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Abstract: In order to analyze the shear effect of secondary currents on the flow structures in a mean-
dering channel, this research developed a two-dimensional shallow water model, which included the
dispersion stress term accounting for the shear effect in the vertical velocity profile. A new equation
for the vertical velocity profile that included nonlinear shear effects was derived from the equation of
motion in the meandering channel with sharp curvature. Using the experiment data obtained from
large-scale meandering channels, the ratio of the depth over the radius-of-curvature was incorpo-
rated into the shear intensity of the secondary flow in the proposed equation. Comparisons with the
experimental results by previous research showed that the computed values of the primary velocity
distribution by the proposed model showed better fit with the observed data than the simulations
with linear models and models without secondary flow consideration. The simulated results in the
large-scale meandering channels demonstrated that simulations with the nonlinear secondary flow
effect added into modeling gave higher accuracy, reducing the relative error by 19% in reproducing
the skewed distributions of the primary flow in meandering channels, particularly in the regions
where the effects from spiral motion were strong, due to sharp meanders.

Keywords: secondary current; sharp curvature channel; shallow water model; dispersion stress;
vertical velocity profile; nonlinear shear effect

1. Introduction

Modeling of the primary and secondary flows in a meandering channel is a challenge
compared to straight channels, due to the complication in flow structures. Figure 1 shows
that in curved channels, a helical flow structure is formed in the bend, in which the
secondary flow evolves along the sinuous path of the channel. This secondary flow
in meandering channels is caused by the local imbalance between the transverse water
pressure forces generated by the super elevation of the water surface, and the vertically
varying centrifugal force [1]. The local force imbalance causes a secondary cell to form,
so that the lower part of the water column flows to the inner bank, while the surface
part of the water column flows to the outer bank, which affects the local scouring and
sedimentation occurring at the bend areas. Furthermore, the secondary flow affects the
transverse dispersion rate through the mass and momentum redistribution from the helical
flow structure. The advective momentum transport by the secondary flow also causes
longitudinal velocity redistribution, in which the primary flow is shifted to the outer bank,
as shown in Figure 1 [2]. Thus, understanding of the shear effect of the secondary flow
in bends is necessary in order to analyze the transverse distribution of the longitudinal
velocity, as well as to study the mixing of sediments and pollutants in meandering channels.
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Figure 1. Schematic diagram of flow and force balance in the meandering channel. (a) Flow structure;
(b) Force balance.

In the modeling of flow in meandering channels, although three-dimensional (3D)
models showed the highest accuracy in reproducing the complex flow in curved reaches, 3D
hydrodynamic models have some limitations due to their high computational requirements.
Therefore, for the modeling of flow and mass transport in a relative shallow water system,
such as open channels and rivers, 2D depth-averaged models may be more accessible
for application. However, in the existing 2D numerical models frequently used in rivers,
the depth-averaging sequence of 3D Navier–Stokes equations causes the loss of three-
dimensional information in the momentum terms. This information can be partially
retrieved by introducing the dispersion stress terms, which involves the integration of the
discrepancy of the averaged and fluctuated transverse velocity in the momentum equations.
In the dispersion stress method, the terms using vertical profiles of both longitudinal and
transverse velocity were inserted, so the secondary current effect was included in the
momentum equation [3]. Thus, in order to apply the dispersion stress method to the 2D
depth-averaged momentum equation, vertical profile equations for both longitudinal and
transverse velocities are needed.

Even though many researchers have studied the vertical profile of the transverse
velocity in curved channels, most equations were derived by neglecting the nonlinear
effects in the momentum equation. In sharp curvature channels, the secondary flow
magnitude grows less linearly due to the nonlinear interactions between the longitudinal
flow component and the secondary flow component [4], due to the advective momentum
transport by the secondary flow, which flattens the downstream velocity profile. This
leads to the secondary strength to decrease in the upper part of the water column and
increase in the lower part of the water column, limiting the strength of the secondary flow.
Rozovskii [5] and Kikkawa [6] derived the vertical profile equations of the secondary flow
from the momentum equations using a logarithmic form assumption, without considering
nonlinear relations between primary and secondary flows. To derive another secondary
flow equation, the perturbation method was used by de Vriend [7] assuming the radius-of-
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curvature is smaller than the depth of the meandering channel. Since the former developed
equations were still complicated, Odgaard [8] connected the vertical profile of the secondary
flow to the surface velocity to create a linear profile. Although this was considered the
easiest method for implementation, the simplicity was too high to account for the complex
mechanisms of velocity deviations from the mean at the top and bottom parts of the
vertical profile.

For the accurate representation of the secondary currents, the objective of this research
is to develop a new vertical profile equation of the transverse velocity based on the ex-
perimental results, by considering the nonlinear relationship between the longitudinal
and transverse flows, which was omitted in the previous equations. The dependence of
the secondary flow on certain variables, such as the ratio of the depth over the radius-
of-curvature, was analyzed using experimental results obtained from the meandering
experimental channels. In this study, the proposed equation for the vertical profile of the
transverse velocity was incorporated into the momentum equations of the 2D finite element
model in the dispersion stress form, in order to reproduce the shear effect of the secondary
current in the flow structures in modeling meandering channel flows.

2. Theoretical Studies
2.1. Two-Dimensional Flow Modeling in Meandering Channels

Many researchers have conducted two-dimensional modeling of shallow flow in a
curved channel [9–23], in which they tried to include the effect of secondary flow on
the primary flow behavior. To incorporate the effect of the secondary flow in the depth-
averaged 2D model, several methods were proposed. Among them, two popular methods
are the moment of momentum method and the dispersion stress method.

The moment of momentum method uses the 2D vertically averaged moment model
(VAM), which was developed for the momentum redistributions. Originally, Johannesson
and Parker [9] presented an analytical model to calculate the lateral distribution of the
depth-averaged flow velocity in curved rivers. This made it possible to take into account
the convective acceleration of the secondary flow that would suppress the growth of the
primary flow. This became the basis of the later models of the moment of momentum
method. The equations include the incorporation of the assumed distribution of vertical
velocity components with vertical velocity and pressure distributions, which resemble
transport equations.

Yeh and Kennedy [10] developed a moment model in which derivation involved a
differential formulation in open channels to apply the secondary flow and the curvature
effects to the transverse velocity profile. The research implied that the momentum calcula-
tion is important to explain the relations between the primary and secondary flow. Ghamry
and Steffler [11] introduced the 2D VAM model, in which the depth-averaged continuity
and momentum equations are coupled with additional moment of momentum equations,
which were derived from the balance of the momentum flux of the convective terms, stress
term, and pressure gradient term for secondary flow closure purposes. Vasquez et al. [12],
who applied 2D finite element river morphology based on the VAM equations, maintained
that their model was capable of reproducing the main effects of the flow in bends in a
quasi-three-dimensional way. Using the original model developed by Ghamry and Stef-
fler [11], the research showed that the model could be coupled with a bed load sediment
model for morphodynamic applications. In contrast to former research, 2D research dealing
with the convective acceleration of the secondary flow, such as the moment of momentum
method [10–13], was conducted for better secondary flow estimation. However, since it
involved the solving of several additional differential equations, the computational cost
was expensive.

Another method is the dispersion stress method, which can be used in order to repre-
sent open flow in meandering channels where the vertical variations of the velocity would
be re-applied, as it is usually omitted in the depth-averaging process. It is associated with
the terms where the integration of the products of the fluctuating velocity components is di-
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rectly calculated by incorporating the velocity vertical profiles of both the longitudinal and
transverse velocities. By using the deviation between the depth-averaged and the actual
velocity distribution, the neglected vertical variations are reassigned into the momentum
equations of the 2D depth-averaged model. This approach is useful since it uses a vertical
velocity profile without solving additional transport equations, which were introduced in
the moment of momentum method.

Lien [3] developed a 2D depth-averaged model with the dispersion stress terms
for simulating flow patterns in channel bends, in which the experimental data from Ro-
zovskii [5] and de Vriend [7] were compared for model application, showing the secondary
flow effect. This research showed that the dispersion stress term can play a major role in
transverse convection of the momentum shifting from the inner bank to the outer bank.
Bernard and Schneider [14] proposed a method to accurately reproduce the secondary
flow that was measured in a bendway flume experiment to be included in the finite vol-
ume model STREMR. This method derived a transport equation for streamwise vorticity
that considers the vorticity generation due to curvature to calculate the dispersion terms.
Finnie et al. [15] used the method developed by Bernard and Schneider and applied it to a
depth-averaged flow model, RMA2, a hydrodynamic finite element model. A transport
equation for the streamwise vorticity was solved, and the results were converted into addi-
tional accelerations in the momentum equation. The dispersion stress term had an effect
on the depth-averaged velocity calculations as the primary flow velocity size decreased on
the inside and increased on the outside of the channel bends.

Begnudelli et al. [16] dealt with the 2D hydrodynamic numerical model by calculating
the momentum equations that included dispersion stress terms. The dispersion stress
term used a power-law for the longitudinal component, and the equation by Odgaard [8]
was used for the transverse component which would account for the transfer of energy
out of the circulating flows. Duan [17] also developed a 2D numerical model using the
Odgaard [8] equation for transverse flow for the dispersion term calculations. The research
maintained that the effect of dispersion stress terms became significant as the channel
curvature increased. Song et al. [18] found the importance of the effects of the secondary
current in a confluent channel and natural stream using the de Vriend equation [7] for the
dispersion stress term. They stated that the pressure gradient terms of the momentum
equations were the main factor that triggered the redistribution of longitudinal velocity.
Yang et al. [19] studied the secondary flow effects in open channel confluence flow using
dispersion terms in the momentum equation. They observed that the influence of disper-
sion terms would reflect the vertical non-uniformity of transverse velocity and the size of
the separation zone. Akhtar et al. [20] simulated the curvilinear stretch in a natural river
using a depth-averaged model with the dispersion stress term using the method similar to
Duan [17], and found that as the sinuosity in the river increases, the effect of the tensor in
the flow field increases, especially in channels with multiple meanders. Chen et al. [21]
used the dispersion stress method similar to de Vriend (1977) for a laboratory curved
channel, while Qin et al. [22] used a 2D depth-averaged model incorporating secondary
flow to meandering experimental flumes, which used the methods by Lien [3], Bernard
and Schneider [14], and later used these methods in another study [23], along with the
method by Ottevanger et al. [24], to a natural channel to reflect the velocity redistribution.
Nikora et al. [25] used extensive experimental results and modeling to find the size and
effect of secondary current-induced dispersion stress in high Reynolds numbers.

The aforementioned models adopted vertical profile equations for the secondary
flow into the dispersion stress term in 2D flow models to incorporate the secondary flow
effects. However, the vertical profile equations in early research based their assumptions
on mild curvature, so the nonlinear effects were usually discarded [5,6]; alternatively, the
perturbation method in which the equation was limited to less sharp curves was applied [7].
Therefore, previous dispersion stress models incorporated with the existing secondary
velocity profiles had the disadvantage that most models overestimated the effect of the
secondary flow, especially in the case of sharp meanders [3]. Furthermore, usage of other
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dispersion stress models that calculated additional vorticity terms or Reynolds stress terms
would be time expensive [14,16]. Thus, 2D modeling with a revised dispersion stress term
is needed, in order to correctly represent the effect of secondary flows in both mild and
sharp meandering channels efficiently.

2.2. Vertical Profile Equations for Secondary Currents

In previous research for the transverse velocity of secondary currents in meandering
streams by Rozovskii [5], Kikkawa [6], and de Vriend [7], the depth was considered to be
much less than the width and radius of the curvature. This allows the researcher to assume
that the bank effects are minimalized in the equation derivation. They derived the circular
form vertical profile from the momentum equations, with the upper part of the velocity
profile moving to the outer bank, while the lower part of the profile moves to the inner
bank, as shown in Figure 1. These research papers used the vertical profile equation directly
for meander channel modeling, and can be described as linear secondary flow modeling.
However, later research by Blanckaert and de Vriend [4,26], Ottavenger et al. [24], and
Wei et al. [27] used non-linear secondary flow modeling, which showed that the interaction
between the primary flow and secondary flow were important, since it would cause the
overall decrease of the growth of the secondary flow strength.

Rozovskii [5] studied the flow in meandering open channels with several experiments,
and summarized the results in the derived equations. One of the derived equations was
the vertical distribution of fully developed transverse velocity, which was compared with
data from a single bend experiment using growth and decay functions to show the changes
and variance of secondary flow strength in meandering channels. The research assumed
the logarithmic profile of the longitudinal velocity, then obtained the transverse velocity
profile in the case of a smooth bed as follows:

v(η)
u

=
1
κ2

H
Rc

[
F1(n)−

g
1
2

κC
F2(η)

]
(1)

F1(η) =
∫ 2 ln η

η − 1
dη (2)

F2(η) =
∫ ln2 η

η − 1
dη (3)

where v is the transverse velocity, η is the dimensionless distance from the bed, H is the
depth, ū is the depth-averaged longitudinal velocity, κ is the von Karman coefficient, C is
the Chezy coefficient, RC is the radius of curvature, and g is the acceleration of gravity. This
assumed that when the radius of curvature was many times larger than the channel depth,
there was an equilibrium of the pressure force, centrifugal force, and turbulent shear stress.

Kikkawa [6] also developed the equation for transverse velocity from the equation of
motion, assuming that the flow to be equilibrium and that the eddy viscosity is constant
within the cross section of the channel and has a sufficiently large radius. The derived
equation is:

v(η)
U

= F2 1
κ

H
Rc

[
FA(η)−

1
κ

U∗
U

FB(η)

]
(4)

FA(η) = −15
(

η2 ln η − 1
2

η2 +
15
54

)
(5)

FB(η) =
15
2

(
η2 ln2 η − η2 ln η +

1
2

η2 − 19
54

)
(6)
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where U is the cross-sectional averaged longitudinal velocity, F =
( u

U
)2

is the radial
distribution of the depth averaged velocity normalized by U, and U∗ is the cross-sectional
averaged shear velocity with the following equation:

U∗ =
√

gRhS f (7)

where Rh is the hydraulic radius and Sf is the friction slope of the channel. These equations
show that the channel water depth, compared to the radius of curvature, has a linear effect
on the secondary flow strength, which is similar to the Rozovskii equation.

Using the perturbation method, de Vriend [7] created a transverse velocity profile
equation, in which the ratio of the depth-to-radius-of-curvature was selected as the per-
turbation parameter and the dependent variables of the equation were expanded in a
power series. This allowed the higher order terms of the second order to be neglected for
obtaining the solution. Using the depth-averaged model to simplify the three-dimensional
meandering channel into a two-dimensional problem, it has the secondary flow and main
flow functions Fs and Fm, respectively:

v(η)
Un

= − 1
κ2

H
Rc

H
rψ

Fs(η) (8)

Fs(η) = 2F1(η) +

√
g

κC
F2(η)− 2

(
1−
√

g
κC

)
× Fm(η) (9)

Fm(η) = 1 +
√

g
κC

(1 + ln η) (10)

F1(η) =
∫ 1

0

ln η

η − 1
dη (11)

F2(η) =
∫ 1

0

ln2 η

η − 1
dη (12)

where Un is the Euclidian norm of longitudinal velocity and rψ is the local radius of the
curvature in the streamline system. This equation shows that the logarithmic profile of the
longitudinal flow could affect the characteristic and shape of the secondary currents.

Odgaard [8] considered the velocity profile of the secondary flow cell as a circular
motion type, and introduced a linear transverse velocity profile using this presumption
with the following equations:

v(η)
v

= 1 + 2
us

v

(
η − 1

2

)
(13)

us = u
2m + 1
2κ2m

H
Rc

(14)

where v = depth-averaged transverse velocity, us = transverse velocity at the water surface,
and m = κC/g1/2. This equation utilizes the longitudinal velocity at the water surface.
With this equation, the author developed a 2D model for simulating the flow and bed
topography in a meandering alluvial channel.

Baek et al. [28,29] used the linear profile of Odgaard [8] to derive the longitudinal
variation of transverse velocity along sinuous channels with alternating bends. Seo and
Jung [30] compared several theoretical velocity distribution profiles of secondary currents
with experimental data from a sinuous channel experiment, and showed that the increase
of sinuosity tends to enlarge the deviation of the transverse velocity.

However, as aforementioned, nonlinear terms that account for interactions between the
primary flow and secondary flow were neglected by those researchers when they derived
the equations of the transverse velocity. The nonlinear terms that account for interactions
between the primary flow and secondary flow needed to be reflected to accurately portray
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the vertical profile of the secondary flow depicted as in Figure 2. The outward centrifugal
acceleration and the pressure gradient due to the superelevation causes the secondary
flow. With nonlinear behavior, the centrifugal acceleration is reduced due to the advective
momentum transport flattening the velocity profile, causing the secondary flow to decrease
in the upper part of the water column.

Figure 2. Vertical profile of the secondary flow with nonlinear behavior. (a) Linear behavior;
(b) Nonlinear behavior.

Blanckaert and de Vriend [4] demonstrated that the curvature-induced secondary flow
was caused by the combination of outward centrifugal force and inward pressure gradient.
In mild curved channels, interactions between the longitudinal and transverse flow would
be small, and the secondary flow would increase linearly with H/Rc. However, nonlinear
behavior by the sharper curves or the history affect by multiple meanders would cause the
decrease and irregularity of the outward centrifugal force, which would then lead to the
overall decrease of secondary flow strength at the top and bottom parts of the water flow.
Ottavenger et al. [24] used the model to show how the nonlinear secondary flow affects the
bed morphology in sharp bends with coupling, and the nonlinear model had better results
compared to the linear model, which over-predicted the transverse bed slope gradients.

In this regard, Wei et al. [27] also showed that the commonly used linear models,
in which secondary current effects linearly depend on the H/Rc, may overestimate the
strength of the curvature inducement. Thus, following the research by Blanckaert and de
Vriend [4], they introduced a nonlinear method concerning the term 1

C f
H
Rc

as the major
control parameter, using the depth over the radius-of-curvature ratio and the dimensionless
Chezy friction coefficient, C f , which is given as C f = C2/g. Wei et al. [27] used the
nonlinear model to find the dependence of secondary flow strength on the H/Rc parameter
in bends with laboratory experiments with various H/Rc terms. Even though their equations
showed better application to sharp curvature flows, the equations were rather complex
and validations were limited to single bend flows and laboratory experiments.

Thus, in this study, existing equations for the vertical profile of secondary currents
were tested using comprehensive experimental data obtained in the meandering channels
with sharp curvature flows and multiple bend flows. A simpler equation in which the
nonlinear term was sustained to include the effect of advective momentum was proposed,
and incorporated into the 2D shallow water model via the dispersion stress method.

2.3. Derivation of the Vertical Profile of the Secondary Currents

In this study, the development of the transverse velocity equations was first based
on the 3D Navier Stokes equation in cylindrical coordinates, as shown in Figure 1. The
equations of motion for longitudinal and transverse velocities are given as [31,32]:

∂u
∂t

+ u
∂u
∂t

+ v
∂u
∂r

+ w
∂u
∂z

= −uv
r

+ gS +
1
ρ

∂τs

∂z
(15)

∂v
∂t

+ u
∂v
∂s

+ v
∂v
∂r

+ w
∂v
∂z

= −u2

r
+ gSr +

1
ρ

∂τr

∂z
(16)

where u, v, w are the velocity components of the s, r, z directions for the cylindrical
coordinates, respectively, r is the transverse coordinate point, ρ is the water density, Sr is
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the transverse water surface slope, s is the longitudinal water surface slope, and τs, τr are
the shear stresses in the s and r directions, respectively shown as:

τs = ε
∂u
∂z

(17)

τr = ε
∂v
∂z

(18)

where ε is the eddy viscosity. Using the assumption of steady and developed flow, and the
logarithmic law for the vertical velocity profile, longitudinal velocity in a cross-section was
derived combining Equations (15) and (17), as below:

u(η)
u

= 1 + αC f (ln η + 1) (19)

where α is the correction term introduced to account for the nonlinear behavior and
C f =

√
g/kC. Then, Equation (16) can be integrated by using Equation (19) for the

longitudinal velocity and using the boundary condition in which friction on the free
surface equals zero. The result of the integration of Equation (16) is the following:

v(η)
U

=
15
κ

H
Rc

[
FA(η)− αC f FB(η)

]
(20)

FA(η) = −
(

2η2 ln η − η2

2

)
(21)

FB(η) =

(
2η2η − 2η2 ln η + η2

4

)
(22)

In this study, for the applicability of the developed equation, the α coefficient was
introduced for nonlinearity, which would be based on the experiment data, and used
in the form of α = ω

(
H
Rc

)
, where ω is a coefficient that would be calibrated with the

secondary current measurements from the channel. This enabled the equation to limit the
growth of the secondary flow in the top and bottom layers of the water flow in sharper
curvatures. Furthermore, in this study, by considering the sensitivity of the depth over
the radius-of-curvature ratio, the H/Rc term was changed to a non-dimensional factor for
the exponent using the measured data from the experiment; the final form of the vertical
profile for the secondary flow then became the following:

v(η)
U

=
15
κ

(
H
Rc

)β[
F′A(η)− αC f F′B(η)

]
(23)

3. Experiments
3.1. Acquisition of the Field Data

To find the effects of the secondary current in meandering channels, a series of large-
scale channel experiments were conducted at the River Experiment Center (REC) of the
Korea Institute of Civil Engineering and Building Technology (KICT) located in Andong,
South Korea. A real-size meandering channel was installed in order to simulate open
channel flows in a controlled outdoor environment. The meandering flume is about 11 m
wide and 600 m long, with reaches of three different sinuosities, as shown in Figure 3. The
full discharge capability of the REC channel is 10.0 m2/s, using large pumping facilities
which draw their water from the nearby Nakdong River. This makes it possible to conduct
various river experiments almost free from scale effects. The experiments were conducted
to obtain the velocity data needed for the creation of a vertical profile equation for the
secondary current, and for the validation of the 2D numerical model incorporated with the
proposed dispersion stress module. Table 1 describes the experiments.
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1 
 

 

 

Figure 3. Site of field experiments: (a) River Experiment Center of KICT; (b) Meandering channel.
with different sinuosity (c) Topographic survey; (d) ADCP measurements by boat.

Table 1. Description of the field experiments.

Case Flume (Sinuosity) Experiment Date Discharge (CMS) Section U (m/s) W (m) H (m)

A3-E11
A312

(Sn = 1.2) 31 March 2016 1.61

1 0.61 6.03 0.54
2 0.58 6.11 0.55
3 0.68 5.91 0.47
4 0.66 5.97 0.43
5 0.64 6.13 0.47
6 0.67 6.01 0.46

A3-E21
A315

(Sn = 1.5)
25 April 2016 1.01

1 0.60 5.46 0.48
2 0.47 5.21 0.45
3 0.64 4.94 0.38
4 0.49 4.92 0.41
5 0.40 4.99 0.52
6 0.49 4.75 0.42

A3-E22
A317

(Sn = 1.7)
26 April 2016 0.82

1 0.43 4.63 0.45
2 0.39 4.96 0.49
3 0.42 5.23 0.45
4 0.36 5.22 0.49
5 0.40 4.91 0.42
6 0.41 4.99 0.43

A3-E31
A315

(Sn = 1.5)
8 September 2016 1.45

1 0.63 5.37 0.43
2 0.50 5.80 0.48
3 0.63 5.24 0.47
4 0.49 5.52 0.54
5 0.59 5.59 0.45
6 0.58 5.54 0.47

A3-E32
A317

(Sn = 1.7)
9 September 2016 1.26

1 0.47 5.73 0.51
2 0.42 5.90 0.53
3 0.43 5.81 0.52
4 0.39 6.08 0.56
5 0.45 5.85 0.50
6 0.43 5.84 0.51
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A topography survey was first done with the total station and RTK-GPS for point
measurements, as shown in Figure 3c. Then, drone-captured aerial photography for the
surface elevation was conducted for interpolation between the surveyed points. Structure-
from-Motion was used by the Pix4D program for the surface elevation points [33]. Figure 4a
is the result of the total station and RTK-GPS point measurements to show the topography
of the meandering channels, and coordinates of the ground control points installed at
12 points over the channel were later used with the drone-captured aerial images to
compute the topography. Although the meandering channel was originally constructed to
be a trapezoidal section, continuous experiments caused the channel to change to a more
natural form with erosion and deposition around the banks, as shown in Figure 4a. Later,
the mesh generation of the meandering channel was completed using the surface elevation
map as shown in Figure 4b.
 

2 

 

Figure 4. Digital elevation map from survey results and mesh generation for HDM-2D. (a) DEM
from survey results; (b) Mesh for HDM-2D.

The flow velocity measurements were conducted with an Acoustic Doppler Current
Profiler (ACDP) and Acoustic Doppler Velocimetry (ADV). The ADCP used in this study
was the SONTEK S5, a multi-band acoustic frequency capable model with profiling ranges
up to 0.06 to 5 m depth and velocity up to 20 m/s [34]. The flow experiments were first
conducted with an ADCP, which was operated on the moving boat connected to a tether
line as shown in Figure 3d, while the channel width during the experiment was about
5–6 m. The ADCP boat was operated six times per section, so the measurements were
taken three times per direction for averaging. Three-dimensional velocity and bathymetry
data were obtained at six cross-sections distributed throughout each meandering channel.
Half of the cross-sections were placed at the apex of curvature, and the other half between
the apexes of the meandering channels as shown in Figure 3. Cross-sections were placed
with tag lines at a distance of 30–50 m each. The flow characteristics were measured at each
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section of the channels, to find out the characteristics of the primary flow distribution and
the secondary flow structure.

3.2. Data Analysis of Secondary Currents in the Meandering Channels

The Velocity Mapping Toolbox (VMT), an ADCP post-processing software package
based on a MATLAB-based toolbox [35], was used to obtain spatially and temporally
averaged velocity data for each cross-section from repeated sectional measurements of 3D
velocities. Figure 5 shows the velocity contours of the temporally averaged longitudinal
velocity, along with secondary currents at bends and straight sections of Case A3-E21. The
measured data can be interpolated to grid nodes using a least-squares regression line fit
through transects at each cross-section with the velocity ensembles. The measured velocity
components were used to derive the depth-averaged vector plots of longitudinal and
transverse velocities for the individual cross-sections. To identify the secondary flow struc-
ture formation within complex meandering flows at the channel, the program also rotates
the velocity vectors for each line in an ensemble to the direction of the depth-averaged
velocity vector. Secondary flow is then defined by velocity components perpendicular to
this rotation, as depicted in Figure 1b. Previous studies of river hydrodynamics have used
this rotation method to detect helical motion in strongly converging flows [36,37].

Figure 5. Secondary current superimposed onto the primary flow contour for Case A3-E21. (a) Section 1; (b) Section 2;
(c) Section 3; (d) Section 4; (e) Section 5; (f) Section 6.

Figure 6a shows the measured secondary current results in meandering channels with
different sinuosities, and these results revealed that as the sinuosity increases, the strength
of the secondary flow increased. Figure 6b shows the relations between the secondary flow
strength and the ratios of the depth over the radius-of-curvature using the experimental
results. In this figure, the non-dimensional index of the shear intensity of the secondary
flow (SFS) is defined as:

SFS =

(
v′2
)1/2

U
=

[ 1
H
∫ H

0 (v− v)2dz]
1/2

U
(24)
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where v′ is the deviation of the transverse velocity at vertical position from the depth-
averaged transverse velocity. This figure shows that the relations are not an exact linear
pattern, and the power form would be an acceptable choice in the description of the
relationship. These experimental results suggest that in order to represent the effect of
secondary currents in the curved channel, the new equation for the vertical profile of the
secondary flow should include H/Rc.

Figure 6. Secondary velocity profile and relation of the secondary flow: (a) Vertical profile of the
measured secondary flow at Section 4, (b) Variation of the secondary flow strength and H/Rc,
(c) Variation of the secondary flow strength using the vertical profile equation.

3.3. Validation of Transverse Velocity Profile

In this study, the coefficients α and β of Equation (20) were found based on the mea-
sured experimental data; constant β was determined to be 0.935 from the relation between
secondary flow strength and the depth over radius of curvature results shown in Figure 6b.
The coefficient ω from α = ω

(
H
Rc

)
was determined to be 20 through comparisons with the

measured velocity data, and affected the term F′B of the proposed equation for the vertical
profile. This enabled the vertical velocity profile to be more applicable to channels with
various curvatures, especially channels with high sharpness and multiple meanders.

For closer analysis and investigation of the effects of the H/Rc on the proposed equation
for secondary flow velocity, the H/Rc term was increased in increments to find the relation
to the size of the secondary flow. Figure 6c shows the higher H/Rc to increase the size of the
secondary flow. Note that as the depth-to-radius-of-curvature ratio increases, the growth
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of the secondary flow size is limited in the top and bottom parts of the vertical profile when
using the secondary flow equation to reflect the nonlinearity shown in the experimental
channels. This is due to the α coefficient introduced in the proposed equation, which serves
as a coefficient to reflect the gradual damping in the secondary flow strength as it increases
with the depth-to-radius-of-curvature ratio. This state can also be seen in Figure 6b, as the
SFS is plotted with H/Rc, which shows some nonlinear attenuation of the secondary flow
strength as H/Rc increases to a value higher than 0.06, as opposed to the linear regression
line. The secondary flow would cause the decrease of the longitudinal flow by nonlinear
behavior caused by strong secondary flows or a history effect in multiple meanders, which
affects the outward centrifugal force; then, the irregular decrease of the centrifugal force
will cause the decrease of secondary flow strength in the top and bottom parts of the water
flow. Figure 6c shows that the proposed secondary flow equation can reflect the nonlinear
behavior in sharp channels to represent the attenuation of the shear effect of the secondary
current in the sharp-curved channels, which was depicted in Figure 2.

To find the acceptability of the transverse velocity profiles, the proposed equation was
compared with the experimental data of the REC meandering channel. Figure 7 shows
the comparison with the experimental data of A315 channel and Table 2 lists the average
root-mean-square errors (RMSE) of the proposed equation and existing equations. Table 2
shows that the proposed equation in this study shows the least RMSE for all cases of
the meandering channels. Figure 7 reveals that the proposed equation shows better fit
in the top and bottom layers of the secondary flow of the vertical profile in full sized
experiments with multiple curves, while the other equations show overestimation at the
points. This was possible since a nonlinear term was reflected in the proposed equation,
and the multiple curves caused a history effect, where the secondary cell that developed at
the former bend in the opposite direction had not completely disappeared at the next bend,
as sketched in Figure 1a.

Figure 7. Comparison of the transverse velocity profiles for Cases A3-E21 and A3-E22. (a) Section 2
(Case A3-E21); (b) Section 2(Case A3-E22); (c) Section 4 (Case A3-E21); (d) Section 4 (Case A3-E22),
(e) Section 6 (Case A3-E21); (f) Section 6 (Case A3-E22).
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Table 2. Average RMS errors of the velocity profile formulas.

Case Section
RMSE

This Study (R2)
Rozovskii [5] Kikkawa [6] de Vriend [7] Odgaard [8] This Study

A3-E21
2 3.03 2.41 3.14 2.63 2.14 0.984
4 4.68 5.02 5.84 5.18 3.77 0.926
6 3.35 2.77 3.29 2.47 2.32 0.986

A3-E22
2 4.56 4.34 4.03 4.35 3.58 0.972
4 3.70 5.34 3.84 2.62 2.64 0.978
6 4.85 3.89 3.18 3.74 3.92 0.962

A3-E31
2 3.85 4.06 6.02 5.58 3.64 0.947
4 3.01 4.52 4.39 4.40 3.28 0.961
6 3.12 3.97 4.06 2.60 3.26 0.978

A3-E32
2 4.41 3.63 3.19 5.17 3.52 0.986
4 4.82 3.78 3.87 6.41 4.28 0.991
6 5.94 3.61 2.98 6.01 2.51 0.958

Average 4.11 3.95 3.99 4.26 3.24 0.969

4. Model Applications
4.1. Development of the 2D Numerical with the Dispersion Stress Term

In this research, the proposed equation for the secondary flow was inserted into a
dispersion stress form of the 2D finite element solver HDM-2D, a depth-averaged numerical
model that was originally developed by Seo and Song [3]. In HDM-2D, the streamwise
upwind Petrov–Galerkin stabilization approach from the finite element method was used
to solve the unsteady two-dimensional depth-averaged flow equations. The Galerkin
method of weighted residuals solves the weak form of the boundary value problem after
multiplying the shallow water equations by a weighting function, and uses Green’s theorem
to integrate the weak form over the flow domain. Then, the results are time-discretized
with a fully implicit method. Finally, the shallow water equations are formed with a
non-conservative form that considered the stability of schemes. The non-conservative form
yields the simpler form of the viscous terms and the upwinding procedure for convective
terms is straightforward, depending on the velocity direction (Agoshkov et al., 1993) [38].
The HDM-2D used in this research uses the momentum equation with the dispersion stress
term in tensor form, as below [3,18,39]:

∂ui
∂t

+ uj
∂ui
∂xj

= −g
∂Z
∂xi
− g

∂H
∂xi

+ vT
∂2ui

∂xj∂xj
− gn2 ui

√ujuj

h
4
3
−

∂Sij

∂xj
(25)

∂Sij

∂xj
=

∂

∂xj

[
hUiUj +

∫ H+h

h

(
u′1(η)−U1

)(
u′2(η)−U2

)
dη

]
(26)

where u1, u2 are the velocity in the x and y directions, respectively, in Cartesian coordinates,
U1, U2 are the depth averaged velocity in the x and y directions, respectively, z is the bottom
elevation, vT is the kinematic eddy viscosity coefficient, n is the Manning coefficient, and
Sij is the dispersion stress term. The momentum equations were discretized by the SU/PG
scheme with an element characteristic length shown by Yu and Heinrich [40,41]. The
eddy viscosity was calculated using the Smagorinky eddy viscosity model [42], which had
sufficient diffusion and dissipation to stabilize the numerical computations. Additionally,
this study decomposed the velocity components into depth-averaged velocities and their
deviations, and inserted them into the integration of the products of the velocity fluctuation
of Equation (26). The proposed equations of the velocity deviation that were derived in
natural coordinates were changed into Cartesian coordinates by the following equations:

u′1(η) = U1Fm(η)− hU′1Fs(η) (27)

u′2(η) = U2Fm(η)− hU′2Fs(η) (28)
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where u′1, u′2 are the longitudinal and transverse velocity deviation components in Carte-
sian coordinates, respectively, U′1, U′2 are the unit normal vector for the longitudinal and
transverse directions, respectively, and Fm and Fs are the longitudinal and secondary flow
functions, respectively.

The above equations, Equations (27) and (28), change the flow in the longitudinal
direction due to the influence of the secondary flow included in the second terms. This
study used the logarithmic equation by de Vriend [7] of Equation (8) for the profile of the
longitudinal flow Fm, while applying the proposed profile of the transverse velocity of
this research by using Equation (30) for Fs, which was different from the secondary flow
equation by de Vriend, which was used by the original HDM-2D [18]:

Fm = 1 +
√

g
κC

(1 + ln η) (29)

Fs =
15
κ

(
H
Rc

)β[
F′A(η)− αC f F′B(η)

]
(30)

The relations for the depth-to-radius-of-curvature ratio were applied to the proposed
transverse flow equation, which was then applied to the dispersion stress model. In this
way, the nonlinear effect was included in the secondary current.

4.2. Validation Using the Rozovskii Channel

For the validation of the model, the experiment data obtained by Rozovskii [5] were
used in a U-curved channel. Rozovskii [5] collected the velocity data in a sharp bend
channel, in which the ratio of the width to the mean radius-of-curvature was 1.0, as shown
in Figure 8a. It was expected that the experimental results in this channel would exhibit
highly 3D flow characteristics, because it was a curve with a width-to-mean-radius ratio
of 0.4 and more, which was considered to be sharp. The cross-section of the bend was
rectangular, and connected to straight inlet and outlet reaches of the same cross-section. The
approach channel was 6 m long, while the exit channel was 3 m long. The entire channel
was horizontal with a 180-degree bend. The discharge in the channel was 0.0123 m3/s, and
the water depth was 0.6 m.

Figure 8. HDM-2D model results in the Rozovskii channel: (a) Top view of the simulated velocity
distribution by HDM-2D in the Rozovskii channel; (b) Comparison of the simulated velocity distri-
bution with experimental data (θ = 143◦); (c) Comparison of the simulated velocity distribution with
experimental data (θ = 186◦).
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This experiment showed that there is a gradual increase of transverse circulation at the
entrance portion of the bend, and a similar decrease at the second half of the bend followed
by more decay of the secondary flow at the straight run part of the bend, shown in the
velocity distribution results in Figure 8. The simulated results contained the super-elevation
of the flow as it goes through the sharp bend. Figure 8a shows that when the flow enters
the bend, the velocity at the inner bank becomes larger, and the velocity at the outer bank
becomes smaller. Then, the simulated velocity profile becomes uniform, later the outer
bank velocity becomes larger with distance from the downstream of the bend exit.

Figure 8b,c indicate that due to the secondary flow effect, the velocity distributions
change through the bend as the flow enters. The figure shows the results at degrees of
143 and 186, where the secondary current is fully developed and exits out of the bend.
This validation conducted comparisons between the experiment results, a model without
dispersion stress terms, and models using dispersion stress terms using three different
equations that have linear and nonlinear effects. The linear dispersion stress model using de
Vriend’s [7] velocity equation, which excluded the nonlinear effects, seems to overestimate
the secondary flow influence in the channel. Additionally, the dispersion stress method
that was implemented using the de Vriend equation [7] in the original HDM-2D displays
less changes to the primary flow distribution compared to the proposed model in this
study. This is shown in Table 3, where the de Vriend equation application had a bigger
mean absolute percentage error (MAPE) than the proposed model. The results show that
the primary flow distribution can be better reproduced by the proposed model than the
simulations without the dispersion stress term or the simulations with the linear dispersion
stress term.

Table 3. Rozovskii channel data comparison with HDM-2D dispersion stress by MAPE.

Model/Degree 143◦ 186◦ Average

Without DS 8.7% 16.2% 12.5%

With DS (de Vriend, 1977) 7.6% 14.3% 10.9%

With DS (This study) 5.6% 10.4% 8.0%

4.3. Validation Using REC Meandering Channel Data

The dispersion stress model incorporated with the proposed velocity profile was
tested against the experimental data obtained from the REC meandering channel. Both
river survey data and the depth data measured using ADCP were used for the mesh
generation of the 2D numerical model HDM-2D. Since the measurements were taken as a
continuous boat-moving area, the averaging of the sections was done by spatial averaging,
with a span and width interval of 0.1 m.

Before applying the dispersion stress, grid refinement was implemented to decrease
the numerical errors so it would be relatively smaller than the flow modeling error results.
The mesh was separated into four cases that had a very fine, fine, medium and the coarsest
grid. The results of the errors for the comparison between the simulated results and ADCP
measurements are shown in Table 4 and Figure 9 with the node size and MAPE results.
Using a grid refinement ratio of over 2, the results show that the error between the very fine
and fine grid was less than 1.4%, even with double the mesh size. From the grid refinement
result, the very fine grid was determined to be suitable for continuous modeling for the
experimental channel.

Table 4. Grid refinement results by MAPE.

Grid Very Fine Fine Medium Coarse

Number of nodes 6120 3060 1648 525

Error (MAPE) 14.8% 16.2% 22.4% 34.1%
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Figure 9. Average MAP errors by comparative mesh size.

To find the effect of the dispersion stress on the flow modeling, the experimental
results were compared with the modeling results that had the dispersion stress term and no
dispersion stress term. The maximum primary velocity was developed along the thalweg
line, and most of the even number sections located at the apex had the primary velocity
distribution skewed toward the outer bank due to the secondary flow effect, as shown in
Figure 10b,d. For the odd number sections, the position of the maximum primary velocity
was affected by the upstream section, due to the history effect of the secondary flow. This
history effect was considered to have arisen by the phase lag between the channel centerline
and the discharge centerline or thalweg line [32].

Figure 10. Computed velocity distributions in the REC meandering channels. (a) Case A3-E21
Elevation; (b) Case A3-E21 Velocity; (c) Case A3-E22 Elevation; (d) Case A3-E22 Velocity.
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Figure 11 shows comparisons of the simulation by HDM-2D model with the measured
data, in order to closely demonstrate the applicability of the dispersion stress term with the
proposed equation to the transverse velocity. For the A315 channel, agreements between
the measured data and the simulation are generally good. The HDM-2D models with the
dispersion stress terms included produced the primary flow distribution that would be
closer to the measured experimental results, which was more skewed towards the outer
bank. Table 5 summarizes the results’ of the goodness of fit between the experimental data
and the numerical simulation shown with the mean absolute percentage error, which was
done specifically at the meander apex of the bends. These results showed that the original
model had errors of 12.9%, while with dispersion stress, the error decreased to 10.4%,
relatively 19% lower compared to the simulation without dispersion stress. The dispersion
stress term skewed the primary distribution toward the outer bank in the apex sections,
which is similar to the measured results. Overall, the results show that the dispersion stress
model with the proposed velocity profile could reproduce the secondary current effect in
sinuous channels quite accurately.

Figure 11. Comparison of the simulated velocity distributions with measured data (A3-E21). (a) Section 1; (b) Section 2;
(c) Section 3; (d) Section 4; (e) Section 5; (f) Section 6.

Table 5. Average MAP errors of HDM-2D simulations.

Case A3-E21 A3-E22 A3-E31 A3-E32 Average

Without DS 10.2% 15.0% 11.5% 14.8% 12.9%

With DS 8.1% 11.8% 9.4% 12.4% 10.4%

5. Conclusions

In this study, large-scale experiments were conducted in the KICT REC meandering
channels to find the nonlinear effect of the secondary current on the primary flow distribu-
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tion. The experimental results found the relations of the secondary flow strength to the
depth over the radius-of-curvature ratio of the channel. Then, the vertical profile equation
for the secondary flow was developed to reflect the nonlinear effects on the secondary
flow. The proposed equation generated a vertical profile that showed a decrease in the
maximum secondary flow strength at the top and bottom of the profile, compared to the
existing equations which omitted the nonlinear effects.

The proposed velocity profile equation was inserted into the momentum equations
with the dispersion stress method in order to induce the nonlinear shear effect of the
secondary flow, which is normally neglected in the depth averaging process. The simulation
results using the proposed equation to the dispersion stress method for the two-dimensional
flow solver HDM-2D showed that the simulation of the Rozovskii channel produced
improvement over the dispersion stress model using de Vriend’s velocity equation, which
was based on the linear behavior between the secondary flow and primary flow as well
as over the non-dispersion stress results in the distributions of the primary flow velocity.
The validation results with REC meandering channels revealed that the 2D hydrodynamic
model with nonlinear dispersion stress term gave a better fit to the experimental data
than the simulation without the dispersion stress term by decreasing the relative error
by 19%. The effect of the channel sinuosity was adequately represented by adopting the
proposed nonlinear velocity profile into the dispersion stress term of the HDM-2D model.
This effect of the sharp bend on the vertical profile of the secondary flow and secondary
flow strength was further illuminated by comparisons with increasing depth over the
radius-of-curvature ratios. The proposed equation incorporating nonlinearity showed
the limitations of the growth of the secondary flow strength. These results confirm that
the two-dimensional model HDM-2D with dispersion stress using the proposed velocity
profile proves useful for assessing the secondary flow effect in meandering channels with
the history effect of multiple bends, as well as in sharp curved channels where 3D spiral
motions are predominant.
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