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Abstract: We present an approach for the calibration of simplified evaporation model parameters
based on the optimization of parameters against the most complex model for evaporation estimation,
i.e., the Penman–Monteith equation. This model computes the evaporation from several input
quantities, such as air temperature, wind speed, heat storage, net radiation etc. However, sometimes
all these values are not available, therefore we must use simplified models. Our interest in free water
surface evaporation is given by the need for ongoing hydric reclamation of the former Ležáky–Most
quarry, i.e., the ongoing restoration of the land that has been mined to a natural and economically
usable state. For emerging pit lakes, the prediction of evaporation and the level of water plays
a crucial role. We examine the methodology on several popular models and standard statistical
measures. The presented approach can be applied in a general model calibration process subject to
any theoretical or measured evaporation.

Keywords: model calibration; evaporation; Penman–Monteith equation; optimization; cross-validation

1. Introduction

Evaporation and evapotranspiration play a crucial role in water management in a
wide range of human activities and thus there is a strong need for accurate estimates.
This need leads to a considerable number of papers and studies that are offering new
methods of such estimates or comparison of methods already used in hydrologic engi-
neering applications. The results of estimation could be compared with reference evapora-
tion/evapotranspiration calculated by FAO Penman–Monteith equation EFAO, which is
recommended as the standard method [1,2]. This equation is considered to be an etalon
to which the results of the other methods can be related and compared. The papers
dealing with evaporation or evapotranspiration present the comparison of the FAO Penman–
Monteith method results to other methods proposing the relations between input data less
complicated and computationally less demanding. For instance, such a procedure was
performed in the study [3] to find the best estimation of water lost from a covered reservoir.
In [4] it is stated that EFAO provides good agreement with evaporation measured on 120 ha
dam. In [5], EFAO is used not only as a reference method and but also a foundation of new
numerical models derived by multiple linear regression and design of experiment method,
followed by the simplified methodology for the quantification of the evaporation rate of
a basin with a photovoltaic system. Similarly, the possibility of reduction of Lake Nasser
evaporation using a floating photovoltaic system is described in [6]. Our research is not
focused only on the area of Lake Most, but also on pit lakes that are only planned, therefore
it is impossible to use limnological and bathymetric data, such as temperature profile or
water depth. Such a situation is considered in [7], where authors used the EFAO for the
computation of the open water evaporation estimation.

FAO Penman–Monteith method is characterized by a strong likelihood of correctly
predicting evapotranspiration in a wide range of locations and climates with differing
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local conditions, e.g., solar radiation, sunshine duration, wind speed, air humidity, air
temperature [8–10].

Our interest in free water surface evaporation is given by the need for ongoing hydric
recultivation of the former Ležáky–Most quarry (Czech Republic), i.e., Lake Most, as well
as another planned hydric recultivation in the region. One of the key components of hydric
reclamation planning is the securitization of long-term sustainability, which is based on the
capability of keeping the stable level of a dimension of the final water level.

Hydric recultivation was proposed to be the best way to deal with the residual of open-
cut coal mines in the north-western region of the Czech Republic. After the mine is closed,
the void could be filled by surface water runoff and groundwater. In the case that these
resources are not strong enough, the pit lake has to be filled artificially and that is the case of
the former Most-Ležáky mine and Lake Most. The level of the new lake has been proposed
to be stable with a water level at 199 m above sea level assuming the tabulated values of
precipitation and evaporation between 500 mm and 600 mm annually [11]. However, this
assumption fails to be true [12].

The evolution of artificial pit lakes is affected by a wide range of chemical, physical,
and namely hydrological processes such as saturation of the coastal lines, leakage through
the bottom, and free surface evaporation. As the lake bottom was sealed before filling,
evaporation was supposed to be the main cause of the observed water loss.

Together with the precipitation, the open water evaporation and vegetation evapotran-
spiration form the main components of the water cycle in nature, and it is said that the
evaporation over the land surface amounts to about two thirds of the average precipitation,
see [13]. However, these estimates differ from location to location and evaporation mea-
surement or calculation procedures are complicated and burdened with a high degree of
uncertainty. This happens due to the complexity of evaporation as a physical phenomenon
and several factors that affect this process. The rate of evaporation could be measured or
calculated, however, because of the simplification of the evaporation process description,
both measurement and computational methods provide only the approximation of ac-
tual evaporation. For further discussion about the historical development of evaporation
and evapotranspiration, see [14] mentioning 166 models and equations obtained during
the last three centuries. The description and characterization of all physical processes
affecting evaporation could be found in a classical book by Brutsaert [15], or Maidment [16]
( Shuttleworth’s chapter).

For computational methods, there are two ways to handle evaporation, described as
mass transfer or energy budget methods, see [13]. Furthermore, the models could be viewed
as temperature-based, radiation-based, mass transfer-based, and combined methods based on the
inputs used to calculate the rate of evaporation, for additional details see [2,16–18].

Additionally, within each group, there are several equations, which are widely cited
in the technical literature. During the study of various evaporation models in the literature,
one can observe several difficulties. One of the main difficulties is the inconsistencies in the
used physical units. For instance, according to the time and place of publication of articles
or books, the same equation can be encountered with the pressure given in kPa, mbar, Torr
or millimeters of mercury column. This variability of units can cause different shapes of the
same equations in different sources, even when the same units are used. Furthermore,
different types of methods require different type of data. However, in practical applications,
we are not able to measure all types of input parameters, therefore the choice of the model
depends not only on the modelling quality but mainly on the ability to measure the required
input physical quantities.

This is one of the main reasons why the development of new simplified models is still
active. The FAO equation is a solid standard, but sometimes too complex to be handled in
practice. For instance, in the article [19], eighteen temperature-, radiation-, mass transfer-based
and combined methods are studied under the condition of climatic change in Germany. The
FAO equation is compared with 31 methods under the humid climate condition in Iran
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in the paper [20]. In [21], five temperature-based methods and three radiation methods
are considered.

In this paper, we are looking for the simplification of the FAO equation in terms of
the number of input quantities. Our goal is to use less complex models to model the
evaporation in the area of Lake Most by calibrating the parameters of the models in the
fitting optimization process against the evaporation estimation by FAO using selected
statistical measures. The motivation came from the lack of measuring devices in the direct
area of the lake. In this paper, we consider models which require only the air temperature,
wind speed, and relative humidity. Besides the Lake Most, we are interested also in the
planned pit lakes. Therefore, the types of models are limited to those which requires only
these basic meteorological data. In this case, it is not possible to measure, for instance, the
temperature of the water.

The performance of the considered methods can be evaluated statistically, and several
statistical measures could be used. The most commonly used are the Root Mean Square
Error (RMSE), Mean absolute error (MAE), and the Mean Bias Error (MBE), see, for in-
stance, [22]. Additionally, the RMSE and MBE could be combined to calculate the so-called
t-statistic test, which expresses the level of confidence between the models, see [23]. A
quite unusual measure could be found in [24], it is mean ratio MR, which is computed as
the average of ratios between the predicted and observed values. Another way to compare
two given models is to compute Pearson’s correlation coefficient (PCC) r or to compute R2

coefficient of determination. These two measures are closely connected since R2 is square
of r. The simplest measure of the prediction quality is the percentage expression of the
difference between models. This is a statistical measure that is well known as percent
bias (PBIAS). The last class of statistical measures that describe the correspondence of
observed and simulated data are agreement indices, such as Nash–Sutcliffe efficiency (NSE)
and Willmot’s agreement index. These are used, for example, in [21,25,26]. For further
discussion of statistical model evaluations, see [27]. In this paper, we compare several se-
lected statistical measures, namely NSE, RMSE, MAE, and PBIAS. However, we suppose
that our methodology can be applied to any chosen distance function. The applicability
depends on the ability to solve the corresponding regression problem.

The choice of temperature-based methods in the case of the Lake Most study is not due
to the current lack of meteorological data since Kopisty meteostation is located only 1 km
from the lake. The simplification of the equation is motivated by the further planned hydric
recultivations in the region. Planned pit lakes are more distant from Kopisty and therefore
the meteorological data provided to the models from Kopisty would not be sufficient. The
data provided to the models on new lakes will be measured directly on the area of new
lakes. In the case of Lake Most, we can identify the appropriate simplified model because
of advantageous location of Kopisty with respect to Lake Most. Therefore, we are interested
in the identification of the simplest suitable model with the low demand on input data.
The construction of the new weather station in the area closer to the new lake does not
make any sense from the financial point of view (because of the presence of Kopisty weather
station). On the other hand, to provide better estimations, we should measure the input
data as close as possible to the area of interest. The measurement of, for instance, the
temperature is relatively cheap. The only question is if the temperature is a sufficient
amount of input meteorological data for providing a sufficient estimation. The accuracy of
the water loss due to evaporation is crucial for those planned artificial lakes. To provide the
best possible estimate, the experiences from the Lake Most will be used. In this paper, we
compare several simplified models with respect to different statistical measures, namely
NSE, RMSE, MAE, and PBIAS.

Additionally, to avoid the overfitting of the calibrated model, we adopt the cross-
validation methodology [28]. We randomly split the data into calibration and validation
parts. The parameters of the model are optimized on the calibration set and tested on the
validation part. Results from the validation part are further analyzed and the best model is
chosen concerning results from all cross-validation splittings.



Water 2021, 13, 1484 4 of 23

The paper is organized as follows. Section 2.4 introduces the methods and materials
used in our computation. To be more specific, we start with the presentation of the Lake
Most in Section 2.1, and the data provided to the models in Section 2.2. Afterwards, we
review the FAO equation in Section 2.3 and the simplified models in Section 2.4. During
the calibration process, we use the statistical measures presented in Section 2.5. The whole
methodology is implemented in R programming language, see Section 2.6 for details. This
section also includes the description of the used cross-validation process. The results are
presented in Section 3 and discussed in Section 4. Finally, Section 5 concludes the paper.

The paper can be considered to be an extension of our previously published work [29].

2. Materials and Methods
2.1. Study Area

The Lake Most is situated in the North of the Czech Republic near the city of Most
50◦C310′ N, 13◦C360′ E, see Figure 1. It was created by the hydric recultivation of the
Most–Ležáky quarry in the central part of the North Bohemian brown coal basin. The former
mine heavily affected the area of 1254 ha and the pit lake, as a part of its revitalization, was
planned to have a surface area of about 300 ha. The project of the revitalization is secured
by the state enterprise Palivový kombinát Ústí (PKU) [30].

Figure 1. Lake Most and the surrounding area (source: www.pku.cz, Google Earth).

Before the flooding, it was necessary to take technical arrangements such as sealing the
bottom of the future lake, construction of an underground sealing wall, and strengthening
the shoreline. All these arrangements allow viewing the Lake Most as a closed system
without natural inflow or outflow. Due to the absent natural inflow, the residual pit of
the lake was filled through an artificial feeder during the period from 2008 to 2014. In the
final phase of lake filling, i.e., in the year 2014, the surface level rose from 197.74 m to the
required level of 199 m above sea level.

After finishing the filling process, Lake Most has an actual surface area of 309.4 ha,
a coastal line length of 8.9 km, a total water volume of 70.5 million m3, and a maximum
depth of 75 m. Throughout the filling of the lake, both operational and basic meteorological
data were monitored. The operational data contain data on the achieved altitude of the
lake level, its surface area, and especially on the volume of water admitted. The filling of
the lake has been finished in 2014 achieving the required surface level of 199 m.

www.pku.cz
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2.2. Data and Data Sources

In our research, we are using the meteorological data collected during the years 2015–
2019. The collection includes all data necessary for the calculation of the Penman–Monteith
equation (see Section 2.3). These meteorological measurements were performed at the
Kopisty weather station situated approximately 1 km from the lake. The station is operated
by CHMI—Czech Hydrometeorological Institute and the data are recorded at ten-minute
intervals. The dataset obtained from CHMI was statistically processed to be used in the
equations to model the evaporation. We present the data basic statistics in Figure 2. In
Kopisty weather station, the wind speed is measured at 10 m above the ground to avoid
the influence of the ground. The air temperature and humidity are measured at 2 m above
the ground.

We also included precipitation frequency for the demonstration of the hydrological
balance in the area of interest. In comparison with the average temperature and precip-
itation in the Czech Republic, the area of the planned hydric reclamation is in the area
with the temperature strongly above the average and precipitation strongly below normal
precipitation, and with the number of hours of sunshine below the typical value in the
Czech Republic [11].

Figure 2. The basic statistics of the daily measurements performed at the Kopisty weather station during the years 2015–2019:
average day temperature Ta, atmospheric pressure P, daylight hours per day n, relative humidity RH, wind speed u2, and
precipitation pr. These data are used in the equations for modelling the evaporation.

2.3. Penman–Monteith Equation

The EFAO equation is of the form

EFAO =
0.408 ∆(Rn − G) + γ 900

Ta+273 u2(es − ea)

∆ + γ (1 + 0.34 u2)
. (1)

Please see Section Abbreviations at the end of this paper for the description and
physical units of the used variables.

According to Linacre paper [31] for daily estimates of the evaporation rate of free water
level, the term G can be neglected, i.e., we set G = 0.
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The term (es − ea) in [kPa], is the difference of saturation vapor pressure and actual
vapor pressure. The values es and ea are given by

es =
1
2

(
0.6108 e

17.27 Tmax
Tmax+237.3 + 0.6108 e

17.27 Tmin
Tmin+237.3

)
, ea =

RH
100

es. (2)

The psychrometric constant γ depends on the atmospheric pressure P in [kPa] and
on above-mentioned constants Cp = 1013 J kg−1 °C−1, λ = 2.45 MJ kg−1 and ε = 0.622[−],
with ε being ratio molecular weight of water vapor to dry air. To compute its value, the
following formula is used

γ =
Cp P
ε λ

= 0.665× 10−3 P. (3)

Using this formula, the computed value of γ depends only on one measured quantity
and that is atmospheric pressure P and is given in

[
kPa °C−1].

The slope ∆ describes the relationship between saturation vapor pressure and temper-
ature. For a given temperature Ta, the corresponding ∆ is given by

∆ =

4098
(

0.6108e
17.27 Ta

Ta+237.3
)

(Ta + 237.3)2 . (4)

The resulting unit of ∆ is
[
kPa °C−1].

The net radiation at the surface Rn in
[
MJ m−2 day−1

]
is, by [1], given as the difference

incoming net short wave radiation Rns and outgoing net long wave radiation Rnl , i.e.,

Rn = Rns − Rnl .

To evaluate Rnl , the knowledge of solar radiation Rs and global extraterrestrial radiation,
Ra is required.

Extraterrestrial radiation is the amount of radiation incident on a unit of the horizontal
surface at the outer boundary of the atmosphere. For places of similar latitude, it is
approximately the same, changing only during the year. There is no influence of cloud
turbidity or air pollution over the Earth’s atmosphere, and therefore, the dose of solar
energy is the highest at any given time. In addition to the solar constant, the angle of
incidence of the sun’s rays at a given location of the atmosphere boundary must also be
taken into account. Therefore, the value of Ra is expressed depending on these quantities as

Ra =
24× 60

π
Gsc dr(ωs sin ϕ sin δ + sin ωs cos ϕ cos δ). (5)

The terms included in Equation (5) are

Gsc = 0.082 MJ m−2 min−1, global solar constant,

dr = 1 + 0.33 cos
(

2π

365
JD
)

, Earth-Sun relative distance [−],

δ = 0.409 sin
(

2π

365
JD− 1.39

)
, solar declination [rad],

ϕ latitude of the site of interest [rad],

ωs = arccos (− tan ϕ tan δ), sunset hour angle [rad],

JD number of Julian day.



Water 2021, 13, 1484 7 of 23

The terms Rs and Rns could be computed by

Rs =
(

as + bs
n
N

)
Ra, (6)

Rns = (1− α) Rs, (7)

where as, bs are Angström coefficients, n[h] and N[h] are actual and maximum possible dura-
tion of daylight, respectively. Finally, α denotes albedo, i.e., the coefficient of reflection.

As the Angström coefficients are not calculated based on the actual solar radiation mea-
surements here, the FAO paper [1] recommendation as = 0.25 and bs = 0.5 in Equation (6)
is used. Furthermore, the free water surface albedo is set as α = 0.08 based on [1].

The maximum daylight duration N is computed as

N =
24
π

ωs. (8)

To determine net longwave radiation Rnl , the following formula is used

Rnl = σ

(
(Tmax + 273.16)4 + (Tmin + 273.16)4

2

)(
0.34− 0.14

√
ea

)(
1.35

Rs

Rso
− 0.35

)
. (9)

The above formula (9) uses the Stefan-Boltzmann constant
σ = 4.903× 10−9 MJ K−4 m−2 day−1 and Rso in

[
MJ m−2 day−1

]
, which is the clear-sky

radiation.
The value of the clear-sky radiation Rso is calculated as

Rso =
(

0.75 + 2× 10−5 z
)

Ra,

where z is the site altitude in [m] above the sea level.
However, despite its complexity of the FAO Penman–Monteith Equation (1), it is

not possible to consider EFAO results to be accurate, since the number of input data to
be measured or calculated by empirical formulae based on measured input data. Such
an estimation process is affected by measurement and calculation errors. For example,
in [32,33], one could find sensitivity analysis of the FAO Penman–Monteith equation in
different climate conditions.

It should be pointed out that Equation (1) was derived as a method to determine the
reference rate of evapotranspiration, i.e., the reference rate of evaporation from growing plants
with the characteristics of hypothetical reference crops such as height, aerodynamic resistance of
their surface, and albedo. For real crops, the rate of evapotranspiration is determined from
EFAO by multiplying the crop-related coefficient Kc

Ecrop = KcEFAO.

With the proper coefficient, the EFAO formula could be used to estimate open water
evaporation. The values of coefficient Kc, i.e., Kc,mid and Kc,end for mid and end season
respectively are tabulated in [1]. Specifically, Kc,mid = Kc,end = 1.05 for shallow lakes, i.e., for
those with a depth of up to 2 m. For deep lakes, i.e., with a depth exceeding 5 m, the values
Kc,mid = 0.65 and Kc,end = 1.25 are indicated. Therefore, it should be borne in mind that
(especially in the case of deep lakes) the result of EFAO could lead to the underestimation
of up to 35% or the overestimation up to 25% during the season.

Since our research is not focused only on the area of Lake Most, but also on lakes
that are only planned and does not exist at present, it is impossible to use limnological
and bathymetric data, such as temperature profile or water depth. This leads us to the
considerations of the article [7], which states that in the case of missing limnological data,
the lake coefficient Kc = 1 can be selected and EFAO result itself could be considered to be
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an open water evaporation estimate. Hence, in all our calibration and validation processes,
the equation EFAO serves us as an etalon and all our results are compared against it.

2.4. Evaporation Estimation Methods

Since the FAO Penman–Monteith equation EFAO (see (1) in Section 2.3) is very input-
intensive and complex in its calculation procedure, many other methods have been derived
to determine the rate of evaporation. Depending on the inputs of the method, we divide
them into temperature-, radiation-, mass transfer-based, and combined methods.

Temperature-based method equations can be considered the simplest type of equations.
They primarily work with a single variable, namely the average mean air temperature Ta.
Quite often these equations have a linear form E = p Ta + q, but they also occur in the
form E = k Tm

a , or the form of exponential formula E = 10p Ta+q or E = ep Ta+q. However,
the group also includes relations in which the temperature occurs in combination with a
member comprising, for instance, relative humidity RH or theoretical length of the solar day N.

In this section, we selected 7 simple (in comparison to the complexity of FAO Penman–
Monteith) evaporation models for the demonstration of our calibration approach.

2.4.1. Regression Derived Relations—Czech Republic

The following three relations are used in the Czech Republic. They are derived by
regression between the observed evaporation and mean daily air temperature, using statis-
tical regression to find both linear and exponential models. The model relations presented in
this section are compared in the paper [34] with measurements on 20 m2 evaporation pan
placed in the meteorological station Hlasivo near the city of Tábor 49◦C290′ N, 14◦C450′ E)
in the South Bohemian Region. This station is operated by Výzkumný ústav vodohospodářský
T. G. Masaryka (VUV, T. G. Masaryk Water Research Institute) and was built in 1957 and has
a 20 m2 evaporation tank, GGI-3000 pan and Class-A pan. The pan evaporation measure-
ments here are carried out from May to October, which is due to the temperatures below
the freezing point in the winter months. The models are given by

ES = 100.0452 Ta−0.204, (10)

EBV = 0.2157 Ta + 0.1133, (11)

EVUV = 0.2157 Ta + 0.726 u2 − 1.2259, (12)

where ES is the equation according to Šermer [35], EBV according to Beran and Vizina [36],
and EVUV according to Adam Beran from VUV published in the official report Model
průběhu meteorologických veličin pro oblast jezera Most do roku 2050 (The modelling of the
course of meteorological quantities for Lake Most area until 2050). In all equations, the
evaporation rate is determined in [mm day−1]. Equation (10) has the form of an exponential
function and therefore its results can never be negative. However, it must be mentioned
that there are limitations of Equations (11) and (12): if the equation produces the negative
evaporation estimation, we set the value equal to zero. For instance, EBV = 0 is set on days
with the mean temperature below −0.526 °C, since EBV would be negative in such cases.

To calibrate the models, we present a parametric formulation of the
Equations (10)–(12) by

ES(θ) = 10θ1Ta+θ2 , (13)

EBV(θ) = max{θ1Ta + θ2, 0}, (14)

EVUV(θ) = max{θ1Ta + θ2u2 + θ3, 0}, (15)

where θ are unknown parameters, which will be calibrated. We extended models by
projection to nonnegative numbers (using the outer max function) to enforce the computed
nonnegative evaporation.
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2.4.2. Kharrufa

The equation presented by Kharrufa in [37] is an example of a nonlinear temperature
formula. It is mostly written in the literature in the form

EK = 0.34 p T1.3
a (16)

and results in the evaporation rate in [mm day−1]. In (16), variable p denotes the percentage
of total daytime hours for the daily period out of total daytime hours of the year. This
form is used, for instance, in [38,39]. The coefficient 0.34 was found empirically and it is
possible to refine it with respect to the site-specific conditions. For example, in [34], the
form EK = 0.25 p T1.3

a is given with the formula being calibrated for the conditions of the
Hlasivo weather station in the South Bohemian Region. In this study, the form (16) with
coefficient 0.34 is used.

In this paper, we the calibrate model (16) introducing the parametric version

EK(θ) =

{
θ1 pTθ2

a if Ta > 0,
0 if Ta ≤ 0,

(17)

and calibrate the unknown parameters θ ∈ R2.

2.4.3. Hargreaves–Samani

Another method was introduced by Hargreaves in article [40] and further modified
to the form which can be found in article [41]. Usually, the Hargreaves–Samani equation is
given in its basic form

EHS = 0.0023 Ra T
1
2

r (Ta + 17.8).

In this equation, variable Tr denotes the difference between daily maximum and
minimum air temperatures [°C].

Although the formula contains a radiation term Ra, it is ranked among the temperature-
based formulae since the term Ra here is just a theoretical value calculated according to
Formula (5). Using this computation of Ra, the Hargreaves–Samani equation takes any of
the following equivalent forms

EHS = 0.0023
Ra

λ
(Ta + 17.8)

√
Tr = 0.0023(0.408 Ra)(Ta + 17.8)

√
Tr = 0.00094 Ra(Ta + 17.8)

√
Tr . (18)

The difference of these forms is only in the usage of division by the latent heat of vapor-
ization of water λ = 2.45 MJ kg−1, which is performed to obtain the results in millimetres
per day.

In this paper, we consider the parametric form of Hargreaves–Samani Equation (18)

EHS(θ) = max
{

θ1Ra(Ta + θ2)
√

Tr

λ
, 0
}

(19)

with parameters θ ∈ R2. These parameters will be optimized during the calibration process.

2.4.4. Schendel

In contrast to the formulae mentioned above, in which the air temperature is sufficient
to calculate the evaporation rate, the air relative humidity RH measurement is required in
the following Schendel equation. The formula has a simple form

ESch = 16
Ta

RH
. (20)

The equation can be found in the original Schendel paper [42]. It is used by many
authors, for example, see [19,20].
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To calibrate this model, we consider the Schendel Equation (22) in the parametric form

ESch(θ) = max
{

θ1
Ta

RH
, 0
}

(21)

with unknown parameter θ ∈ R.

2.4.5. Priestley–Taylor Equation

A potential evapotranspiration based on the Priestley–Taylor can be considered to
be a combined method, which is developed as a combination of the turbulent diffusion
method and the method of energy balance [43]. The basic equation for the computation of
the potential evapotranspiration by the Priestley–Taylor method is given by

EPT = 1.26
∆ · Rn

λ
. (22)

Please see Section Abbreviations in the end of this paper for the description of the
used variables.

In this paper, we optimize the constant parameter in Equation (22), i.e., we consider a
parametric model

EPT(θ) = max
{

θ
∆ · Rn

λ
, 0
}

, (23)

where θ ∈ R is unknown parameter.

2.4.6. Turc Equation

The Turc method was developed for the climatic conditions of western Europe [44].
Several forms of Turc equation could be found in the literature. In this paper, we are
considering the one from [45], i.e.,

ET = 0.0133
Ta

Ta + 15
(23.8856 Rs + 50)CRH ,

with CRH =

{
1 for RH ≥ 50,
1 + 50−RH

70 for RH < 50.

(24)

The term Rs total solar radiation is computed using Equation (6).
In this paper, we calibrate the Turc Equation (24) with respect to two parameters,

namely we work with the parametric model

ET(θ) = max
{

θ1
Ta

Ta + 15
(23.8856 Rs + θ2)CRH , 0

}
, (25)

where the term CRH and its conditions remains the same as in (24).

2.5. Statistical Measures

To compare the performance and predictive power of each evaporation estimate
method E defined in the previous section against the FAO Penman–Monteith equation, the
following statistical measures are used: Nash–Sutcliffe efficiency (NSE), root mean square error
(RMSE), mean absolute error (MAE), and percent bias (PBIAS). Each of these measures offers a
description of the difference between observed or measured and predicted or calculated values.

One of the most popular measures that assesses model predictive power is Nash–
Sutcliffe efficiency (NSE), see [46], which tries to capture the extent of errors and their degree
of variability. It is given by
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NSE(EFAO, E) = 1−


T
∑

t=1
(EFAO〈t〉 − E〈t〉)2

T
∑

t=1
(EFAO〈t〉 − ĒFAO)

2

, (26)

where T is several observations and ĒFAO is the mean value of FAO Penman–Monteith
model given by

ĒFAO =
1
T

T

∑
t=1

ĒFAO〈t〉.

The NSE index indicates the relative magnitude of the residual variance (“noise”)
compared to the measured data variance (“information”), see [27]. The index shows, among
other things, how well the scatterplot of the observed and modelled data corresponds to
a 1:1 straight line. NSE takes the value −∞ ≤ NSE ≤ 1 and NSE = 1 indicates a perfect
match. The value NSE = 0 means that the model predicts with the same accuracy as the
observation mean. Negative values of NSE indicate an unacceptable model.

To capture the size of individual errors E〈t〉 − EFAO〈t〉, root mean square error (RMSE)
and the mean absolute error (MAE) could be used. They are defined by

RMSE(EFAO, E) =

√√√√ 1
T

T

∑
t=1

(E〈t〉 − EFAO〈t〉)2, (27)

MAE(EFAO, E) =
1
T

T

∑
t=1
|E〈t〉 − EFAO〈t〉|. (28)

Both RMSE and MAE also express the model error in units corresponding to the units
of the value observed. The MAE value captures the mean error size and similar information
is provided by RMSE. However, RMSE attaches more weight to larger errors and thus
suggests the presence of “extreme error”. For both MAE and RMSE, it should be noted
that their results are always greater than zero, which results in the loss of overvaluation
or undervaluation information. For both, their lower value indicates a better model.
Concerning the MAE and RMSE indicators, the “half standard deviation” rule is also
mentioned; i.e., in a good model, MAE, as well as RMSE should be less than half the
standard deviation of the observed variable.

The simplest measure of the prediction quality is the difference EFAO − E or the per-
centage expression of this difference. This value is called percent bias and it is computed as

PBIAS(EFAO, E) = ∑T
t=1(E〈t〉 − EFAO〈t〉)

∑T
t=1 EFAO〈t〉

, (29)

where E〈t〉 is the value of the model in time (day) t = 1, . . . , T.
We used the presented statistical measures to calibrate the parameters of the models,

i.e., for each model and measure, we solve the minimization problem

θ∗ = arg min ρ(EFAO, E(θ)) (30)

in the case of ρ ∈ {RMSE, MAE, PBIAS} (given by Equations (27)–(29)), or the maximiza-
tion problem

θ∗ = arg max ρ(EFAO, E(θ)) = arg min−ρ(EFAO, E(θ)) (31)

in the case of ρ = NSE (given by (26)). In both problems, E(θ) represents the considered
parametric model which has to be calibrated, i.e., one of Equations (13)–(15), (17), (19), (21),
or (23).
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During our experiments on model calibration using different statistical measures,
we observed that the maximization of NSE and minimization of RMSE produce the same
optimizer. The following theorem supports this observation with theoretical proof.

Theorem 1.
arg max

θ
NSE(EFAO, E(θ)) = arg min

θ
RMSE(EFAO, E(θ)) (32)

Proof. From the definition of the optimality point θ∗ of the optimization problem on the
left side of (32), we can write for all possible parameters θ

NSE(EFAO, E(θ)) ≤ NSE(EFAO, E(θ∗)),

i.e., using the definition (26)

1−


T
∑

t=1
(EFAO〈t〉 − E(θ)〈t〉)2

T
∑

t=1
(EFAO〈t〉 − ĒFAO)

2

 ≤ 1−


T
∑

t=1
(EFAO〈t〉 − E(θ∗)〈t〉)2

T
∑

t=1
(EFAO〈t〉 − ĒFAO)

2

.

This inequality can be modified to an equivalent form subtracting 1 from both sides

and multiplying by constant negative term −
T
∑

t=1
(EFAO〈t〉 − ĒFAO)

2 to obtain

T

∑
t=1

(EFAO〈t〉 − E(θ)〈t〉)2 ≥
T

∑
t=1

(EFAO〈t〉 − E(θ∗)〈t〉)2.

We divide this inequality by a positive number of data points T and apply the square
root to both sides. Since both sides of the original inequality are nonnegative values and
the square root is an increasing function, the following inequality is equivalent to the
previous one √√√√ 1

T

T

∑
t=1

(EFAO〈t〉 − E(θ)〈t〉)2 ≥

√√√√ 1
T

T

∑
t=1

(EFAO〈t〉 − E(θ∗)〈t〉)2,

i.e., using the definition (27)

RMSE(EFAO, E(θ)) ≤ RMSE(EFAO, E(θ∗)).

This is the optimality condition for the solution of the optimization problem on the
right side of (32).

2.6. Implementation

We have implemented the calibration process in R programming language [47]. This
software provides us with an easy way how to load the data, manipulate them, solve the
corresponding optimization problems, and present the results.

The type of the optimization problem depends on the considered model and the
selected statistical measure, see (30) and (31). We compared several solvers provided by
R programming language (both in computational time and the accuracy of the results)
and we observed that the nlminb algorithm from optim package is the most efficient option
for solving the optimization problems. This algorithm is using PORT routines [48] and
our numerical experiments proved the suitability and stability during the solution of both
linear and nonlinear models.

To generalize our calibration process, we adopt the cross-validation methodology [28].
The modelling with a random subset of data generalizes the results and avoids overfit-



Water 2021, 13, 1484 13 of 23

ting. In our case, we perform 10 random permutations of the data (please notice that the
statistical measures which we are using are independent of the order in time). We split
each permutation into 10 parts—9 of them is used for calibrating the model (i.e., solution
of (30) or (31)) and the remaining part is used for validation. See Figure 3, where we
demonstrate performed 10 calibration-validation processes on one specific data permuta-
tion. We repeat this permutation 100 times and for each of this permutation, we repeat 10
calibration-validation splittings. In total, we obtain 1000 results of the calibration process,
which are further analyzed. This method is well known as K-fold cross-validation.

8     7     4    14    16    10     2     5     1    13     6    20     9    17    18    19    11    12    15     3

valida�on calibra�on

1.]

8     7     4    14    16    10     2     5     1    13     6    20     9    17    18    19    11    12    15     32.]

8     7     4    14    16    10     2     5     1    13     6    20     9    17    18    19    11    12    15     33.]

..
.

8     7     4    14    16    10     2     5     1    13     6    20     9    17    18    19    11    12    15     310.]

Figure 3. The cross-validation: one random permutation of input data is divided into 10 parts,
9 of them are used for calibration, the remaining one is used for validation. On one specific data
permutation, we obtain 10 different calibration results. In this figure, we demonstrate the process on
the data of length T = 20; however, our real dataset is of length T = 2191.

3. Results

We calibrate the models (Section 2.4) against the FAO Penman–Monteith equation
(Section 2.3) using the criteria (Section 2.5) and cross-validation process (Section 2.6). In the
comparison of the original models, the calibration process always results in better statistical
values, see Table 1. The value has been obtained using the parameters presented in Table 2
on the whole data set.

Table 1. The comparison of statistical measures before and after the calibration process. These values have been computed
on the whole data set and correspond to the models presented in Table 2.

NSE RMSE MAE PBIAS

Original Calibrated Original Calibrated Original Calibrated Original Calibrated

ES 0.64947 0.76350 1.06670 0.87618 0.78435 0.69236 13.53217 −0.00762
EBV 0.75216 0.76917 0.89694 0.86561 0.70983 0.69185 7.97212 0.01534

EVUV 0.69760 0.78173 0.99077 0.84180 0.76077 0.67377 −1.68248 0.01862
EK 0.66759 0.85119 1.03877 0.69500 0.77958 0.54785 15.48084 0.00038
EHS 0.89358 0.93006 0.58776 0.47650 0.43779 0.34324 10.93232 0.00307
ESch 0.82408 0.86145 0.75568 0.67059 0.58732 0.52887 10.94825 −0.00027
EPT 0.91229 0.97519 0.53359 0.28381 0.40145 0.19360 11.75804 −0.00316
ET 0.93357 0.96395 0.46437 0.34210 0.37318 0.26877 -14.98293 0.00117
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Table 2. The comparison of original and calibrated models. The calibrated models have been obtained as a mean value of the cross-validation process. The presented models have the
values of statistical measures corresponding to Table 1. Despite the theoretical equality of NSE and RMSE optimal parameters (see Theorem 1), the numerical algorithm provides slightly
different solutions.

Original NSE RMSE MAE PBIAS

ES = 100.0452Ta−0.204 ES = 100.0372Ta−0.1224 ES = 100.0373Ta−0.1255 ES = 100.0422Ta−0.2312 ES = 100.0417Ta−0.2025

EBV = 0.2157Ta + 1.1133 EBV = 0.2325Ta − 0.356 EBV = 0.2327Ta − 0.3578 EBV = 0.2265Ta − 0.2669 EBV = 0.1992Ta + 0.1119

EVUV = 0.2157 Ta + 0.726 u2 − 1.2259 EVUV = 0.2445 Ta + 0.2365 u2 − 0.8668 EVUV = 0.2447 Ta + 0.2243 u2 − 0.8498 EVUV = 0.2386 Ta + 0.2672 u2 − 0.8987 EVUV = 0.2192 Ta + 0.7264 u2 − 1.2253

EK = 0.34pT1.3
a EK = 0.8508pT0.9086

a EK = 0.8854pT0.894
a EK = 0.8184pT0.9182

a EK = 0.3358pT1.2526
a

EHS = 0.0023Ra(Ta+17.8)
√

Tt
λ EHS = 0.0021Ra(Ta+17.5571)

√
Tt

λ EHS = 0.0021Ra(Ta+17.5665)
√

Tt
λ EHS = 0.0021Ra(Ta+16.2065)

√
Tt

λ EHS = 0.0021Ra(Ta+17.8)
√

Tt
λ

ESch = 16 Ta
RH ESch = 14.2663 Ta

RH ESch = 14.1976 Ta
RH ESch = 14.2161 Ta

RH ESch = 14.4211 Ta
RH

EPT = 1.26 ∆(Rn−G)
λ(∆+γ)

EPT = 1.0876 ∆(Rn−G)
λ(∆+γ)

EPT = 1.0876 ∆(Rn−G)
λ(∆+γ)

EPT = 1.0714 ∆(Rn−G)
λ(∆+γ)

EPT = 1.1274 ∆(Rn−G)
λ(∆+γ)

ET = 0.0133 Ta
Ta+15 (23.8856 Rs + 50)CRH ET = 0.0141 Ta

Ta+15 (23.8856 Rs + 78)CRH ET = 0.0141 Ta
Ta+15 (23.8856 Rs + 78)CRH ET = 0.0148 Ta

Ta+15 (23.8856 Rs + 50)CRH ET = 0.0156 Ta
Ta+15 (23.8856 Rs + 50)CRH
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The parameters of the optimal models have been chosen as a mean value of the
statistical measure on testing data. As was described in Section 2.6, we are calibrating
models on the random part of a given data set and since the optimal parameters depend
on this choice, the calibrated parameters are also random variables. Consequently, the new
value of the statistical measure is random as well. See Figure 4, where we demonstrate the
randomness of the statistical value—we plot the statistical measure of the original model
on different training data and compare them with the statistical measures obtained by the
calibration process on these training data. The final calibrated model has been chosen as
a model, which corresponds to the mean value of the obtained calibrations. Each of the
presented graphs corresponds to different statistical measures in the calibration.

Figure 4. The comparison of the statistical measure of the original model and the calibrated model on the validation part of
the data. From these results, the optimal calibrated model is the one that corresponds to the mean value of the calibrated
statistical measures.

We calibrated the models with respect to all considered statistical measures and we
track the change of other measures. As an example, see Tables 3–5 for the results in the
case of the Kharrufa model, Hargreaves–Samani model, and Turc model.
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Table 3. The comparison of statistical measures before and after the calibration process of the
Kharrufa equation. The first row represents the values of various statistical measures (see columns)
of the original model. Remaining rows determine the objective statistical measure, which respect to
the model was calibrated. The columns represent the corresponding values of various measures.

Obtained Value

NSE RMSE MAE PBIAS
C

al
ib

ra
ti

on
ob

je
ct

iv
e Original 0.6675858 1.0387729 0.7795765 15.480837

NSE 0.8511901 0.6950192 0.5481185 −1.191246
RMSE 0.8511973 0.6950022 0.5482104 −1.156551
MAE 0.8509640 0.6955467 0.5478520 −2.451671

PBIAS 0.8149230 0.7750987 0.6029666 0.003074

Table 4. The comparison of statistical measures before and after the calibration process of the
Hargreaves–Samani equation. The first row represents the values of various statistical measures (see
columns) of the original model. Remaining rows determine the objective statistical measure, which
respect to the model was calibrated. The columns represent the corresponding values of various
measures.

Obtained Value

NSE RMSE MAE PBIAS

C
al

ib
ra

ti
on

ob
je

ct
iv

e Original 0.8935767 0.5877587 0.4377886 10.9323242
NSE 0.9300600 0.4764787 0.3440658 −1.2411942

RMSE 0.9300550 0.4764958 0.3442857 −1.0261792
MAE 0.9298460 0.4772072 0.3432423 −2.2165424

PBIAS 0.9297419 0.4775611 0.3461323 0.0023911

Table 5. The comparison of statistical measures before and after the calibration process of the Turc
equation. The first row represents the values of various statistical measures (see columns) of the
original model. Remaining rows determine the objective statistical measure, which respect to the
model was calibrated. The columns represent the corresponding values of various measures.

Obtained Value

NSE RMSE MAE PBIAS

C
al

ib
ra

ti
on

ob
je

ct
iv

e Original 0.6675858 1.03877290 0.7795765 15.4808373
NSE 0.8511901 0.6950192 0.5481185 −1.1912456

RMSE 0.8511973 0.6950022 0.5482104 −1.1565508
MAE 0.8509640 0.6955467 0.5478520 −2.4516705

PBIAS 0.8149230 0.7750987 0.6029666 0.0030740

As we mentioned above, the random choice of calibration data in the calibration
process causes the randomness of the optimal parameters. In Figures 5–7, we present the
different optimal values of calibrated models with respect to various statistical measures.
We can observe that using the cross-validation approach, the final optimal parameters are
a random variable as well.

The calibration process fits the model to the values computed by the FAO Penman–
Monteith equation. We demonstrate this capability on specific examples. Figures 8–10
present the comparison of monthly evaporation computed by FAO Penman–Monteith
Equation (1), Hargreaves–Samani Equation (16), and calibrated Hargreaves–Samani Equa-
tion (17) in the form of cumulative sum and the scatter plot. The calibration has been
performed with respect to NSE.
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Figure 5. The comparison of the calibrated Kharrufa model parameters obtained by the cross-validation calibration process
on training data with respect to various statistical measures.

Figure 6. The comparison of the calibrated Hargreaves–Samani model parameters obtained by the cross-validation
calibration process on training data with respect to various statistical measures.

Figure 7. The comparison of the calibrated Turc model parameters obtained by the cross-validation calibration process on
training data with respect to various statistical measures.
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Figure 8. The comparison of the daily evaporation computed by FAO Penman–Monteith equation, Kharrufa equation, and
calibrated Kharrufa equation with respect to NSE in the form of cumulative evaporation (left) and the scatter plot (right).

Figure 9. The comparison of the daily evaporation computed by FAO Penman–Monteith equation, Hargreaves–Samani
equation, and calibrated Hargreaves–Samani equation with respect to NSE in the form of cumulative evaporation (left) and
the scatter plot (right).

Figure 10. The comparison of the daily evaporation computed by FAO Penman–Monteith equation, Turc equation, and
calibrated Turc equation with respect to NSE in the form of cumulative evaporation (left) and the scatter plot (right).
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The final result is presented in Figure 11. Here, we demonstrate the monthly evapora-
tion computed by Hargreaves–Samani equation in the form of a time-line and histogram of
evaporation in months. The parameters of the calibrated models can be found in Table 2
and the improvement of the used statistical measure on the whole data set in Table 1.

Figure 11. The comparison of the monthly evaporation computed by FAO Penman–Monteith equation, Hargreaves–Samani
equation, and calibrated Hargreaves–Samani equation. The calibration has been performed using various stochastic
measures.
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4. Discussion

In our results presented in the previous section, we processed the results of calibration
on random data from the cross-validation process (see Section 2.6). Before the selection of
the mean model, we removed the outliers based on the quartile thresholding. For instance,
in the case of the Kharrufa equation calibrated with respect to NSE, we removed 11 outliers
more than 1.5 interquartile ranges (IQRs) below the first quartile or above the third quartile.

Our results show that the calibrated parameters depend on the chosen statistical
measure, see Table 2. However, all of them are improving the objective value in comparison
with the original equations, see Table 1.

From the obtained results, we observed that the calibration with respect to one se-
lected measure improves not only this objective measure but also improves the remaining
measures. See Tables 3–5, where we examined the Kharrufa, Hargreaves–Samani, and
Turc model.

The measures presented in Section 2.5 are defined as the sum of local differences. Our
results of cumulative evaporation presented in Figures 8–10 show the consequences of the
formulation of the objective function in this form—the cumulative evaporation computed
by the optimal calibrated model fits the cumulative evaporation computed by the FAO
equation. We observed this property in the case of all measures. However, in the case of
daily evaporation (or monthly evaporation), the local difference can be large, see Figure 11.
Evaporation in some months has been underestimated and in other months has been
overestimated. In any case, this underestimation and overestimation are always better than
in the case of the original equation.

The obtained results follow the equivalency of the calibration process based on NSE
maximization and RMSE minimization, i.e., Theorem 1. Please see Figures 5–7, where we
demonstrate the density of optimal parameters of the calibrated Kharrufa, Hargreaves–
Samani, and Turc equation with respect to the random data split in the cross-validation
process. The small difference between NSE and RMSE is caused by the error of the iterative
algorithm: the optimization algorithm has a stopping criterium based on the change of the
function value. Since the NSE and RMSE have different objective functions, the iterative
algorithm stops the optimization prematurely (sufficiently approximately) in different
optimizers. Especially in the case of Figure 6, the difference is clearly observable. However,
in this case, we are dealing with the Hargreaves–Samani model (19). We suppose that
this difference is caused by the non-linearity of the model (and the non-linearity of used
statistical measures). The difference between objective functions in the solutions computed
by NSE and RMSE is approximately 10−2 (see Table 4), which is the value used in the
stopping criteria of the iterative optimization algorithm. The situation is similar for RMSE.

The results obtained by our analysis show that the calibrated Hargreaves–Samani and
Turc models seem to be the most suitable simplification of the FAO Penman–Monteith
equation in the area of Lake Most. However, it is necessary to mention that the final choice
of the most suitable calibrated equation for evaporation modelling depends not only on the
final value of the statistical measures but also on the input data requirements. Therefore,
we suggest using the Hargreaves–Samani equation since this equation requires only the
input of the extraterrestrial radiation and the air temperature, see Equation (18). Figure 11
presents the final improved evaporation estimation.

5. Conclusions

In this paper, we presented the methodology for the calibration of evaporation models
with the FAO Penman–Monteith equation and demonstrated it on selected simplified
models using the most common statistical measures. Additionally, we implemented a cross-
validation process to remove the overfitting of the calibrated model. This approach can be
easily applied to any model of interest and any sufficiently reasonable statistical measure.
In the paper, we presented a calibration with respect to theoretical values computed by
FAO Penman–Monteith equation; however, the methodology can be used for calibration
with any theoretical or measured reference values of evaporation.
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From the presented results, we suggest using the Hargreaves–Samani equation to
model the evaporation on Lake Most. This equation reported the sufficient approximation
of the FAO Penman–Monteith equation and additionally, it requires only a few input
parameters, which can be easily (and cheaply) measured.

During our research, we observed the global fitting property of common statistical
measures—the evaporation during cold days is underestimated and the evaporation during
sunny days is overestimated. To deal with this issue, we focus our future work on the
division of days into groups with different optimal models.
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Abbreviations
The following abbreviations are used in this manuscript:

EFAO FAO Penman–Monteith Equation (1),
ES Šermer Equation (10),
EBV Beran-Vizina Equation (11),
EVUV the equation recommended by T. G. Masaryk Water Research Institute (12),
EK Kharrufa Equation (16),
EHS Hargreaves–Samani Equation (18),
ESch Schendel Equation (20),
EPT Priestley–Taylor Equation (22),
PBIAS Percentage Bias (29),
MAE Mean Absolute Error (28),
RMSE Root Mean Square Error (27),
NSE Nash–Sutcliffe Efficiency (26),
Ta the average air temperature [°C],
Tmax, Tmin maximal and minimal air temperature [°C],
Tr the difference between daily maximum and minimum air temperatures [°C],
P atmospheric pressure [kPa],

p
percentage of total daytime hours for the period used (daily or monthly) out of total
daytime hours of the year.

RH relative humidity [%],
Ra the extraterrestrial radiation

[
MJ m−2 day−1

]
,

Rn net radiation [kJ ·m−2 · s−1],
Rs the solar radiation

[
MJ m−2 day−1

]
,
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Rso the clear-sky radiation
[
MJ m−2 day−1

]
,

γ the psychrometric constant [m · s−1],
σ Stefan-Boltzmann constant σ = 4.903× 10−9 MJ K−4 m−2 day−1

λ latent heat of vaporization λ = 2.45 MJ kg−1,
Cp the specific heat of air, Cp = 1013 J kg−1 °C−1,
ρa the air density

[
kg m−3],

∆ the slope of saturation vapor pressure curve [kPa · [°C]−1],
u2 wind speed at height 2 m

[
m s−1],

G the heat flow in the soil [MJ m−2 day−1],
es mean saturation vapor pressure [kPa],
ea the current water vapor pressure [kPa],
es − ea vapor pressure deficit [kPa].
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