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Abstract: The key contribution of this paper is to embed the analysis of the network in a framework
based on a mapping from the input space whose elements are nodes of a graph or the entire graph
into an information space whose elements are probability distributions associated to objects in the
input space. Specifically, a node is associated to the probability distribution of its node-to-node
distances and the whole graph to the aggregation of these node distributions. In this space two
distances are proposed for this analysis: Jensen-Shannon and Wasserstein, based respectively on
information theory and optimal transport theory. This representation allows to compute the distance
between the original network and the one obtained by the removal of nodes or edges and use this
distance as an index of the increase in vulnerability induced by the removal. In this way a new
characterization of vulnerability is obtained. This new index has been tested in two real-world water
distribution networks. The results obtained are discussed along those which relate vulnerability to
the loss of efficiency and those given by the analysis of the spectra of the adjacency and Laplacian
matrices of the network. The models and algorithms considered in this paper have been integrated
into an analytics framework which can also support the analysis of other networked infrastructures
among which power grids, gas distribution, and transit networks are included.

Keywords: network analysis; robustness; water distribution network; spectral analysis; Jensen-
Shannon divergence; Wasserstein distance

1. Introduction
1.1. Overview and Motivation

The main motivation of this paper is two-fold. The first is theoretical, meaning the
introduction of a “rich” representation of a graph underlying a water distribution network
as an element in a space of probability distributions. This space can be endowed with
different distance measures which allow the computation of a new index of the dissimilarity
between networks. The second is to show that the vulnerability index derived from this
representation can offer additional insights to those derived from the loss of efficiency and
the eigenvalue analysis of the adjacency and Laplacian matrices.

Indeed, the availability of new vulnerability measures is important in the analysis of
networked infrastructures, as water, energy, and transport, which have developed similar
functional and structural features in their evolution over time: spatial, but also financial,
constraints have significantly restricted their connectivity, robustness, and their capability
to deliver their service with failed or damaged components, in short, their robustness. The
above constraints have also generated systemic risk and cascading effects exacerbated by
the complexity of the infrastructure with a large number of components: pipes, valves,
pumping stations, tanks and consumption points in the case of water distribution networks;
generation structures, switching substations and high voltage connections in power grids
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and pipes, pumping and switching stations, storage facilities and refineries for other
distribution networks, like gas and oil.

Both robustness and resilience describe the capability of the network to withstand
failures and perturbations in its components and keep delivering services regardless of
disruptive events, either random or malicious, as, in a Water Distribution Network (WDN),
failures in pumping stations or valves, and severe bursts in the main pipes.

Resilience, robustness, reliability, and vulnerability are terms strictly linked and often
confusingly used. Ref. [1] gives a comprehensive analysis of the different contexts in which
the above terms are used.

The term resilience is more common in the literature about engineered network
infrastructures and it often takes a more general meaning that vulnerability, also implying
the capacity of the network to bounce back, to regain a new stable position close to the
original state after perturbations and adapt to the new situation [2]. Reliability is linked to
the concept of risk which implies the use of a measure of the probability that the network
will keep working under certain circumstances.

The structure and functions of the network rely on the existence of paths between
pairs of nodes: the failure of components is simulated by the removal from the network
of the corresponding nodes/edges. When nodes and/or links are removed, the length of
such paths will increase and eventually some couples of nodes will become disconnected.

One relevant question is this: which are the critical components (i.e., nodes/edges)
whose failure impairs the functioning of the network and how much does this failure
impact the ensuing increase in vulnerability?

In this paper, the drop in the network robustness is measured by the increase in
vulnerability of the perturbed network with respect to the original one. This first analysis
of vulnerability is carried out by using different measures of the connectivity of the graph
as they are expressed by centrality indices.

According to a widely used metric [3], an increase in vulnerability is the loss of
efficiency as a consequence of the failure of a set of nodes/edges and their removal from
the network.

Another analysis can be carried out using spectral graph theory. The use of spectral
methods in networks and graph theory has a long tradition [4,5].

Algebraic connectivity was introduced in [6]. The larger the algebraic connectivity is,
the more difficult it is to cut the network into disconnected components.

The key argument in this paper is that beside the vulnerability measures based on
centrality indices, average value of node–node distances, and spectral analysis, new insights
could be obtained through an additional analysis based on the node-to-node distance
distributions aggregated at network level and the computation of their distance. The
advantage of these measures is that they enable the comparison between probability
distributions taking into account not only the average values, but all the information
presented by the distributions.

There are many distance measures between distributions. Two such measures are
considered in this paper: the Jensen-Shannon (JS) divergence, based on Kullback-Leibler
(KL) divergence, and the Wasserstein (WST) distance.

Distances between distributions are an important tool in machine learning. Entropy-
based distances like KL and JS are the most widely used [7]. Recently the WST distance,
which is based on optimal transport theory, gained increasing importance due to its
properties mainly in natural language processing [8] and imaging [9].

The Wasserstein distance has a strong mathematical basis [10], can be adapted to
different situations and offers a smooth and naturally interpretable distance, in particular
between discrete distributions.

This paper is of interest to the water research community because it offers a vulnera-
bility measure which can be used along other measures and give additional insight into the
structural features of the network. It can be also of interest to the machine learning com-
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munity in offering an important specific instance of a distributional graph representation
suitable for learning.

1.2. Related Works

The related concepts of vulnerability, robustness, and resilience in WDN have spawned
a line of research originated by [11] using graph theoretic and complex network principles;
the paper argues that reliability in the water distribution network is largely defined by
the network layout and reports the results of extensive computational studies for four
benchmark networks examining two important topological features, robustness, and path
redundancy. In the same paper are also studied the cumulative distributions of the edge
lengths and geodesic distance. It also hints at the issue of how much the WDN structure
deviates from a “small world” network, indicating as a possible cause of deviation the
near-planarity of the network.

Papers [12,13] use the network and spectral approach in [11] jointly with clustering
techniques and hydraulic simulation.

The approach in [14], also a graph theoretic, is based on analyzing the K-shortest paths
between each demand node and water sources, where paths are weighted by the hydraulic
attributes of the supply routes and propose a resilience index based on a surrogate measure
of the energy loss associated to each path.

More recently [15] proposed a hydraulically informed measure of criticality called
water flow edge betweenness centrality.

An alternative approach is termed flow entropy [16] which measures the strength of
supply to a node in terms of the number of connections and their similarity.

The demand-adjusted entropic degree in [17] is another approach that uses demand
on nodes and volume capacity to compute a weighted entropic degree.

Spectral analysis has been also used for WDNs [18–20], which propose a graph theo-
retic framework for assessing the resilience in sectorized WDN.

Ref. [21] also focuses on graph spectral techniques and proposes a novel tool set
adapted to improve main water management tasks. The key point is to show how spectral
metrics and algorithms support critical tasks of WDN management by just using topological
and geometric information. Spectral analysis also helps for the efficient and automatic
definition of district metered areas and to facilitate the localization of water losses through
the definition of an optimal network partitioning.

More recently [22] proposed a metric based on robustness and redundancy to evaluate
resilience along with an optimization framework. A basic recent reference is [23].

A related line of research is carried out by [24], which proposes a graph-based analy-
sis, including hydraulic simulation, in order to estimate the energy balance components,
which has been tested on 20 real networks. [25] and [26] discriminate between differ-
ent water consumption in order to detect abnormal events (e.g., leaks, illegal use, and
metering inaccuracy).

Ref. [27] is a wide survey of quantitative resilience methods of WDNs including
network-based approaches. [28] extends this analysis to multiscale resilience in water
distribution and drainage systems.

1.3. The Contributions of This Paper

The main contribution of this paper is to propose a novel vulnerability measure which
can be used along other measures in order to give additional insight into the structural
features of the network.

This result is based on the introduction of a mapping from an “input” space where the
elements are graphs or graph elements like nodes or edges to a probabilistic space whose
elements are probability distributions associated to elements in the input space. The use
of a probabilistic distance—Wasserstein distance in particular—between elements in the
probabilistic space, can be specialized to discrete distributions and particularly histograms.
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Histograms are suitable to represent node-to-node distance distributions in the graph
model of the WDN. This allows the introduction of a new set of vulnerability metrics given
by the distance between the probability distributions of node-node distances between the
original network and that resulting from the removal of nodes/edges.

Two such probabilistic measures have been analyzed: Jensen-Shannon (JS), based on
information theory, and the Wasserstein (WST) distance, an instance of optimal transport.
The computational results confirm that the value of the distances JS and WST is strongly
related to the criticality of the removed edges.

There are two major advantages of the Wasserstein distance: the first is that JS might
become undefined in many situations while WST distances are generally well defined and
provide an interpretable distance metric between distributions.

The second is that, under quite general conditions, the WST distance is a differentiable
function of the parameters of the distributions which makes possible its use to assess the
sensitivity of the network robustness to distributional perturbations.

A general methodological scheme is proposed connecting different modelling and
computational elements, concepts, and analysis tools; it enables an analysis framework
suitable for assessing robustness also of other networked infrastructure like energy, gas,
and transport.

This framework has been designed, implemented, and tested on two real-life urban
networks; it can support decision-making both at the design stage, to simulate alternative
network layouts of different robustness, and at the operational stage where it is necessary to
make a decision about which nodes/edges are to be temporarily removed for maintenance
and rehabilitation.

1.4. Organization of the Paper

The structure of this paper is as follows: Section 2 gives background notions on graph
models and network analysis; Section 3 contains background material on the spectral
analysis, including spectral clustering, and the measures of vulnerability based on the
notion of efficiency. Section 4 introduces the new methodology based on probabilistic
measures of distance between networks. Section 5 describes the different WDNs used in
this study, the computational results, and their discussion. Section 6 describes the modeling
and algorithmic structure of the analysis framework proposed. Finally, Section 7 contains
some conclusions and perspectives.

2. Mathematical Background

Graph theory is the mathematical basis to provide a unifying language for the study
of networks. With this in mind, it is useful to give some basic definitions which will be
used in the sequel. For a wide-ranging analysis of the role of graph theory in the analysis
of networks the reader is advised to look at [29].

2.1. Graph Theory

Let us denote a graph with G = (V, E), where V is the set of nodes and E is the set
of edges. Each edge of G is represented by a pair of nodes (i, j) with i 6= j, and i, j ∈ V
and with n = |V| and m = |E|. If (i, j) ∈ E, i and j are called adjacent nodes. A graph G is
undirected if (i, j) and (j, i) represent the same edge. A graph G is simple if no self-loops
are admitted (edges starting from a node and ending on the same node) and only one
edge can exist between each pair of nodes (i, j), with i 6= j. The adjacency relationship
between the nodes of G can be represented through a non-negative n× n matrix A (i.e., the
adjacency matrix of G). The entry ai,j of the adjacency matrix A is 1 if i and j are adjacent
nodes (i.e., (i, j) ∈ E), and 0 otherwise. Furthermore, aij = aji if G is undirected and aii
(entries on the diagonal) are 0 if G is simple.
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• The degree of the node i, ki is the number of edges having i as one of the two nodes on

the edge: ki =
n
∑

j=1
ai,j. Any of the edges having i as one of its nodes is called incident

on i.
• When G is directed, meaning that the order of the two nodes of an edge is relevant for

its definition, the ki can be split into out-degree (number of edges having i as first node)
and in-degree (number of edges having i as second node).

• A path in a graph is a sequence of nodes connected by edges and the length of the
path is the number of edges. A connected component is a maximal subgraph when all
nodes can be reached from every other.

• The shortest path between i and j is the path with the smallest length. This length is
called the distance between i and di,j. The largest distance among each possible pair
of nodes in G is named diameter D(G).

• The characteristic path length is the average distance for every possible pair of
nodes (i, j).

Lg =
1

n ∗ (n− 1)

n

∑
j=1

∑
k 6=j

d(j, k) (1)

A useful representation is to arrange the distances in the distance matrix D =[
di,j
]

i, j = 1, . . . , n.
The maximum entry of row i max

j=1,...,n
di,j is also known as the eccentricity of node i.

The maximum eccentricity among the nodes is equal to D(G).

• A subgraph G′ = (V′, E′) of G is a graph such that V′ ⊆ V and E′ ⊆ E; a connected
component of G is maximal if is the largest possible subgraph for which you could not
find another node in the graph that could be added to the graph with all the nodes be
still connected.

The core concept is centrality which addresses the question “which are the most
important nodes in a network?”. There are many centrality measures from the simplest
like node degree, which can anyway be illuminating, to eigenvector-based measures like
Page Rank.

2.2. Network Analysis: The Basic Measures

The density of the network is the fraction of edges which are present in the network:

q =
m(
n
2

) =
2m

n(n− 1)
(2)

The number of edges m = 1
2

n
∑

i=1
ki.

If c is the mean node degree, c = 1
n

n
∑

i=1
ki and we get c = 2m

n and q = c
n−1 .

The density is in the range (0, 1).
A cut-set, specifically a node cut-set, is a set of nodes whose removal disconnects i and

j. A minimum cut-set is the smallest cut-set, analogously for edge cut-set.
The centrality measures address the issue of the relative importance of nodes/edges.

The most widely used measures are:

• Closeness centrality C = n
∑ dij

: is based on the mean distance from i to j averaged on
all nodes.

• Betweenness centrality: let be ηi
st = 1 if node i lies on the shortest path from s to t and 0

otherwise. Then, betweenness centrality is given by bi =
1

n2

n
∑

s,t=1
ηi

st. It measures the
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extent to which a node lies on the paths between other nodes. An edge betweenness that
counts the number of shorter paths that run along the edge can be similarly defined.

• Link-per-node ratio (e), as the number of edges of a graph with respect to the number of
its nodes. e = m

n .
• Central point dominance c′b, based on betweenness centrality is a measure for char-

acterizing the organization of a network according to its path-related connectivity;

c′b = 1
n−1

n
∑

i=1
(bmax − bi) where bi is the betweenness centrality of the node i and bmax

is the maximum value of betweenness centrality over all the n nodes of the network.
• The clustering coefficient (CC) is the number of triangles with respect to the overall

number of possible connected triples, where a triple consists of three nodes connected
at least by two edges while a triangle consists of three nodes connected exactly by
three edges:

CC =
3Ntriangles

Ntriples
(3)

There are other definitions of CC for which the reader is addressed to [29]. To com-
pute the centrality indices in this paper, the open-source software Cytoscape has been
adopted [30]. This point will be further discussed in Section 3.

3. Background on Vulnerability and Spectral Analysis

This section introduces background notions about the analysis of the graph eigen
structure and how it is exploited to compute connectivity-based vulnerability measures.

3.1. Vulnerability Analysis Based on Efficiency

The performance of the network is often evaluated as the change of the efficiency, as
defined in [3]:

E =
1

n(n− 1) ∑
i,j∈V,i 6=j

1
dij

, (4)

where the dij represent the distance between i and j. Normalization by n(n− 1) ensures
that E ≤ 1, in case of unweighted graph. The maximum value E = 1, is assumed if and
only if the graph is complete.

A way to measure the vulnerability of the network is using the loss of efficiency [3,31]
observed when some nodes/edges are removed. The relative drop in the network efficiency
(loss of efficiency) caused by the removal of a node i from the graph is defined as

CE
∆(i) =

E(G)− E(G\{i})
E(G)

, (5)

where G\{i} denotes the network G without the node i and is called the loss of efficiency
of G. The maximum and the mean loss, over all the nodes, are given by:

VMAX(G) = max
i∈V

CE
∆(i) (6)

VMEAN(G) =
1
n ∑

i∈V
CE

∆(i). (7)

Analogous formulas can be written removing the edges.
Another useful reference for the analysis and generalization of efficiency measures

is [31].

3.2. Spectral Analysis

Spectral graph theory studies the eigenvalues of matrices that embody the graph
structure. One of the main objectives in spectral graph theory is to deduce structural
characteristics of a graph from such eigenvalue spectra.
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In case of undirected graphs, the adjacency matrix A(G) is symmetric and all its
eigenvalues are real. The eigenvalues µ1(G) ≤ µ2(G) ≤ . . . µn(G) of A(G) are called
the spectrum of G. The largest eigenvalue of the adjacency matrix µn(G) is called spectral
radius of G and is denoted by ρ(G). An important property is given by the following
inequality [32]

√
∆(G) ≤ ρ(G) ≤ ∆(G), where ∆(G) = maxki : i = 1, . . . , n that relates the

spectral radius with ∆(G), the maximum degree of the nodes.
The spectrum of A(G) allows to define the Eigenvector centrality of the node i, is

xi = ρ(G)−1 n
∑

j=1, j 6=i
aijxj. Katz centrality and Page Rank algorithm are just parametrized

version of eigenvector centrality [29].
The difference s(G) = ρ(G) − µn−1(G) between the spectral radius of G and the

second largest eigenvalue of the adjacency matrix A(G) is called the spectral gap of G [33].
A small value of s(G) is usually observed through low connectivity, and the presence of
bottlenecks and bridges whose removal cuts the graph into disconnected parts. A spectral
distance between two networks has been proposed in [34] as the sum of the absolute
differences of the eigenvalues of the adjacency matrix.

The Laplacian matrix of G is an n× n matrix L(G) = D(G)− A(G), where D(G) =
diag(ki). The matrix L(G) is positive semi-definite in case of simple graphs. The eigen-
values of L(G) are called the Laplacian eigenvalues of G. The Laplacian eigenvalues
λ1(G) = 0 ≤ λ2(G), . . . ≤ λn(G) are all real and nonnegative. The smallest eigenvalue
is always equal to 0 with multiplicity equal to the number of connected components of
G. The second smallest eigenvalue is called the algebraic connectivity of G which is one
of the most widely used measures of connectivity. Larger values λ2(G) represent higher
robustness against efforts to disconnect the graph, so the larger it is, the more difficult it is
to cut a graph into independent components. An important inequality for the algebraic
connectivity [6] is:

λ2(G) ≤ n
n− 1

δ(G), (8)

that relates it with the minimum degree of the nodes δ(G) = min
i=1,...,n

ki. In case of a connected

graph, also the following inequality can be proved [35]

λ2(G) ≥ 4
n·D(G)

(9)

that relates the algebraic connectivity with the diameter of the graph.
Another spectral distance is based on the analysis of the eigenvectors of the Lapla-

cian [4].

3.3. Graph Clustering

Given two disjointed subsets of V, C1, and C2, an n-dimensional vector z i.e., is used
to represent the association of each node to cluster C1 or C2

zi =

{
+1 i f i ∈ C1
−1 i f i ∈ C2

(10)

The graph clustering problem can be formulated as the minimization of the following
function f (z):

f (z) = ∑
(i,j)∈V

Lij(zi − zj)
2 = zT Lz (11)

where Lij are the entries of the Laplacian matrix.
The important feature of spectral clustering methods is that they produce a set of

balanced clusters. An elegant solution, conceptually simple but computationally inefficient,
to the problem was proposed in [6] which identified the eigenvector corresponding to
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λ2 (usually known as the Fiedler vector) as the vector z which provides the optimal
bi-partitioning of the graph.

An effective computational scheme, proposed in [36], uses a data representation in
the lower dimensional space spanned by the most relevant eigenvectors and has spawned
many new methods analyzed in [37].

The basic steps are:

1. Construct an affinity matrix S(G) = I + A(G) whose eigenvalues are the same as
A(G) + 1.

2. Construct the matrix LN(G) = D−
1
2 S(G)D−

1
2 where D = [dii] = ki, where ki is the

degree of node i.
3. Compute the eigenvalues of LN(G) and the eigenvectors corresponding to the K

largest eigenvalues of LN(G) and denote them by u1, u2, . . . , uk.
4. Build the matrix U such that the k-th column of U is uk and normalize the rows such

that each row has unit length.
5. Treating the rows as points in the K-dimensional space RK and perform K-means

clustering of these points in K clusters.

The implementation of this method is given in the plugin ClusterMaker2 of Cytoscape.
The main option is to set K manually either before the clustering process or after the

eigenvalue calculation.
ClusterMaker2 offers an option to select the number of clusters automatically evaluat-

ing the eigenvalues ϕi, i = 1, . . . , n of S(G). K is the smallest integer i such that the ratio
ϕi

ϕi+1
, i = 1, . . . , n− 1 is larger than 1 + ε.
The parameter ε can be tuned; smaller values imply a few larger clusters while larger

values generate more fine-grained clusters.

3.4. Vulnerability Analysis Using Spectral Analysis

There is no specific formula, contrary to those reported in the previous subsections,
linking spectral analysis to a measure of vulnerability related to the removal of a node.
However, both algebraic connectivity λ2, the second smallest eigenvalue of the Laplacian
L(G) and spectral gap s(G), the difference between the spectral radius of G and the second
eigenvalue of the adjacency matrix A(G), are indicators of the difficulty of splitting the
graph. The larger the algebraic connectivity, the more difficult it is to disconnect the graph.
It is also related to the min-cut problem in spectral clustering [26]. A large value of the
spectral gap, together with a uniform degree distribution, results in higher robustness
against node and link failures. The larger the spectral gap the more robust is the network.

4. Probabilistic Measure of Distance between Networks

The measures introduced in Section 3 are based on distances and their average values.
In this section a new analysis is performed in terms of node–node discrete distance dis-
tributions whose values are the fraction of nodes which are connected to i at a distance k
with each node i = 1, . . . , n of the graph G(V, E).

Pi(k) =
ni,k

n− 1
(12)

The distance distribution over the whole graph is given by

PG(k) = µk =
1
n

n

∑
i=1

ni,k

n− 1
=

1
n

n

∑
i=1

Pi(k). (13)

Two graphs G and G′ are considered with their distributions PG(k) and PG′(k) that
will be referred to as p and p′.
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In order to give an instance of the computation of the node-to-node distributions, a
small synthetic water distribution network, Anytown (Figure 1), is considered [38]. The
associated graph G consists of 25 nodes and 44 edges. G′ is the graph without the red edge.
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Figure 1. Anytown (two tanks and one pumping station).

PG = [0.147, 0.263, 0.297, 0.177, 0.083, 0.030, 0.003, 0]
PG′ = [0.133, 0.237, 0.290, 0.183, 0.100, 0.043, 0.010, 0.003]

The support of PG(k) and PG′(k) are respectively the integers k = 1, . . . , D(G) (analougsly
for G′). When G′ is derived from G removing some edges then D(G′) ≥ D(G). Since the
distributions are represented by histograms (Figure 2) one can extend to G the support of
G′ setting µG(k) = 0 for k = D(G) + 1, . . . , D(G′).
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In order to compare two probability distributions one can use many distance and
divergence measures [28].

In this paper the following distances are considered:

• The Kullback-Leibler (KL) divergence:

DKL

(
p
∣∣∣∣ p + p′

2

)
=
∫

p log
2p

p + p′
dx. (14)

• The Jensen-Shannon (JS) divergence

DJS(p|p′) = 1
2

DKL

(
p
∣∣∣∣ p + p′

2

)
+

1
2

DKL

(
p′
∣∣∣∣ (p + p′)

2

)
(15)
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Information-theoretic measures like KL and JS might become undefined if the com-
pared distributions do not have identical support.

• The Wasserstein distance is:

W
(

p, p′
)
= inf

γ∈Γ(p,p′)
E(x,y)∼γ[||x− y||], (16)

where Γ(p, p′) denotes the set of all joint distributions γ(x, y) whose marginals are
respectively p and p′. The Wasserstein distance is also called the Earth Mover (EM)
distance. Intuitively, γ(x, y) indicates how much mass must be transported from x to
y in order to transform the distributions p into the distribution p′. The Earth Mover’s
distance is the minimum energy cost of moving and transforming a pile of sand in
the shape of p to the shape of p’. The cost is quantified by the amount of sand moved
times the moving distance.

The EM distance then is the cost of the optimal transport plan.
Generally, W(p, p′) can be by generalized by an index q to become

Wq
(

p, p′
)
= inf

γ∈Γ(p,p′)
E(x,y)∼γ

[
||x− y||q

] 1
q . (17)

Let’s now consider the case of 2 discrete distributions f(x) and g(x):

f (x) =
n

∑
i=1

fiδ(x− xi), g(x) =
n′

∑
i=1

giδ(y− yi) (18)

where
n
∑

i=1
fi =

n′

∑
i=1

gi = 1 and δ(.) is the Kronecker delta.

δ(x) =
{

1 i f x = 0
0 otherwise

(19)

The unit cost of transport between xi and yj is defined as the q-th power of the
Euclidean distance cij =

∣∣∣∣xi − yj
∣∣∣∣q. The transport plan γij represents the mass transported

from xi to yj.
The WST distance between discrete distributions f and g is:

Wq( f , g) = min
γij∈Γ

(
n
∑

i=1

n′

∑
j=1

γij
∣∣xi − yj

∣∣q) 1
q

s.t.
n′

∑
j=1

γij = fi,
n
∑

i=1
γij = gj, γij ≥ 0

(20)

The constraints above ensure that the total mass transported from xi and the total
mass to yj matches respectively fi and gj.

There are some particular cases, very relevant in applications, where WST can be
written in an explicit form. Let P and P′ be the cumulative distribution for one-dimensional
distributions p and p′ on the real line and P−1 and Q−1 be their quantile functions. Then

Wq
(

p, p′
)
=

(∫ 1

0

∣∣∣F−1(x)− G−1(x)
∣∣∣qdx

) 1
q

(21)

In the case of water distribution networks, the distributions of node–node distances
are discrete and 1-dimensional with the same number of samples, and the computation of
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WST reduces to the comparison of two 1-dimensional histograms which can be performed
by a simple sorting and the application of Formula (22).

Wq
(

p, p′
)
=

(
1
n

n

∑
i
|x∗i − y∗i |

q

) 1
q

(22)

where x∗i and y∗i are the sorted samples. In this paper, q = 1.
A key advantage of EM over JS is its differentiability with respect to distribution

parameters, as shown by the following example.
Let us consider Z = U(0, 1) the uniform distribution on the unit interval. Let P be

the distribution of (0, Z) (0 on the x-axis and the random variable Z on the y axis and
Pθ = (θ, Z).

• KL(P, Pθ) = +∞ if θ 6= 0 and 0 if θ = 0.
• JS(P, Pθ) = log 2 if θ 6= 0 and 0 if θ = 0.
• W(P, Pθ) = θ if θ 6= 0 and 0 if θ = 0.

Therefore, Wasserstein provides a smooth measure which is useful for any optimiza-
tion and learning process using gradient descent [39].

The Wasserstein distance can be traced back to the works of Gaspard Monge [40] and
Lev Kantorovich [41].

Recently it has also been used in the generation of adversarial networks [42]. Important
references are [10,43] which also give an up-to-date survey of numerical methods.

Wasserstein distances are generally well defined and provide an interpretable dis-
tance metric between distributions. Computing Wasserstein distances requires in general
the solution of a constrained linear optimization problem which has, when the support
of the probability distributions is multidimensional, a very large number of variables
and constraints.

The square root of the Jensen-Shannon divergence is a metric (D ∈ [0, 1]).
The software used is the Wasserstein function from the python library SciPy.

5. Experimental Setting
5.1. The Network Models

In this section, two WDNs are analyzed.

• Neptun is the WDN of the Romanian city of Timisoara (Figure 4), with an associated
graph of 333 nodes and 339 edges, analyzed in the European project Icewater [44].

• Abbiategrasso refers to a pressure management zone in Milan (namely, Abbiategrasso)
with an associated graph consisting of 1213 nodes and 1391 edges, analyzed in the
European project Icewater [44].

In analyzing WDNs one must consider that most of the end-users are supplied by
single connections. To avoid a bias in the analysis, a preliminary preprocessing has been
performed by cutting the final connections.

5.2. Clustering

Graph clustering approaches, such as Spectral Clustering, can be used to identify
the specific edges (pipes) whose removal may induce a disconnection of the network. In
this paper, Spectral Clustering has been performed (through Cytoscape’s plug-in named
ClusterMaker2) to identify sub-networks connected by a limited (minimal) number of
edges, that are pipes whose breakage implies the disconnection of some WDN portion. The
number of clusters K is set according to context information about the districtualization
adopted by the water utility. In the following figures these pipes are highlighted; it is
important to note that breakages must occur, at the same time, on all the different red
edges to imply a hydraulic disconnection. Breakages affecting only one pipe may imply a
reduction in the efficiency of the network and an increase in vulnerability.
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5.3. Computational Results over the Networks
5.3.1. Neptun

Table 1 exhibits the basic measures of Neptun (Figure 3). It is evident that WDNs have
specific features: the density is very low and correspondingly the link/node ratio is close
to one.

Table 1. Topological measures.

Measure Neptun

Density (q) 0.0061
Link-per-node ratio (e) 1.0180

Central point dominance
(
c′b
)

0.2432
Clustering coefficient (CC) 0.0000

Diameter 57
Characteristic Path Length 23.7613
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Table 2 exhibits the efficiency-related measures as defined in Section 3.1 by Equations
(4), (6), and (7) and the algebraic connectivity defined in Section 3.2.

Table 2. Vulnerability measures.

Neptun E VMEAN VMAX Algebraic Connectivity

G 0.068608 0.018927 0.072646 0.0018
G′ (removing e2) 0.065390 0.024181 0.0211362 0.0007
G” (removing e1) 0.064486 0.024796 0.194813 0.0006
G′ ′ ′ (disconnected) 0.051924 0.016642 0.068246 0.0000

Table 3 exhibits the probabilistic distances and loss of efficiency. By Jensen-Shannon
we mean the distance DJS(G, G′). Wasserstein is the distance W(G, G′). Loss of efficiency
is defined by Equation (5) in Section 3.1.
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Table 3. Probabilistic distances vs. loss of efficiency.

Neptun Jensen-Shannon Wasserstein Loss of Efficiency

G, G′ 0.2025 3.3280 0.0469
G, G′ ′ 0.2950 5.4870 0.0601
G, G′ ′ ′ 0.3286 12.1810 0.2432

5.3.2. Abbiategrasso

Table 4 exhibits the basic measures of Abbiategrasso (Figure 4). It is evident that
WDNs have specific features: the density is very low and correspondingly the link/node
ratio is close to one.

Table 4. Topological measures.

Measure Abbiategrasso

Density (q) 0.0019
Link-per-node ratio (e) 1.1467

Central point dominance (cb′) 0.3100
Clustering coefficient (CC) 0.0055

Diameter 83
Characteristic Path Length 30.6126
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Table 5 exhibits the efficiency-related measures as defined in Section 3.1 by Equations
(4), (6), and (7) and the algebraic connectivity defined in Section 3.2.

Table 5. Vulnerability measures.

Neptun E VMEAN VMAX Algebraic Connectivity

G 0.047557 0.003436 0.150390 0.0004
G′ (removing e2) 0.045019 0.003935 0.181174 0.0003
G′ ′ (removing e3) 0.046385 0.003642 0.205294 0.0004
G′ ′ ′(removing e1) 0.040405 0.002628 0.060728 0.0000
G′ ′ ′ ′ (disconnected) 0.031077 0.002251 0.057007 0.0000
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Table 6 exhibits the probabilistic distances and loss of efficiency. By Jensen-Shannon
we mean the distance DJS(G, G′). Wasserstein is the distance W(G, G′). Loss of efficiency
is defined by Equation (5) in Section 3.1.

Table 6. Probabilistic distances vs. loss of efficiency.

Abbiategrasso Jensen-Shannon Wasserstein Loss of Efficiency

G, G′ 0.1140 3.1040 0.0534
G, G′ ′ 0.0632 1.5170 0.0246
G, G′ ′ ′ 0.2366 11.3220 0.1504
G, G′ ′ ′ ′ 0.3633 25.0780 0.3465

5.4. Discussion of the Computational Results

WDN have their own specific features: the two real-world WDNs analyzed are very
sparse (with density q lower or equal to 0.006). In particular, their degree distribution does
not follow a power law and their connectivity measures, given in Tables 1 and 5 respectively
for Neptun and Abbiategrasso, really set them apart from other kinds of networks like
transportation, communications, and social. The near-planarity of WDNs, as suggested
in [11], might be the reason behind this deviation. Indeed, WDNs are sparse near-planar
graphs whose structure is the result of urban growth and unplanned expansion.

The computational results show that probabilistic distance measures have a good
capacity to discriminate between different networks not only globally but also edge-wise.

They can support critical tasks of WDN management by just using topological and
geometric information.

This remarkable result is displayed in Figures 5 and 6 respectively for Neptun and
Abbiategrasso. Given the graph G = (V, E) associated to the network, each edge is
represented by a pair of adjacent nodes (i, j). The removal of (i, j) yields G\{(i, j)} for
which we compute the aggregate node–node distance distribution p(G\{(i, j)}) and the
Wasserstein distance W(p(G), p(G\{(i, j)} ), whose value is represented by the the color
associated to each edge (i, j) by the Wasserstein distance.
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The graphs G′′′ in Neptun (Table 3) and G′ ′ ′ ′ in Abbiategrasso (Table 5) are discon-
nected and they have not been represented in the Figures 5 and 7.
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The Wasserstein metric can be regarded as a natural extension of the Euclidean distance
to statistical distributions via a single metric while still exploiting all the information present
in the distributions. An instance in which the node-to-node distribution carries information
not captured by the mean is given in Figure 6.

6. The Analysis Framework

The following schema in Figure 8 summarizes the proposed analytical framework,
and how network theory measures, graph clustering, and probabilistic distance measures
are combined with the aim to (i) identify critical links (i.e., WDN’s pipes) and (ii) quantify
the impact implied by their individual removal (i.e., pipe breakage) in terms of loss of
efficiency and distance between the original and induced graph (i.e., structural difference
between the original WDN and the damaged one). As the main result, this supports the
water utility in defining a preventive rehabilitation plan to improve WDN’s robustness,
targeting the most relevant WDN components, under budget constraints. All the different
elements, concepts, and tools are connected among them to create an analysis framework
which has been tested not only on synthetic networks, but on two real-life urban networks.
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• This analysis framework supports decision-making at the design stage to simulate
alternative network layouts of different robustness and also at operational stage where
the decision to be taken can be, which nodes/edges are to be temporarily removed
for maintenance and rehabilitation. The differentiability of the Wasserstein distance is
important to assess the sensitivity of the network robustness.

• The main findings in this paper as well as the modeling and algorithmic framework
platform developed can be straightforwardly translated to many networked infras-
tructures among which power grids, transit networks and also global supply chains
whose vulnerability has been exposed in the recent COVID crisis.

According to the schema, as a first step, all the relevant network metrics are computed
on the graph G associated with WDN. Then, Spectral Clustering is performed to identify
the links whose removal leads to a disconnection of the graph. Iteratively, each one of
these critical links is removed from G leading to a graph G′. Both network measures for G′

and distance between G and G′ are computed and collected to rank the critical links with
respect to the impact of their removal from G, in terms of loss of efficiency and distance.

It is important to remark that, for the purposes of this study, the analysis has been
performed by considering all the edges of G, to empirically prove that the critical ones are
actually those whose removal imply the highest loss of efficiency and distance value.

7. Conclusions

Topological network techniques offer significant answers regarding the structure and
functions of WDNs. As remarked in [11] “a realistic assessment of the network structure,
efficiency or vulnerability should avoid attempting an exclusive characterization of network
structure of using only single (or even a few) network measurements as ultimate indicators.”
The goal of this paper is to add to the already existing measures another characterization
of the network robustness.

The main conclusions from the results reported in this paper can be synthetized
as follows:
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• The main result of this paper is that probabilistic measures based on the probability
distribution of node–node distances, yield a distance between the original network
and that resulting from the removal, which can provide a set of new indicators of the
increase in vulnerability.

• The first such measure is given by the Jensen-Shannon divergence, based on Kullback-
Leibler divergence; the second is the Wasserstein-1 (also called the “Earth-Mover”)
distance, an instance of optimal transport. The computational results confirm that the
value of the distances JS and WST is strongly related to the criticality of the removed
edges. The key advantage of the Wasserstein distance is that is generally well defined
and provides an interpretable distance metric between distributions. Moreover, under
quite general conditions, it is a differentiable function of the parameters of the distri-
butions. The differentiability of the Wasserstein distance is important to assess the
sensitivity of the network robustness.

• All the different elements, concepts, and tools are connected among them to create an
analysis framework which has been tested not only on synthetic networks, but on two
real-life urban networks.

• This analysis framework supports decision-making at the design stage to simulate
alternative network layouts of different robustness and also at the operational stage
where it should be decided which nodes/edges are to be temporarily removed for
maintenance and rehabilitation. Indeed, critical tasks of WDN management can be
supported by just using topological and geometric information.
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