues of ~12.4–13.2 [88]. Spiniferites cruciformis is a cyst found in the Eastern Mediterranean,
mainly restricted to areas of the Black and Caspian seas with reduced salinity affected by
river discharges [30,88,133,134], but also recorded in lacustrine deposits [28]. Comparable
low diversity assemblages of S. cruciformis, P. psilata and L. machaerophorum sh.p. have
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already been recorded in the isolated/semi-isolated intervals of the sedimentary record
obtained from the Gulf of Corinth during the IODP Expedition 381 [39,135]. Finally, the typ-
ical brackish assemblage of this stratigraphic interval is complemented by some euryhaline
species, such as S. bentorii and P. zoharyi, which thrive in coastal environments [133].

In accordance to the interpretation inferred from the dinoflagellate analysis, the rela-
tively increased C/N values (13–14.6) in the current interval further support the establish-
ment of a transitional environment [103]. In addition, eutrophic conditions associated with
riverine inputs can be inferred from the enhanced TOC values as well as the peak dinocyst
concentration, most likely related to bloom conditions of the L. machaeorphorum [88,136],
known for its flourishing in nutrient-rich environments. Towards the top of PZ-II, the
gradual introduction of S. membranaceus, S. delicatus, and O. centrocarpum (see Figure 5)
indicates a deepening of the suggested lagoon environment. The previous interpretation is
further strengthened by the retreat of aquatic vegetation as a result of the reduction of the
shallow areas.

In this stratigraphic interval, the foraminiferal assemblage (Figure 3) is highly dom-
inated by the euryhaline species A. tepida, accompanied by A. perlucida and E. gunteri,
displaying low diversities but high FD values. The dominance of A. tepida is consistent
with its tolerance to decreased marine influence [137], while the occurrences of A. perlucida
and E. gunteri, together with the presence of A. tepida, suggest an environment of low
salinity and/or intense salinity fluctuation, thus, revealing typical conditions of an inner
lagoon or an isolated brackish waterbody [22,23,32,138–140]. As has been observed by
Melis and Covelli [113], the muddy composition and high organic matter content could
explain the high density and dominance of A. tepida in this stratigraphic interval, taking
also into account that the organic matter is a vital food resource for A. tepida [141].

More evidence that lagoonal conditions had prevailed during the present interval is
further provided by the identified ostracod assemblage (see Section 4.2). It is primarily
composed of C. torosa, with rare presence of noded juvenile valves, accompanied by
Xestoleberis sp. The Xestoleberis species are abundant in shallow marine environments and
are highly associated with algae [142,143]; however, several Xestoleberis species have been
recorded in brackish marine environments with submerged aquatic vegetation (e.g., [144]).
Even though other ostracod species are scarcely present in the current stratigraphic interval,
the identified individuals reflect brackish conditions. For example: A. woodwardii is a
marine littoral epibenthic and epiphytal species [77,145], found also in brackish lagoonal
environments [146]; L. lagunae is considered as a marine littoral species, being common
in lagoonal systems (e.g., [147]); and C. fischeri is a brackish water marine littoral species,
tolerating a wide range of salinities (4–35) [148,149].

Eventually, lagoonal conditions are interpreted by the molluscan fauna analysis too.
The molluscan assemblage are characterized by the typical euryhaline bivalve C. glau-
cum (see Figure 6) being common in shallow oligohaline lagoons [150,151], M. marioni
preferring brackish environments [152], Hydrobia sp. known to live in salinity levels
that range from brackish to freshwater [6], and Abra segmentum thriving in silty oligo-
haline lagoons [153,154]. Therefore, based on the particular features of the previously
mentioned assemblage, an inner lagoon depositional system of low salinity conditions is
indicated [138,155–160].

The evolution of the Elefsis paleolake into an isolated brackish waterbody is the result
of the Early Holocene gradual marine transgression that caused a relative sea level rise from
−57 m at 11,000 yr BP to −13.5 m at 7500 yr BP, as predicted by the glacio-hydro-isostatic
model of Lambeck [3]. However, the shallow depth at the sills occurring in the western and
eastern strait, respectively, actually prevented the seawater masses to inundate the Elefsis
embayment. That might be the reason that we have not found any calcareous nannoplank-
ton representatives during this interval, although their progressive increase in abundance
could be of importance when characterizing the establishment of lagoonal conditions
(e.g., [8]). Hence, we believe that the prevailing brackish lagoonal environment was not
established via a direct connection with the sea but due to a potential salinization caused
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by lateral seawater intrusion processes as the sea level was constantly rising (e.g., [161]).
The beginning of this isolated brackish phase with evidences of increasing riverine input is
also featured by short-lived fluctuation in the abundance of deciduous trees (Figure 8) and
decline of Mediterranean elements in Elefsis pollen record [87] associated to the Preboreal
oscillation interval (PBO). Similar temporal setbacks of forest expansion evidenced in
several Mediterranean sites [124,126,162,163] are likely driven by changes in temperature
and seasonal precipitation [164,165].

5.3. Sratigraphic Interval of 187 cm to the Top: The Elefsis Bay (7500 cal BP to Present)

The establishment of marine conditions in the Elefsis Bay is marked by the develop-
ment of diverse dinoflagellate, benthic foraminiferal, and mollusc assemblages at 7500 cal
BP as well as the introduction of coccolithophores in the assemblages (Figures 3–6). The
dinoflagellate assemblage is characterized by a sharp decrease of the low salinity species
and the development of a marine assemblage consisting mainly of L. machaerophorum, Sp.
Bentorii, and P. zoharyi (see PZ-III in Figure 5). In particular, the high abundances of the long
processes morphotype of L. machaerophorum and the co-occurrence of P. zoharyi, S. bertonii,
and S. belerius at the bottom of this interval (see PZ-III Figure 5) are indicative of a coastal
environment enriched in nutrients due to enhanced terrestrial discharges [88,136,166,167].
The dinocyst assemblage becomes gradually enriched with pelagic species, such as Sp.
delicatus, S. membranaceus, S. mirabilis, and O. centrocarpum, evidencing the deepening of
the marine environment (Figure 8). The contemporaneous occurrence of E. huxleyi in the
sedimentary record (Figure 4) implies the establishment of full marine conditions in the
Elefsis Bay, with a sufficient water column depth, i.e., at least 20 m, to sustain the pelagic
coccolithophore community (e.g., [168]), conditions that coincide with the increase of
pelagic environment dinoflagellate cysts (see Figure 8). Likewise, in benthic communities
the marine transgression is featured by a sudden increase in diversity and the appearance
of several marine species in the foraminiferal, ostracod, and molluscan assemblages; the
latter comprising several typical marine gastropod and bivalve species, such as B. sebetia,
N. nitidosa, T. ovata, B. reticulatum, and T. communis. The benthic foraminiferal composition
until 4000 cal BP (Figure 3) mainly includes typical marine species of the infralittoral zone,
such as A. beccarii, small epiphytic rotaliids, E. translucens, miliolids, and agglutinated
taxa [72,111,169], similar to modern coastal environments of the Aegean Sea [23,73]. The
abundance of the euryhaline A. tepida dramatically decreases, while A. beccarii appears
together with shallow-water epiphytic foraminifera, such as P. mediterranensis, R. spinu-
losa, and T. bocki, common in the infralittoral and circalittoral zones of the Mediterranean
Sea [72,170,171]. Similarly, the ostracod fauna comprises the typical marine species of C.
neapolitana, P. agilis, S. versicolor, and L. multipunctata (e.g., [75,77,145,172]). In particular, C.
neapolitana being the most abundant in the ostracod assemblages, indicates water depths
higher than 20 m, tolerating organic matter enrichment and oxygen depletion [173,174].

More evidence for the development of a marine basin after 7500 cal BP is provided
by the relative and absolute abundances of Pinus pollen (Figure 8). Pinus pollen is mostly
overrepresented in offshore deposits [175–177] and, therefore, is commonly excluded from
the analyses of marine pollen records [79,124,165,178–180]. Even in the large terrestrial
water body of Lake Ohrid, pine is considered overrepresented (e.g., [181]), while its gradual
increase over the earliest lake stages has been connected with the increase of the lake surface
area [182]. Despite the fact that pine is a significant component of the Mediterranean
vegetation, its marked occurrence in the marine stratigraphic interval of the S2P record is
most probably attributed to depositional processes and not to an expansion of the species
in the borderlands of Elefsis Bay [87]. Thus, the observed abrupt, pine increase can be
correlated with the marine transgression in the bay at 7500 cal BP.

The change in the paleoenvironmental conditions is clearly displayed in the C/N
values (see Figure 2), which diminish to 12.2–13 in the lower part of this stratigraphic
interval, indicating the establishment of a marine environment significantly affected by the
terrestrial processes that, however, appear less effective after 4000 cal BP [103]. In agreement
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with the previous interpretation, the increased concentrations of the erosion indicating
Glomus and Pseudoschizaea signal constant terrestrial runoff [183] culminating between 5000
to 4000 cal BP. The terrestrial inputs are further documented by the relatively elevated
ΣTerNA and ΣTerN-OH concentrations and the high HPA values in the same time interval;
the biomarkers evidence low degradation of terrigenous organic matter likely associated
with enhanced freshwater inputs/land runoff, delivering “fresh” land plant organic matter
(e.g., [96,184]). The persisting abundances of the green alga Botryococcus and the occurrence
of the low-salinity L. machaerophorum sh.p. until 4600 cal BP provide additional evidence
for seasonal freshwater fluxes into the basin [88,136], during a period of ongoing warm
and humid paleoclimatic conditions associated with the Mid-Holocene warm period
(5400–4300 cal BP; [25,184]) in the Aegean Sea (Figure 8), as marked by the increment of
the ACL index indicating vegetation shift towards “warmer species”. This phase ends with
the “4.2 ka” significant Northern Hemisphere rapid climate cooling [185,186] that is also
evidenced as negative shift in the SST profile of S2P record (Figure 7).

The prominent HPA minimum at ca. 4000 cal BP in line with a decrease in ΣTerNA and
ΣTerN-OH concentrations (Figure 7) and the decline of the aquatic vegetation (Figure 5)
mark the onset of an arid period. The simultaneous increase in the abundance of S.
membranaceus after 4000 cal BP verifies the changes in the marine environment. The species
is known to be abundant in mesotrophic to oligotrophic environments [88,187], therefore
its enhanced occurrence most probably implies a decline in the trophic status, also reflected
in the lower TOC values during the same interval. The simultaneous scarcity of the erosion
indicators Glomus and Pseudoschizaea suggests a reduction in the terrestrial runoff, related
with increasing aridity recorded in a plethora of regional terrestrial and marine archives
(e.g., [25,188–190].

At the uppermost part of the S2P sequence, the establishment of the present-day
conditions, characterized by dysoxic/anoxic conditions, restricted circulation, and in-
creased terrigenous runoff [183], is reflected in all applied proxies. In regard to the benthic
foraminiferal communities, these are characterized after 1500 cal BP by the peak values
of B. elongata and the mud-dwelling N. turgida [191]. Both species are known to thrive in
silty to sandy substrates under the influence of ample inputs of fluvial organic matter and
sediment [191–193], and even to survive in dysoxic habitats [111,194,195]. Furthermore,
the organic enrichment of the environment is implied by the presence of the tolerant in
dysoxic conditions bivalves C. gibba, M. spinifera, and T. ovata [196–199]. Hence, the contem-
poraneous increase of ΣTerNA and ΣTerN-OH contents, high HPA values and the minima
in the ACL profile after 1500 cal BP (Figure 7) should be mostly linked to the enhanced
freshwater supply and subsequent stratification/oxygen depletion in the marine water
column that promotes in-situ preservation (e.g., [96,200]).

Finally, the gradual increase of the dinocysts L. machaerophorum, S. bentorii, and P.
zoharyi as well as the maxima in the Pseudoschizaea and Glomus concentration profiles are
most probably correlated to enhanced fluvial inputs to the basin [88,187], which are further
supported by the enhanced abundance of CN reworked taxa (e.g., [25]).

6. Conclusions

The multi-proxy analysis of the Elefsis Bay sedimentary record provides insights into
the sensitive response of marginal aquatic ecosystems to the environmental variability
linked to sea level changes and the Late Glacial marine transgression. Marked shifts in ben-
thic and planktic biota assemblages, complemented by geochemical data, were identified,
featuring the paleoenvironmental evolution of this shallow landlocked marine area:

• The bottom part of the S2P sequence, most probably representing the Pliocene/Pleistocene
substrate of the area, was rather deposited in a tidal system as implied by the presence of
calcite layering and heavily reworked and rounded mollusc fragments. A well-defined
disconformity with the rest of the sequence is recorded.
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• Between 13,500 and 11,350 cal BP, a freshwater to oligohaline lacustrine environ-
ment developed, i.e., the Elefsis paleolake, characterized by green algae blooms and
monospecific ostracod and gastropod oligohaline faunas.

• The occurrence of an isolated brackish environment is evidenced after 11,350 cal BP
by a marked shift in the aquatic biota. Brackish dinoflagellate assemblages, mainly
composed of low salinity morphotypes of L. machaerophorum, replace the green algae in
the assemblages. In parallel, benthic communities are featured by high foraminiferal
density values of the euryhaline species A. tepida, A. perlucida, and E. gunteri, while the
prevailing ostracods C. torosa and Xestoleberis sp. together with the molluscs C. glaucum,
M. marioni, and Hydrobia sp. imply an inner lagoon depositional system. As the Early
Holocene relative sea level stand was not high enough to allow a direct communication
of the Elefsis waterbody with the sea, the established brackish conditions were most
probably the result of salinization caused by lateral encroachment from coastal waters.

• The marine conditions in Elefsis Bay are established after 7500 cal BP, evidenced by the
development of a diverse dinoflagellate assemblage, gradually enriched with pelagic
species, and the contemporaneous occurrence of calcareous nannoplankton assem-
blages, dominated by E. huxleyi. In the benthic communities the marine transgression
is reflected by a sudden increase in the foraminiferal diversity and the appearance of
several marine species.

• After 1500 cal BP, both benthic foraminiferal and bivalve communities are dominated
by taxa tolerant in dysoxic conditions, suggesting organic matter preservation. In
accordance, the contemporaneous increase of ΣTerNA and ΣTerN-OH content, high
HPA values as well as the minima in the ACL profile are linked to an enhanced
freshwater supply and subsequent stratification/oxygen depletion in the marine
water column, implying the earliest establishment of the present-day seasonal anoxia
in the Elefsis Bay.
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