
water

Article

Enhanced Adsorptive Removal of Dyes Using Mandarin Peel
Biochars via Chemical Activation with NH4Cl and ZnCl2

Hyunjun Park 1, Jiseok Kim 1, Yong-Gu Lee 1,* and Kangmin Chon 1,2,*

����������
�������

Citation: Park, H.; Kim, J.; Lee, Y.-G.;

Chon, K. Enhanced Adsorptive

Removal of Dyes Using Mandarin

Peel Biochars via Chemical Activation

with NH4Cl and ZnCl2. Water 2021,

13, 1495. https://doi.org/10.3390/

w13111495

Academic Editor: Antonio Zuorro

Received: 30 April 2021

Accepted: 24 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Environmental Engineering, College of Engineering, Kangwon National University,
Kangwondaehak-gil, 1, Chuncheon-si 24341, Gangwon-do, Korea; hjpark1597@naver.com (H.P.);
skyjskim95@gmail.com (J.K.)

2 Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1,
Chuncheon-si 24341, Gangwon-do, Korea

* Correspondence: yglee19@kangwon.ac.kr (Y.-G.L.); kmchon@kangwon.ac.kr (K.C.);
Tel.: +82-33-250-6352 (K.C.)

Abstract: This study examined differences in the adsorption kinetics, isotherms, and thermodynamics
of the dyes (methyl orange and fast green FCF) by pristine (M–biochar) and chemical activated
mandarin peel biochars (MN–biochar and MZ–biochar). The specific surface area (1085.0 m2/g) and
pore volume (0.194 cm3/g) of MZ-biochar much higher than those of the M–biochar (specific surface
area = 8.5 m2/g, pore volume = 0.016 cm3/g) and MN–biochar (specific surface area = 181.1 m2/g,
pore volume = 0.031 cm3/g). The equilibrium adsorption capacities (mg/g) of MO and FG using
M–biochar (MO = 0.95, FG = 0.78) MN–biochar (MO = 2.52, FG = 2.13), and MZ–biochar (MO = 16.27,
FG = 12.44) have well-matched the pseudo-second-order model (R2 ≥ 0.952) compared with the
pseudo-first-order model (R2 ≥ 0.008). Furthermore, the better explanation of the adsorption behavior
of dyes by the Freundlich isotherm model (R2 ≥ 0.978) than the Langmuir isotherm model (R2 ≥ 0.881)
supports the assumption that the multilayer adsorption governed the adsorption of dyes using
mandarin peel biochars. The adsorptions of dyes were significantly dependent on the solution
pH and temperature since the electrostatic and spontaneous endothermic reactions governed their
removal using the pristine and chemical activated mandarin peel biochars.

Keywords: adsorption; ammonium chloride; biochar; dyes; fast green FCF; mandarin peel; methyl
orange; zinc chloride

1. Introduction

Rapid population growth after the industrial revolution led to the development of
the textile, cosmetics, paper, leather, and pharmaceutical industries. This significantly
increased industrial wastewater discharge, causing serious water pollution [1,2]. Dyes are
widely used in various industries (e.g., textiles and food) [3,4]. Textile and food wastewater
with a high concentration of dyes can contaminate waterbodies, resulting in the reduction
of light transmission to aquatic plants, thereby causing a reduction of photosynthesis. In ad-
dition, the dyes may have harmful effects on the aquatic ecosystem owing to the generation
of aromatic amines that cause mutations in aquatic organisms. These mutations are a con-
sequence of the aromatic amines being reduced upon contact with air [5,6]. Conventional
biological wastewater treatment is ineffective for treating dyes wastewater because it causes
a low ratio of biological oxygen demand to chemical oxygen demand (BOD/COD) from the
aromatic structural compound of dyes that are not readily biodegradable [7,8]. In addition,
the coagulation/flocculation treatment, which is a physicochemical process, is ineffective
for the removal of soluble dyes [2]. Although the ozone treatment process can effectively
remove soluble dyes, it is not economical because it requires a continuous ozone supply
because of the short half-life for ozone [9]. Adsorption treatments might remove soluble
dyes at a reduced cost compared to other treatment processes without producing reaction
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by-products [10]. Various modern adsorbent materials, such as carbon nanotubes [11],
graphene oxide [12], magnetic metal nanoparticles [13], Mxenes [14], and biopolymers [15],
have been used for efficient removal of dyes from aqueous solutions. Yao et al. (2011)
reported efficient methyl orange adsorption on multiwalled carbon nanotubes [11]. Yang
et al. demonstrated high methylene blue adsorption on graphene oxide [12]. Yao et al.
(2011) fabricated magnetic graphene oxides with metallic nanoparticles for methylene blue
adsorption [13]. Additionally, Vakili et al. (2019, 2020) synthesized MXene based adsorbent
for removal of methylene blue (the adsorption capacity = 209 mg/g) and examined the
elimination efficiency of anionic dye from aqueous solutions using the combination of
chitosan and activated carbon adsorbents (the adsorption capacity = 666 mg/g) [14,15].
Despite the advantages of these modern materials, including high efficiency, fast, and
reusability, they may have harmful effects on living organisms in aquatic ecosystems due
to their permeability to various organs and non-degradation under natural conditions. In
addition, activated carbon has a high production cost when used as a representative adsor-
bent. It is also difficult to regenerate at the wastewater treatment plant scale. Therefore, it
is necessary to develop an alternative adsorbent for dye wastewater treatment [16].

Biochar is a carbon-rich material with porous structures produced by the pyroly-
sis of agricultural and livestock biomass residues under oxygen-free conditions. They
have the advantages of cost-effectiveness, renewability, reducing secondary environmental
pollution, and creating high-value-added adsorbents [17]. Furthermore, when biochar
is used as an adsorbent, the discharge of carbon dioxide (a gas contributing to global
warming) into the atmosphere is reduced [18,19]. However, biochars compared to activated
carbon, have comparatively smaller pore volume and surface areas. Therefore, chemical
activation methods using activating chemicals, such as zinc chloride (ZnCl2) and ammo-
nium chloride (NH4Cl), may improve biochar surface structure properties and adsorption
capacity [20,21]. Ahiduzzamand and Sadrul Islam reported that the specific surface area of
chemical-activated porous biochar using ZnCl2 (645 m2/g) was approximately 23 times
larger than that of pristine porous biochar (28 m2/g) [21].

Globally, yearly mandarin production is approximately 100 million metric tons [22]. Its
consumption generates large volumes of fruit peel as biomass waste [23]. Mandarin peels
contain organic carbon components such as cellulose, hemicellulose, and pectin, which
render them suitable for the production of environmentally friendly biochars through
pyrolysis, which results in a material with excellent adsorption capacity [20]. Unugul and
Nigiz. (2020) have achieved a complete copper removal using an acid-treated carbonized
mandarin peel adsorbent [24]. However, a comprehensive study on the influence of the
physicochemical characteristics of mandarin peel biochars via chemical activation on the
removal of dyes in solutions has not yet been published.

This study evaluates the influence of chemical activation with NH4Cl and ZnCl2
on the adsorption of methyl orange (MO) and fast green FCF (FG) using mandarin peel
biochars. The physicochemical properties of pristine (M–biochar) and chemically activated
biochars with NH4Cl (MN–biochar) and ZnCl2 (MZ–biochar) were characterized. The
optimum adsorbent dosages, adsorption kinetics, and adsorption isotherm models of MO
and FG were identified. Furthermore, various adsorption experiments were conducted to
examine the influence of solution pH and temperature on the removal efficiencies of MO
and FG in association with the physicochemical properties of mandarin peel biochars.

2. Materials and Methods
2.1. Reagents and Chemicals

All chemicals used in this study were of analytical grade. Dyes (i.e., MO and FG),
NH4Cl, ZnCl2, sodium hydroxide (NaOH), and hydrochloric acid (HCl) were purchased
from DaeJung Chemicals (Siheung-si, Gyeonggi-do, Korea). Deionized (DI) water (resistiv-
ity > 18.2 MΩ cm−1, Barnstead Nanopure Water System, Lake Balboa, CA, USA) was used
to prepare the standard solutions of MO and FG (concentration of each dye = 10 mg/L).
The structures of MO and FG are listed in Table 1.
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Table 1. Structure of the dyes.

Methyl Orange Fast Green FCF

Structure a
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2.2. Preparation of Mandarin Peel Biochars

Mandarin was purchased from a local grocery store on Jeju Island (Jeju-do, Republic
of Korea) and then separated into flesh and peels. The mandarin peels were rinsed with DI
water three times to remove impurities and dried in an oven at 105 ◦C for 24 h. The dried
mandarin peel was then crushed using a food grinder. For chemical activation with NH4Cl
and ZnCl2, 1 g of dried mandarin peel was mixed with each activation chemical at a weight
ratio (w/w%) of 1:1 using 2 mL of DI water. The mixed samples were then dried in an oven at
105 ◦C for 24 h. The pristine and chemically activated mandarin peel samples were crushed
again with a food grinder. Subsequently, the pristine and chemically activated mandarin
peels were then pyrolyzed using a tubular furnace (PyroTech, Namyangju-si, Gyeonggi-do,
Korea) under the same conditions. The tubular furnace was heated to 700 ◦C at 5 ◦C min−1

using N2 gas (flow rate = 0.5 L min−1) and then maintained at that temperature for 6 h.
After cooling to room temperature (20 ± 0.5 ◦C), the M–biochar, MN–biochar, and MZ–
biochar were rinsed with DI water four times, filtered with glass fiber filters (GF/F, nominal
pore size = 0.7 µm; Whatman, Clifton, NJ, USA), and then dried in an oven at 105 ◦C for
12 h. The M–biochar, MN–biochar, and MZ–biochar were subsequently homogenized using
a 0.154 mm (100 mesh) sieve and then stored in a desiccator before use.

2.3. Characterization of Mandarin Peel Biochars

The elemental contents of the M–biochar, MN–biochar, and MZ–biochar were ana-
lyzed using an elemental analyzer (EuroEA3000 CHNS-O, EuroVector S.p.A, Milan, Italy).
The atomic ratios of H/C and [(N/C) + (O/C)] might be used as indices to predict the
aromaticity and polarity of the M–biochar, MN–biochar, and MZ–biochar [25]. The sur-
face functional groups of the M–biochar, MN–biochar, and MZ–biochar were investigated
using Fourier-transform infrared spectroscopy (ATR-FTIR; Frontier Optica, Perkin Elmer,
Waltham, MA, USA) in the wavenumber range of 4000–700 cm−1. The biochars’ point
of zero charges (PZC) were evaluated using a surface zeta potential analyzer (Zetasizer
Nano ZSP, Malvern, UK) at pH 1–11. The average pore diameter and specific surface area
were measured using a Brunauer Emmett Teller analyzer (BELSORP-mini II, MicrotracBEL,
Osaka, Japan). The total pore volume was calculated using the Barrett–Joyner–Halenda
(BJH) method [26]. The M–biochar, MN–biochar, and MZ–biochar were degassed in a
vacuum at 473 K during 48 h, and their N2 adsorption-desorption isotherms were examined
at 77.3 K in the relative pressure (P/P0) from 0.01 to 0.99.

2.4. Batch Adsorption Experiments
2.4.1. Optimal Adsorbent Dosages

The optimum dosages of M–biochar, MN–biochar, and MZ–biochar for MO and FG
were determined. The adsorbents dosage (0.1–3 g/L) of M–biochar, MN–biochar, and
MZ–biochar were added to 25 mL of the MO and FG solutions (initial concentration of each
dye = 10 mg/L, pH = 7.0) in Erlenmeyer flasks. The sample solutions were then stirred at
160 rpm and 25 ◦C for 1 h using a shaking incubator (VS-8480, Vision Scientific, Daejeon,
Republic of Korea). All experiments were performed in triplicate to minimize errors.

http://www.chemicalize.org
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2.4.2. Adsorption Kinetics Experiments

For the adsorption kinetics, the optimal dosage of pristine and chemical activated
mandarin peel biochars for MO (1.5 g/L) and FG (2.0 g/L) was added to 25 mL of sample
solutions (initial concentration of each dye = 10 mg/L, pH = 7.0). The sample solutions
were stirred at 160 rpm and 25 ◦C for 0–3 h in a shaking incubator. Subsequent to the
batch adsorption experiments, the sample solutions were filtered using a GF/F. The con-
centrations of MO and FG at the initial and equilibrium states were measured using a
UV-Vis spectrophotometer (UV-1280, Shimadzu, Kyoto, Japan) at UV absorbances of 460
and 625 nm, respectively [27,28]. All adsorption experiments were repeated three times to
minimize errors. The amount of MO and FG solution adsorbed per unit of mass adsorbent,
Qt (mg/g), was calculated using the following equation [29]:

Qt =
(C0 − Ce)V

m
(1)

where C0 and Ce denote the initial and equilibrium concentrations (mg/L) of MO and FG
solutions, respectively, V is the volume (L) of the solution, and m is the mass (g) of the
M–biochar, MN–biochar, and MZ–biochar.

The removal efficiencies of the MO and FG solutions were calculated using
Equation (2):

Removal efficiency (%) =
(C0 − Ce)V

C0
× 100 (2)

where Ce denotes the MO and FG concentrations (mg/L) at the equilibrium of the solutions.
The adsorption kinetics and capacities of MO and FG by M–biochar, MN–biochar, and

MZ–biochar were determined using Equations (3) and (4) [30]:

Pseudo-first-order model : ln(Qe − Qt) = lnQe − k1t (3)

Pseudo-second-order-model :
t

Qt
=

1
k2Q2

e
+

1
Qe

t (4)

where Qe and Qt are the amount of dyes adsorbed per unit mass of the adsorbent (mg/g)
at equilibrium and time t, respectively. k1 (1/h) is the constant of the pseudo-first-order
equation, and k2 (g/mg·h) denotes the pseudo-second-order equation constant.

2.4.3. Adsorption Isotherm Experiments

The adsorption isotherms of MO and FG by M–biochar, MN–biochar, and MZ–
biochar were obtained using different initial concentrations for the MO and FG solutions
(1–80 mg/L). Each mandarin peel biochar (i.e., M–biochar, MN–biochar, and MZ–biochar)
was added at 1.5 g/L to the MO solution and at 2.0 g/L to the FG solution under controlled
conditions (agitation speed = 160 rpm, contact time = 1 h, pH = 7.0, and temperature
= 25 ◦C). The adsorption isotherm results were determined using Langmuir and Fre-
undlich isotherm models. The Langmuir isotherm model was defined as the following
Equation (5) [31]:

Langmuir isotherm : Qe = Qmax
KLCe

1 + KLCe
(5)

where Ce (mg/L) is the equilibrium concentration of the MO and FG, Qmax (mg/g) is the
maximum monolayer adsorption capacity of MO and FG, and KL (L/mg) is the equilibrium
constant of the Langmuir isotherm model.

The Freundlich isotherm model was expressed as follows [32]:

Freundlich isotherm : Qe = KFC1/n
e (6)

where KF (mg1−(1/n)L1/n/g) and n (dimensionless) are the constants associated with the
relative maximum adsorption capacity and adsorption intensity, respectively.
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2.4.4. Influence of Solution Temperature and pH on Adsorption of Dyes

The influence of solution temperature and pH on the adsorption of MO and FG
by the pristine and chemically activated mandarin peel biochars were investigated at
various temperatures (15–35 ◦C) and pH (3.0–9.0) conditions (initial concentration of each
dye = 10 mg/L, agitation speed = 160 rpm, contact time = 1 h). The solution pH was
adjusted using 0.1 N HCl and 0.1 N NaOH. The removal efficiencies of MO and FG using
M–biochar, MN–biochar, and MZ–biochar were calculated using Equation (2).

The thermodynamic parameters of MO and FG adsorption were calculated using the
following Equations (7)–(9) [33]:

Kd =
Qe

Ce
(7)

∆G
◦
= −RTln(Kd) (8)

ln(Kd) =
∆S

◦

R
− ∆H

◦

RT
(9)

where Kd (L/g) is the distribution coefficient. ∆G◦ (kJ/mol), ∆H◦ (kJ/mol), and ∆S◦

(kJ/mol·K) are the Gibbs free energy, enthalpy, and entropy, respectively. R is the ideal gas
constant (8.314 J/ mol·K), and T is the absolute temperature (K) of the aqueous solution.
∆H◦ and ∆S◦ were calculated from the slope and intercept in the linear graphs of ln Kd and
1/T, respectively.

3. Results and Discussions
3.1. Physicochemical Characteristics of Mandarin Peel Biochars

SEM images of the M–biochar, MN–biochar, and MZ–biochar are shown in Figure 1.
Figure 1a revealed various shapes of macropores and open spaces that give the M–biochar
an adsorption ability to MO and FG. However, the pores might be improved and further
enhanced by chemical activation during the etching reaction by NH4Cl and ZnCl2, which
results in the formation of some pores as presented in Figure 1b,c [34]. Therefore it effec-
tively improved the specific surface areas and increased the pore properties as summarized
in Table 2.
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The physicochemical properties (i.e., BET isotherms, bulk elements, the atomic molar
ratio, specific surface area, total pore volume, and pore size) of the M–biochar, MN–biochar,
and MZ–biochar are presented in Figure 2 and Table 2. The N2 adsorption-desorption
isotherms of the M–biochar, and MN–biochar and MZ–biochar corresponded to Type II and
Type IV, respectively. The Type II isotherms are expected to govern monolayer adsorption
at relatively low-pressure states, and the multilayer adsorption primarily occurred at
relatively high-pressure states (Figure 2a). The Type IV isotherms are determined by the
monolayer-multilayer adsorption on the mesopore walls and the interactions between
the molecules in the condensed state (Figure 2b,c) [35]. In the case of Figure 2b, capillary
condensation is occurred by hysteresis when the pore width exceeds a certain critical width.
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The MZ–biochar showed considerably larger specific surface area (1085.0 m2/g) and total
pore volume (0.19 cm3/g) compared to those values from the M–biochar (specific surface
area = 8.5 m2/g, total pore volume = 0.016 cm3/g) and MN–biochar (specific surface
area = 181.1 m2/g, total pore volume = 0.031 cm3/g). However, the average diameter
of the MZ–biochar pores (3.62 nm) was smaller than those of the M–biochar (8.74 nm)
and the MN–biochar (4.58 nm). These observations indicate that chemical activation with
ZnCl2 of M–biochar was more effective in improving the surface and pore properties than
the chemical activation with NH4Cl of M–biochar [36,37]. In addition, the mesoporous
structures of the mandarin peel biochars may govern the adsorption of MO and FG [20].
The H/C and [(O/C) + (N/C)] values corresponded to the aromaticity and polarity of
the mandarin peel biochars, respectively. The smaller the H/C molar ratio meant, the
greater the aromaticity. Although the polarity of the M–biochar was comparatively larger
than that of the MN–biochar and MZ–biochar (0.070 (M–biochar) > 0.065 (MN–biochar)
> 0.050 (MZ–biochar)), the aromaticity of the M-biochar was smaller compared to the
MN–biochar and MZ–biochar (0.26 (MN–biochar) > 0.27 (MZ–biochar) > 0.29 (M–biochar)).
These results suggest that the MN–biochar and MZ–biochar were more carbonized than
the M–biochar.

Table 2. The physicochemical properties of M–biochar, MN–biochar, and MZ–biochar.

M–Biochar MN–Biochar MZ–Biochar

C (%) 79.53 ± 0.71 80.05 ± 0.55 79.21 ± 0.46
H (%) 1.92 ± 0.015 1.72 ± 0.028 1.78 ± 0.040
O (%) 5.09 ± 0.078 4.88 ± 0.061 3.63 ± 0.089
N (%) 2.07 ± 0.019 1.76 ± 0.023 1.44 ± 0.029
S (%) 0.13 ± 0.010 0.25 ± 0.037 0.15 ± 0.011
H/C 0.29 ± 0.003 0.26 ± 0.002 0.27 ± 0.003
O/C 0.048 ± 0.008 0.046 ± 0.009 0.034 ± 0.010
N/C 0.022 ± 0.003 0.019 ± 0.001 0.016 ± 0.002

Specific surface area (m2/g) 8.5 181.1 1085.0
Total pore volume (cm3/g) 0.016 0.031 0.19

Pore size (nm) 8.74 4.58 3.62
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Figure 2. N2 adsorption-desorption isotherms of (a) M–biochar, (b) MN–biochar, and (c) MZ–biochar.

The functional group compositions of the M–biochar, MN–biochar, and MZ–biochar
are shown in Figure 3. The O–H stretching of alcohols (3570–3200 cm−1), the C=O stretching
of carbonyls (1570–1515 cm−1), and C–O stretching of alcohols (1075–1000 cm−1) were
commonly detected in M–biochar, MN–biochar, and MZ–biochar [38,39]. These IR peaks
are associated with the components of the mandarin peel, such as C, H, O, and N (Table 2).
Nevertheless, a new IR peak related to the C–O stretching of alcohols was observed for
the MN-biochar and MZ-biochar in the range of 1200–1100 cm−1 [40]. These results imply
that chemical activation may significantly influence the composition of functional groups
of biochars related to the MO and FG adsorption capacity [41]. Variations in the surface
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zeta potential (mV) of the M–biochar, MN–biochar, and MZ–biochar as pH values of the
solution are presented in Figure 4. The surface zeta potential of the M–biochar, MN–
biochar, and MZ–biochar varied depending on the solution pH. The PZC of M–biochar,
MN–biochar, and MZ–biochar were extrapolated from the experimental results of the
surface zeta potential and were found to be pH 2.9, 2.4, and 3.0, respectively. This implies
that the pH value of the solution is a critical factor that affects the physical parameters
of the MO (pKa = 3.58) and FG (pKa = 3.11). Furthermore, it is directly influential on the
surface charge and the adsorption ability of the mandarin peel biochars [40].
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Figure 3. The ATR–FTIR spectra of M–biochar, MN–biochar, and MZ–biochar.
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Figure 4. Surface zeta potential of the M–biochar, MN–biochar, and MZ–biochar (n = 3).

3.2. Influence of Mandarin Peel Biochar Dosage

The changes in the removal efficiencies of MO and FG are shown with the correspond-
ing adsorbent dosages in Figure 5. The removal efficiencies of MO and FG were enhanced
with increasing dosages of the pristine and chemically activated mandarin biochars. The
removal efficiencies of MO and FG by MZ–biochar were much greater than those of M–
biochar and MN–biochar (MZ–biochar > MN–biochar > M–biochar). This suggests that the
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difference in the specific surface areas of the mandarin peel biochars (the specific surface
area depends on the chemical activation) might influence the adsorption capacities of MO
and FG [42]. The removal efficiencies of MO achieved a steady-state at an MZ–biochar
dosage of 1.5 g/L (removal efficiency of MO = 97%). The FG was at a steady-state removal
efficiency at the MZ–biochar dosage of 2.0 g/L (removal efficiency of FG = 99%). Conse-
quently, the pristine and chemically activated mandarin peel biochar dosages for MO and
FG were applied for the following adsorption experiments at 1.5 and 2.0 g/L, respectively.
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Figure 5. The influence of absorbent doses on the removal efficiency of the MO and FG using M–biochar, MN–biochar, and
MZ–biochar: (a) MO and (b) FG (C0 = 10 mg/L; agitation speed = 160 rpm; contact time = 1 h; pH = 7.0; temperature =
25 ◦C, n = 3).

3.3. Adsorption Kinetics of Dyes

Figure 6 shows the adsorption kinetics of MO and FG by M–biochar, MN–biochar, and
MZ–biochar. Both MO and FG adsorptions using MZ–biochar rapidly reached equilibrium
at 0.5 h. These observations may explain that the difference in specific surface area (MZ–
biochar = 1085.0 m2/g > MN–biochar = 181.1 m2/g > M–biochar = 8.5 m2/g) on the
adsorption capacity of MZ–biochar has a critical role in the adsorption of MO and FG [43].
Table 3 presents the adsorption kinetic parameters for MO and FG adsorption using pristine
and chemically activated mandarin peel biochars. The adsorption kinetics of MO and FG on
both the pristine and chemically activated mandarin peel biochars showed good agreement
with results from the pseudo-second-order model (R2 for MO: 0.980–0.999; R2 for FG:
0.952–0.999). The same comparison with results from the pseudo-first-order model showed
inferior agreement (R2 for MO: 0.465–0.575; R2 for FG: 0.008–0.565). Furthermore, the
equilibrium adsorption capacities of MO (Qe, cal = 16.27 mg/g) and FG (Qe, cal = 12.45 mg/g)
by the MZ–biochars were greater than the equilibrium adsorption capacities of MO and
FG by M–biochar (Qe, cal: MO = 0.97 mg/g and FG = 0.80 mg/g) and MN–biochar (Qe, cal:
MO = 2.53 mg/g and FG = 2.22 mg/g). The greater Qe values of MZ–biochar supported
the assumption that MZ–biochar was more effective for removing MO and FG due to its
significantly larger specific surface area than those of the M–biochar and MN–biochar.
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Figure 6. The kinetics for the removal efficiency of the MO and FG using M–biochar, MN–biochar, MZ–biochar: (a) MO and
(b) FG (n = 3; C0 = 10 mg/L; adsorbent dose for MO = 1.5 g/L, adsorbent dose for FG = 2.0 g/L; agitation speed = 160 rpm;
pH = 7.0; temperature = 25 ◦C, n = 3).

Table 3. The kinetic parameters for the removal of the MO and FG using M-biochar, MN-biochar and MZ-biochar (n = 3).

Adsorbents M–Biochar MN–Biochar MZ–Biochar
Dyes MO FG MO FG MO FG

Qe, exp (mg/g) 0.95 ± 0.098 0.78 ± 0.039 2.52 ± 0.42 2.13 ± 0.38 16.27 ± 0.91 12.44 ± 0.88

Pseudo-first- order
Qe, cal (mg/g) 2.06 ± 0.19 15.85 ± 0.23 1.78 ± 0.12 2.07 ± 0.66 16.00 ± 0.38 1.90 ± 0.62

k1 (1/h) 0.49 ± 0.057 0.063 ± 0.004 0.56 ± 0.092 0.48 ± 0.083 0.063 ± 0.009 0.52 ± 0.017
R2 0.575 0.008 0.465 0.565 0.482 0.206

Pseudo-second- order
Qe, cal (mg/g) 0.97 ± 0.10 0.80 ± 0.022 2.53 ± 0.28 2.22 ± 0.67 16.27 ± 0.096 12.45 ± 0.88
k2 (g/mg·h) 2.81 ± 0.19 3.14 ± 0.44 3.45 ± 0.58 0.98 ± 0.020 12.56 ± 0.29 12.81 ± 0.23

R2 0.981 0.962 0.996 0.952 0.999 0.999

3.4. Adsorption Isotherms of Dyes

The adsorption behaviors of the MO and FG using M–biochar, MN–biochar, and
MZ–biochar are identified with the Langmuir and Freundlich isotherm models (Table 4).
All mandarin peel biochars well fitted with the multilayer adsorption characteristics of the
Freundlich isotherm model [44] than those of the Langmuir isotherm model, which was
monolayer adsorption for MO and FG [45]. The n values (the dimensionless adsorption
intensity) of the pristine and chemically activated mandarin peel biochars were used to
evaluate the adsorption affinity toward MO and FG using the Freundlich isotherm model:
(i) n > 1 (favorable), (ii) n = 1 (linear), and (iii) n < 1 (unfavorable) [29]. The adsorption of
MO by M–biochar (n = 4.71), MN–biochar (n = 1.81), and MZ–biochar (n = 1.68), and the
adsorption of FG by MZ–biochar (n = 1.38) was favorable. However, the adsorption of FG
by M–biochar (n = 0.96) and MN–biochar (n = 0.98) was unfavorable. Shin et al. (2020)
explained that micropollutants were more adsorbed by chemical-modified biochar (n > 1)
compared to the pristine biochar (n < 1) [46]. These results might explain the difference in
the MO and FG adsorption affinities depending on the chemical activation.

Table 4. The isotherm parameters for the removal of the MO and FG using M–biochar, MN–biochar and MZ–biochar (n = 3).

Adsorbents M–Biochar MN–Biochar MZ–Biochar
Dyes MO FG MO FG MO FG

Langmuir
Qmax (mg/g) 2.00 ± 0.18 14.47 ± 0.57 0.14 ± 0.008 14.39 ± 0.67 14.25 ± 0.91 45.87 ± 2.19
KL (L/mg) 0.01 ± 0.002 0.35 ± 0.022 0.85 ± 0.096 0.42 ± 0.22 0.069 ± 0.003 0.18 ± 0.097

R2 0.959 0.791 0.893 0.843 0.813 0.841

Freundlich
n 4.71 ± 0.39 0.96 ± 0.019 1.81 ± 0.57 0.98 ± 0.44 1.68 ± 0.096 1.38 ± 0.022

KF (mg1−(1/n) L1/n/g) 0.42 ± 0.046 12.35 ± 0.36 1.13 ± 0.38 12.87 ± 0.84 38.21 ± 2.87 3.67 ± 0.22
R2 0.999 0.999 0.999 0.998 0.999 0.997
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3.5. Influence of Temperature and pH on Adsorption of Dyes

The influence of temperature on the adsorption of MO and FG by the pristine and
chemically activated mandarin peel biochars are compared in Figure 7. The removal
efficiencies of MO and FG using M–biochar, MN–biochar, and MZ–biochar progressively
improved with increasing temperature (15–35 ◦C). In particular, the adsorption capacities
of MZ–biochars for MO and FG were significantly greater than those from the M–biochar
and the MN–biochar. A possible explanation for these observations is that the adsorption
of MO and FG onto M–biochar, MN–biochar, and MZ–biochar was endothermic [47].
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Figure 7. The influence of temperature on the removal efficiency of the MO and FG using M–biochar, MN–biochar, MZ–
biochar: (a) MO and (b) FG (C0 = 10 mg/L; adsorbent dose for MO = 1.5 g/L, adsorbent dose for FG = 2.0 g/L; agitation
speed = 160 rpm; contact time = 1 h; pH = 7.0, n = 3).

The thermodynamic parameters (i.e., ∆G◦, ∆H◦, and ∆S◦) of MO and FG adsorption
onto the pristine and chemically activated mandarin peel biochars are shown in Table 5. The
negative ∆G◦ values indicated the spontaneous of MO and FG adsorption by M–biochar,
MN–biochar, and MZ–biochar under the different temperatures [33]. The positive ∆H◦

values suggested that the adsorption of MO and FG onto the M–biochar (MO: 0.002 kJ/mol;
FG: 0.008 kJ/mol), MN–biochar (MO: 0.050 kJ/mol; FG: 0.012 kJ/mol), and MZ–biochar
(MO: 0.003 kJ/mol; FG: 0.002 kJ/mol) was endothermic in nature. Fan et al. (2016) reported
that the ∆H◦ value of <40 kJ/mol might be attributed to physical adsorption [48]. Moreover,
the positive ∆S◦ values indicated an increase in the randomness at the solid-solution
interface during the MO and FG adsorption using M–biochar (MO: 0.032 kJ/mol·K; FG:
0.043 kJ/mol·K), MN–biochar (MO: 0.039 kJ/mol·K; FG: 0.052 kJ/mol·K), and MZ–biochar
(MO: 0.045 kJ/mol·K; FG: 0.037 kJ/mol·K) [49].

The influence of pH (pH 3–9) on the adsorption of MO and FG for M–biochar, MN–
biochar, and MZ–biochar are presented in Figure 8. The removal efficiency of MO and FG
by M–biochar, MN–biochar, and MZ–biochar decreased as the pH increased. These results
might be attributed to the electrostatic interaction between the positive-charged surface of
mandarin peel biochars and the anionic dyes in strong acidic pH conditions (<pH 3) [50].
The removal efficiencies of the MO and FG by the M–biochar, MN–biochar, and MZ–biochar
were in good agreement with the order of the Log D values (distribution coefficient) of the
MO and FG under different pH conditions (pH 3.0 (MO: Log D = 2.53; FG: Log D = 1.18) >
pH 5.0 (MO: Log D = 1.54; FG: Log D = 0.17) > pH 7.0 (MO: Log D = 1.30; FG: Log D = −0.04)
> pH 9.0: (MO: Log D = 1.29; FG: Log D = −0.37)) (Supplementary Information, Table S1).
Moreover, the removal efficiencies of MO and FG using MZ–biochar were greater than those
of M–biochar and MN–biochar because of the specific surface area differences (MZ–biochar
= 1085.0 m2/g > MN–biochar = 181.1 m2/g > M–biochar = 8.5 m2/g) [51].
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Table 5. The thermodynamic parameters of MO and FG using the M-biochar, MN-biochar, and MZ-biochar (n = 3).

Adsorbents Dyes
Thermodynamic Parameters

Temperature
(K)

∆G◦

(kJ/mol)
∆H◦

(kJ/mol)
∆S◦

(kJ/mol·K)

M–biochar

MO
288 −2.84 ± 0.17

0.002 ± 0.0005 0.032 ± 0.002298 −3.57 ± 0.14
308 −4.35 ± 0.11

FG
288 −4.24 ± 0.09

0.008 ± 0.0007 0.043 ± 0.003298 −4.50 ± 0.12
308 −4.81 ± 0.10

MN–biochar

MO
288 −5.59 ± 0.21

0.050 ± 0.001 0.039 ± 0.009298 −5.80 ± 0.34
308 −6.45 ± 0.20

FG
288 −4.38 ± 0.38

0.012 ± 0.002 0.052 ± 0.003298 −4.58 ± 0.25
308 −4.75 ± 0.28

MZ–biochar

MO
288 −11.27 ± 0.23

0.003 ± 0.002 0.045 ± 0.009298 −11.35 ± 0.13
308 −12.86 ± 0.42

FG
288 −9.69 ± 0.33

0.002 ± 0.0003 0.037 ± 0.005298 −11.35 ± 0.32
308 −11.75 ± 0.25
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Figure 8. The influence of pH on the removal efficiency of the MO and FG using M–biochar, MN–biochar, MZ–biochar: (a)
MO and (b) FG (C0 = 10 mg/L; adsorbent dose for MO = 1.5 g/L, adsorbent dose for FG = 2.0/g; agitation speed = 160 rpm;
contact time = 1 h; temperature = 25 ◦C, n = 3).

4. Conclusions

This study demonstrated that the adsorption capacity for MO and FG of mandarin
peel biochar could be improved by pretreatment with NH4Cl and ZnCl2. Furthermore,
the removal efficiency of the mandarin peel biochars varied greatly depending on the
physicochemical properties of the MO and FG and biochars. There are five main conclusions
from this study.

• Pretreatment with ZnCl2 was the most effective for increasing the specific surface area
of mandarin peel biochars. Specific surface area was closely related to the adsorption
of MO and FG (MZ–biochar (1085.0 m2/g) > MN–biochar (181.1 m2/g) > M–biochar
(8.4 m2/g)).
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• The adsorption of MO and FG using M–biochar, MN–biochar, and MZ–biochar was de-
scribed better by the pseudo-second-order model for chemical adsorption (R2 = 0.952–
0.999) than by the pseudo-first-order model (R2 = 0.008–0.575).

• The adsorption of MO and FG by M–biochar, MN–biochar, and MZ–biochar was better
modeled by the Freundlich isotherm Equation (R2 = 0.997–0.999), with multilayer
adsorption characteristics, than the Langmuir isotherm Equation (R2 = 0.791–0.893),
which has monolayer adsorption characteristics.

• The correlation of temperature increases with increases of MO and FG removal effi-
ciencies onto the pristine and chemical activated mandarin peel biochars indicated
that the adsorption reaction was a spontaneous and endothermic reaction.

• The adsorption efficiencies of the dyes using the M–biochar, MN–biochar, and MZ–
biochar in acidic pH conditions were effective compared with the neutral and alkali pH
conditions. These results suggest that the mandarin peel biochars may be a promising
option in improving the dye removal from a real-scale acidic wastewater treatment
plant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13111495/s1, Table S1: The physicochemical characteristics of the dyes.
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Abbreviations

Ce Concentration of dyes at equilibrium (mg/L)
C0 Initial concentrations of dyes (mg/L)
∆G◦ The Gibbs free energy (kJ/mol)
∆H◦ The enthalpy (kJ/mol)
∆S◦ The entropy (kJ/mol·K)
FG Fast Green FCF
k1 Pseudo-first-order rate constant (1/h)
k2 Pseudo-second-order rate constant (g/mg·hr)
KF Freundlich isotherm capacity factor (mg1−(1/n) L1/n/g)
KL The adsorption energy (L/mg)
Kd The distribution coefficient (L/g)
Qe The quantities of the adsorbed dyes at equilibrium (mg/g)
Qt The amounts of the adsorbed dyes at time t (mg/g)
Qe, exp The adsorption capacities of the dyes at equilibrium (mg/g)
Qmax The maximum adsorption capacity (mg/g)
M-biochar Pristine mandarin peel biochar
MN-biochar NH4Cl activated mandarin peel biochar
MZ-biochar ZnCl2 activated mandarin peel biochar
MO Methyl orange
n The adsorption affinity of dyes
T The absolute temperature (K)
V Volume of dyes solution (L)
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