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Abstract: In this study, the potential antimicrobial activity of plasma-activated tap water (PAW)
was evaluated against Staphylococcus aureus, Escherichia coli, and Candida albicans. For this, PAW
was prepared in a gliding arc plasma system using two treatment conditions: stagnant water and
water stirring by a magnetic stirrer, called moving water. Subsequently, their oxidation-reduction
potential (ORP), pH, electrical conductivity (σ), and total dissolved solids (TDS) were monitored
in different areas of the sample divided according to the depth of the beaker. It was observed that
PAW obtained in dynamic conditions showed a more uniform acidity among the evaluated areas
with pH 3.53 and ORP of 215 mV. Finally, standardized suspensions of Staphylococcus aureus (ATCC
6538), Escherichia coli (ATCC 10799), and Candida albicans (SC 5314) were treated with PAW, and the
reduction of viable cells determined the antimicrobial effect. Our results indicate that the tap water,
activated by plasma treatment using gliding arc, is an excellent inactivation agent in the case of
Staphylococcus aureus and Escherichia coli. On the other hand, no significant antimicrobial activity was
achieved for Candida albicans.

Keywords: plasma activated water; tap water; atmospheric plasma; gliding arc discharge; Staphylo-
coccus aureus; Escherichia coli; Candida albicans

1. Introduction

In recent years, plasma-activated water (PAW) has gained prominence due to its
application in medicine [1–3], mainly due to the effects of inactivation in microbial species
caused basically by the stimulation of high biochemical and biological activities that alter
the properties of water due to its exposure to plasma [4–8]. This plasma water activation
technique is inexpensive and environmentally friendly since it is free of chemicals [9]. For
this type of application, atmospheric non-thermal plasmas (ANTP) are used, namely, the
dielectric barrier discharge (DBD) or the gliding arc plasma jet (GAPJ) [10–17]. The plasma
used as a water activating agent can be applied directly submerged in the liquid or applied
to millimeters of the liquid’s surface [18–24].
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According to Zhou et al. [8], the plasma activates a mixture of reactive oxygen and
nitrogen species (RONS) in water that is highly effective in the long term against resistant
fungi, bacteria, and viruses. Therefore, RONS are primarily responsible for microbial
inactivation, making PAW a potential candidate for application in clinical practice. The
RONS generated in the exposure of water to plasma can include types of species with long
life (between years and tens of minutes); namely, ozone (O3), hydrogen peroxide (H2O2),
nitrates (NO3

−), and nitrites (NO2
−). Also, short-lived species (between seconds and

nanoseconds) are generated, namely, peroxynitrite (ONOO−), peroxynitrite (OONO2
−),

superoxide (O2
−), nitric oxide (NO•) and hydroxyl radicals (•OH) [8,13]. Despite the

good antimicrobial effect of PAW, it is essential to note that these reactive species can
be dangerous to human health, and their activity in eukaryotic cells must be considered
before any application. Recently, Han et al. [25] applied cold plasma directly to edible films
to investigate subacute oral toxicity and demonstrated low toxicity without generating
harmful by-products to human health. Borges et al. [26] showed that the direct use of a
cold plasma jet on epithelial cells has low toxicity. Finally, Ibis and Ercan [27] evaluated
the in-vitro toxicity of distilled water activated by plasma and, later, nebulized on healthy
eukaryotic cells of the human tracheal epithelium where they demonstrated that there
was no damage significant to eukaryotic cells. Therefore, it is evident that the application
of plasma directly to the human cell, the most aggressive treatment method, causes low
toxicity. On the other hand, recent studies have shown that there is no toxicity of PAW on
healthy human eukaryotic cells.

Thinking about the construction of a bench device for water activation/treatment,
which can be used in gynecological, dental, and medical clinics, it is more advantageous to
use plasma applied to millimeters from the surface, which facilitates the architecture of
building a device, without lose the effectiveness of inactivation of microbial species [8–17].
However, despite PAW’s tremendous technological appeal, mainly due to its potent antimi-
crobial effects and wide application in clinical practice, some technical challenges need to
be overcome. As an example, increasing the concentration of RONS produced.

As reported in the literature, the amount of RONS generated per unit volume of
activated water is generally low, requiring a long time of exposure to plasma (several min-
utes or hours) to reach a sufficient amount of activated water [28–32]. Besides the limited
volume of activated water, other factors inhibit the fabrication of portable equipment for
clinical use. For example, the use of pure gases, such as oxygen, argon, and/or helium,
in ANTP reactors [2,30–34] can be expensive, demanding high voltages to maintain the
electrical discharge, in addition to having low efficiency in the production of RONS in high
volumes. Another point that contributes to the increase in the costs of the process is the
need for deionized or distilled water to control and standardize the water. To overcome
these challenges, a versatile and low-cost PAW process is required. In this sense, air plasma,
i.e., an electrical discharge that generates high-density plasma in the air [7,29,35–37], is
an attractive source of low-cost and high-efficiency RONS. In this context, the forward
vortex flow reactor (FVFR) emerges as a gliding arc (G arc) source that potentially has
all requirements mentioned above [38,39]. Another fundamental point is the exchange
of deionized or distilled water for tap water. This exchange is essential to reduce PAW’s
manufacturing costs, as these water purification processes require expensive equipment.
Although tap water has different properties in each country, state, city, and even between
neighborhoods, it is still a cheap and easily accessible alternative around the world. Even
without a universal standardization of its properties and characteristics, tap water can
be activated by plasma and used in medicine, agriculture, etc. In fact, this is done after
a study of toxicity in living beings. Recently, PAW has become a frequently employed
antimicrobial agent [24]. The processes that involve it can be divided into two types: the
direct-PAW mode and the indirect-PAW mode. In the first, microorganisms present in
the water are inactivated during the plasma treatment of the liquid. In the second case,
the water previously treated by plasma is used to induce antibacterial/antifungal activ-
ity immediately after its generation or after some time. An exciting feature is that the
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PAW when adequately stored, can retain its antibacterial/antifungal properties for several
days [40–42]. This long-term antimicrobial efficacy [42,43] can help to inactivate various
microbiological species in regions far from the source of water activation, thus expanding
PAW applications in areas far from large economic centers.

This experimental study is outlined as follows: first, the experimental setup is intro-
duced based on the plasma jet generated in an FVFR-G arc reactor using compressed air
placed a few millimeters from the surface of the tap water. The PAW produced by this
device has been stored for later use. Two different modes of water treatment were tested:
in the first case with stagnant water and in the second case with moving water with the aid
of a magnetic stirrer. After plasma processing, the antimicrobial properties of the treated
water were evaluated against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC
10799), and Candida albicans (SC 5314). Finally, the impact of individual plasma param-
eters on tap water properties were discussed and their influence on PAW antimicrobial
properties were assessed.

2. Materials and Methods
2.1. Experimental Configuration for Obtaining PAW

PAW was prepared by a gliding arc plasma system schematically shown in Figure 1.
The experimental setup comprises a plasma reactor, a high-voltage power supply, an
oscilloscope, an optical emission spectrometer and, an infrared camera. The gliding arc
plasma was generated in a forward vortex flow reactor (FVFR) type [39], and the outer
region is composed of plasma plume and post-discharge regions [39,40]. The gas used in
this study was air generated by an air compressor (Schulz CSD 9/50, Joinville, SC, Brazil)
with a flow of 5 L min−1. This air flow was chosen due to the formation of a continuous
gliding arc discharge with the lowest possible flow, as demonstrated by Doria et al. [39].
The system was powered by a high-voltage transformer (Linsa, Indústria Eletro Mecânica
Linsa LTDA, São Paulo, SP, Brazil) operating at 7.5 kV and 60 Hz. A high-voltage resistance
(approx. 1 kΩ) was used to protect the transformer in case of an electric arc. A Variac
transformer (VARIAC, Cleveland, OH, USA) was used to adjust the high voltage of the
plasma reactor.
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Figure 1. (a) Experimental setup, (b) reactor, and (c) photograph of the FVFR G-arc reactor for
treatment of tap water.

A 250 mL beaker containing tap water collected at the Laboratório de Plasmas e
Processos (LPP—23◦12′31.2” S 45◦52′40.9” W) (pH of 6.53 and with a soft hardness of
2.0 mg/L CaCO3) (dataset obtained in São José dos Campos—São Paulo—Brazil according
to the National Institute of Metrology, Standardization and Industrial Quality, Inmetro [44])
was placed on a magnetic stirrer (Kasvi CK FG, Kasvi, São José dos Pinhais, PR, Brazil)
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and the nozzle of the gliding arc reactor was positioned 5 mm from the water surface. The
water treatment time was 30 min.

To obtain the electrical signals from the gliding arc discharge, a high voltage probe
(Tektronix P6015A, Tektronix, Beaverton, OR, USA) and a self-adjusting current probe
(Agilent N2869B, Agilent, Santa Clara, CA, USA) were used. All electrical signals were
recorded on a digital oscilloscope (Keysight DSOX1202A, Keysight, Santa Rosa, CA, USA),
and the current signal was inferred directly from the grounded electrode. A photo of
the discharge configuration (Figure 1c) was taken with a smartphone (Google Pixel 3XL,
Google, Mountain View, CA, USA).

Doria et al. [39] reported an increase in the error measured for the discharge power
due to the fact that some charged particles escape from the plasma plume. Schmidt
et al. [24], related the same problem using distinct plasma reactors. Based on this problem,
to calculated the electrical power dissipated into the plasma (Pdissip), Doria et al. [39]
suggested using the following equation:

Pdissip(W) =
1

T2 − T1

∫ T2

T1

V(t)I(t)dt (1)

where V(t) is voltage, I(t) is the electric current and T2 − T1 is the time interval.
Figure 2a shows the typical waveforms for discharge voltage and current recorded by

oscilloscope using a fixed Variac control position. As can be seen, the peak-to-peak voltage
is 2694 V for air flow of 5.0 L min−1.
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Figure 2. (a) Discharge voltage and current waveforms of G-arc operating with air flow of 5 L min−1 and (b) waveform of
G-arc discharge power used to calculate the mean power through Equation (1).

Figure 2b illustrates the instantaneous discharge power waveform as a function of
time. It is worth highlighting that the integral of the curve over a time interval (T2 − T1)
of 20 ms allows to obtain a mean power in the discharge of 5.1 W. As a consequence,
the consumption of 10 Wh for the production of 1 L PAW is equivalents to a nowadays
expense of below 0.01$ or 0.01€ per liter for electricity and water. Therefore, the choice of
compressed air gas is justified.

Optical emission spectroscopy (OES) was used to characterize the main plasma species
in UV-visible range of 200–500 nm. For this, an optical emission spectrometer (Ocean Optics
USB4000, Ocean Insights, Rockster, NY, USA) with a resolution of 1.5 nm was used. The
OceanView software (OceanView Software, Ocean Insights, Rockster, NY, USA) was used
to acquire the optical spectrum. As shown in Figure 3, the optical emission spectrum of the
air plasma contains NH, N2, and OH species, which come from atmospheric air [39].
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Figure 3. OES spectrum of gliding arc plasma jet operating at air flow of 5 L min−1 and discharge
power of 5.1 W.

It is worth mentioning that both the electrical and the optical emission parameters
presented aimed at detail the plasma used to treat the tap water. As the work is focused on
the changes generated in tap water and its antimicrobial effect, we find it more convenient
to present these data in this section instead of showing them in results and discussions.

Finally, thermal images of the water during plasma treatment were taken using an IR
camera (model TiS 10, Fluke, Everett, WA, USA).

2.2. Water Physicochemical Properties Measurements

The pH value, the oxidation-reduction potential (ORP), the electrical conductivity
(σ), the total dissolved solids (TDS), as well as the water temperature were measured
with a multiparameter (Mult-007, IonLab, Araucária, PR, Brazil), right after the plasma
activation process. For the evaluation of the physical-chemical parameters, the experiment
was designed as follows. Tap water was placed in a 250 mL beaker on a magnetic stirrer,
and two forms of treatment were performed. In the first case, the tap water was exposed
to the plasma with the agitator turned off, and in the second case, the agitator was kept
on at 200 rpm. Tap water before plasma activation was used as a control sample. Firstly,
the effect of treatment time in stagnant and stirring water modes was studied with the
multiparameter water sensors (Multisensor, IonLab, Araucária, PR, Brazil) positioned at
the bottom of the beaker. For this step, tap water samples (250 mL) were treated between
5 to 30 min with water samples divided into six sets corresponding to different plasma
exposure times (5, 10, 15, 20, 25 and 30 min) for each mode. It is essential to mention that
to maintain the same activation kinetics of PAW, tap water (250 mL) was changed for each
time of exposure to plasma (5, 10, 15, 20, 25 and 30 min). This methodology was repeated
for sets of samples every 5 min for both forms of water treatment. It is worth mentioning
that, for each sample, the measurements were repeated five times.

The second part of the study aimed to evaluate the variation of the PAW physicochem-
ical parameters along with the depth of the beaker right after the plasma treatment for the
stagnant and agitated water modes. Figure 4 illustrates the sensors’ positions at different
points in the beaker used to measure the physicochemical parameters of the PAW.
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Figure 4. Water characterization points before and after plasma treatment using the multi-parameter
meter as a function of depth.

A gradient of the RONS content along with the depth of the beaker can be expected
with a higher concentration near the arc nozzle G and a lower concentration at the bottom
of the beaker. Measurements were performed in five vertically aligned positions defined
below: position A (between 250 and 200 mL), position B (between 200 and 150 mL), position
C (between 150 and 100 mL), position D (between 100 and 50 mL) and position E (between
50 and 0 mL). Also, an investigation of the evolution of the PAW physicochemical param-
eters was carried out. The methodology used in both water treatment modes consisted
of measuring water characteristics at three different times after treatment: the first data
acquisition was 5 min after treatment, the second measurement 2 h after treatment, and
the third measurement, which occurred 24 h after treatment. It is worth mentioning that
the PAW was kept at room temperature (25 ◦C) in the beaker, and the measurements were
repeated five times.

2.3. Microbiological Assays
2.3.1. Strains and Inocula Preparation

Reference strains of a Gram-positive bacterium Staphylococcus aureus (ATCC 6538),
Gram-negative bacterium Escherichia coli (ATCC 10799), and the fungus Candida albicans (SC
5314) were included in this study. The strains were plated on tryptic soy agar (TSA), Broth
Heart Infusion (BHI), and Sabouraud dextrose, respectively. Plates were incubated at 37 ◦C
for 24 h, under aerobiosis. Then, standardized suspensions containing 106 cells/mL of
each microbial species were prepared in sterile saline solution (NaCl 0.9%) with the aid of
a spectrophotometer (AJX-1600, Micronal, São Paulo, SP, Brazil), according to the following
parameters: wavelength (λ) of 490 nm and optical density (O.D.) of 0.374 for S. aureus,
λ = 600 nm and O.D. = 0.050 for E. coli, and λ = 530 nm and O.D. = 0.138 for C. albicans.

2.3.2. Antimicrobial Activity

For the evaluation of antimicrobial activity, the groups tested were: (i) PAW (pH 3.5);
(ii) Non-activated tap water (TW) (negative control, pH 6.5); and (iii) Sterile distilled water
adjusted to pH 3.5 (low pH control). The low pH control was included as a control to
evaluate the possible effect of the low pH on the microorganisms. PAW was sterilized by
filtration using a 0.22 µm membrane (Biofil Syringe filter, Microlab Scientific Co., Mongkok,
Kowloon, Hongkong), with the aid of a sterile syringe. An aliquot of 125 µL of the
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microbial suspension was added to 875 µL of PAW in microtubes, homogenized, and
maintained for 10 and 30 min. Afterward, serial dilutions of the suspension were obtained
in sterile saline solution (NaCl 0.9%). An aliquot of 100 µL were plated on tryptic soy agar
(TSA) for S. aureus, Broth Heart Infusion (BHI) for E. coli, and Sabouraud dextrose for C.
albicans, according to the method described by Miles et al. [45]. Plates were incubated at
37 ◦C for 24 h, under aerobiosis. After the incubation period, the number of colonies was
counted, and the value of colony-forming units per milliliter was calculated (CFU/mL).
The experiments were carried out in triplicate.

2.3.3. Statistical Analysis

Graphpad Prism v7.0 software (Graphpad Company, San Diego, CA, USA) was used
to perform the statistical analysis and plot the graphs. Data was previously analyzed by
the normality test. Results on antimicrobial effect were compared by One-way Analysis of
variance (ANOVA) and Tukey’s post hoc test for the S. aureus and C. albicans groups. As data
obtained for E. coli was not normally distributed, they were compared by Kruskal-Wallis
and Dunn’s post hoc tests. The level of significance was set at 5%.

3. Results and Discussion
3.1. Physicochemical Measurements and Thermal Analysis of Water

It is worth mentioning that the water collected from different taps in the same building
did not present other properties or parameters. In this case, it was not necessary to use an
error bar in physicochemical parameters. Even so, in buildings with older pipes or with the
possibility of taps with little use, there is probably some variation in the water parameters,
basically due to the fact that the water line is slightly older. In such cases, better attention
will be required to the collected parameters.

3.1.1. Effect of Treatment Time

Figure 5a show the pH and ORP measurements as a function of the treatment time for
the conditions of stirrer turned off and stirrer turned on during the plasma-activated water.
It is important to note that the measurements were performed at the bottom of the beaker.
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Figure 5. (a) pH and oxidation-reduction potential (ORP) of water as a function of plasma treatment time for conditions of
stirrer on and off during the plasma activation. (b) electrical conductivity and total dissolved solids of water as a function of
plasma treatment time for conditions of stirrer on and off during the plasma activation (error bar is not shown in the graphs
(pH error (±0.05); ORP error (±5 mV); σ error (±5 µS/cm); TDS error (±5)).

It can be noted here a different behavior between the stagnant water and water
stirring by a magnetic stirrer, both for pH and for ORP. When the plasma jet is placed a
few millimeters from the water surface and treatment is started on 250 mL of stagnant
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water, there is a slow diffusion of RONS species through the water volume, making it
difficult for these species to migrate to the bottom of the beaker, this translates into a slow
reduction in pH (6.53 ± 0.05 to 6.00 ± 0.05) and an increase in ORP (26 ± 5 to 52 ± 5 mV)
at the beaker’s bottom. This fact is not observed, however in the case where the water
remained agitated throughout the treatment. In this case, there was a drastic decrease with
subsequent saturation of the pH value after 25 min of treatment. For the ORP, there was an
exponential increase in its value during the 25 min of treatment and subsequent saturation
at 200 ± 0.05 mV. These results demonstrate the importance of stirring large amounts of
water during water treatment with a gliding arc plasma jet in non-contact mode. In a recent
study, M. Schmidt et al. [24] used an Inductively-Limited Discharge to activate 500 mL of
tap water and, after 30 min, reached a pH = 6. F. Judeé et al. [12] used a DBD system for
tap water treatment and a pH reduction from 7.5 to 6.5 was observed. Thus, the use of the
gliding arc system with moving water proved to be a very efficient activation treatment for
tap water.

Due to the lack of studies with tap water using air as a gas plasma source, as a
comparison, studies that investigated the ORP of sterile distilled water (SDW) were used.
According to Q. Xiang et al. [46,47], the ORP increased from 546 to 552 mV after the G Arc
treatment of 200 mL of SWD at discharge power of 750 W and a compressed air flux of
30 L min−1 for 30 s without stirring. Zhao et al. [48], using an atmospheric cold plasma
jet (ACPJ), treated 30 mL of SWD for 5 min in static mode. They observed an increase
in PAW’s ORP value to 546.77, 558.57, and 565.40 mV at 15, 22, and 30 kV, respectively,
showing that the voltage had a significant impact on the oxidation-reduction potential.
On the other hand, D. Cheng et al. [49], using an atmospheric-pressure plasma jet (APPJ),
observed an ORP increase from 224.7 to 463.8 mV in SWD after 20 min of plasma treatment
and with a magnetic stirrer. These results corroborate our data (Figure 5a) and show the
importance of stirring in the PAW process.

Figure 5b show the σ and TDS measurements as a function of the treatment time
for the stirrer’s conditions turned off, and stirrer turned on during the plasma-activated
water. As demonstrated for pH and ORP measurements, it can be stated that a different
behavior as a function of plasma treatment time occurs between the stagnant water and
water stirring by a magnetic stirrer, both for σ and TDS. Figure 5b shows that during the
first 25 min of activation, σ decreases. For plasma activation time greater than 25 min, the
electrical conductivity increases and abruptly returns to the tap water value before the
activation, i.e., 220 ± 5 µS/cm. In the case of stirrer on, during the first 10 min of activation,
σ decreases from 220 ± 5 to 115 ± 5 µS/cm. For plasma activation time higher than 10 min,
σ increases more slowly to the value of 220 ± 5 µS/cm in comparison with stagnant water
experiment. F. Judeé et al. [12] used a DBD system for tap water treatment. They observed
similar behavior with a decrease from 647.33 to 614 µS/cm in the first 5 min. For 5 and
30 min of plasma exposure, they found that σ increased linearly with activation time, in a
range covering values from 614 to 731.33 µS/cm. M. Schmidt et al. [24] found that after
30 min of tap water plasma treatment, they achieved an increase in σ of less than 50 µS/cm
(from ~600 to 650 µS/cm). In the case of TDS measurements, the behavior was the same of
σ (as can be seen in Figure 5b) due to the direct relationship between dissolved solids in
the liquid and conductivity.

3.1.2. Effect of Water Dynamic Plasma Activation

Table 1 shows the physicochemical parameters of the PAW along the depth of the
beaker after plasma treatment for both modes. The pH, ORP, σ, TDS and temperature
in both modes were measured after 5 min, 2 h and 24 h of plasma treatment. During all
characterization, the PAW was kept at room temperature (25 ◦C) in the beaker. As shown
in Table 1, the stagnant tap water activated by plasma has a reduced diffusion across the
volume of water, making it difficult for these species to migrate to the bottom of the beaker.
At 5 min, a gradient of temperature of 43 ± 1 in position A to 37 ± 1 ◦C in position E
was observed. This heating effect was expected due to the proximity of the plasma jet
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to the water surface. For this same analysis time, it was observed that in position A the
pH = 2.77 ± 0.05, but at the bottom of the beaker (position E) the pH = 6.05± 0.05, showing
the difficulty of activation of the entire liquid volume when the water is kept static. In turn,
the ORP at the top of the PAW (position A) has approximately 6 times higher value when
compared to the ORP at the lowest position (position E). Both the σ and TDS exhibit the
same behavior as ORP.

Table 1. Measurements of the physicochemical parameters of the non-treated tap water and PAW in
both modes realized at 5 min, 2 h and 24 h after the activation by plasma (according to the equipment
manual, all measured parameters have an error of ± 2%).

Time after
PAW

Sensor
Position

pH
(±0.05)

Temperature
(±1 ◦C)

ORP
(±7 mV)

σ
(±5 µS/cm)

TDS
(±5 ppm)

Control sample

- A to E 6.55 25 27 220 150

PAW sample—Stagnant water

5 min

A 2.77 43 239 540 370
B 2.80 43 237 480 330
C 3.40 43 217 400 280
D 5.55 39 75 280 190
E 6.05 37 51 220 150

2 h

A 3.33 25 212 240 160
B 3.98 25 167 230 152
C 3.96 25 165 220 150
D 3.95 25 165 220 150
E 3.96 25 165 220 150

24 h

A 3.85 25 183 220 150
B 3.85 25 183 220 150
C 3.85 25 183 220 150
D 3.85 25 183 220 150
E 3.85 25 183 220 150

PAW sample—Stirred water

5 min

A 3.21 34 221 210 80
B 3.33 33 212 210 90
C 3.32 33 211 220 150
D 3.31 32 211 220 150
E 3.48 32 199 220 150

2 h

A 3.53 25 215 220 150
B 3.53 25 215 220 150
C 3.53 25 215 220 150
D 3.53 25 215 220 150
E 3.53 25 215 220 150

24 h

A 3.53 25 215 220 150
B 3.53 25 215 220 150
C 3.53 25 215 220 150
D 3.53 25 215 220 150
E 3.53 25 215 220 150

Two hours after the plasma treatment, all measured parameters exhibit much better
homogeneity. However, only 24 h after the treatment in static mode, the PAW parameters
reached stability with the same values for all measured positions in the beaker. While the
water temperature, conductivity, and TDS returned to their initial values, the pH factor
and ORP still maintain values that are different from those of untreated water.

On the other hand, only 5 min after plasma treatment, the water stirred presents a
quasi-stability of the physicochemical parameters of the PAW. After 2 h, the total homo-
geneity of all parameters of the PAW is achieved. Therefore, based on pH and ORP results,
respectively, 3.53 ± 5 and 215 ± 7 mV, the PAW treated for 30 min in the dynamic mode
was chosen as the best option for the inactivation of microbiological species investigated in
this work.
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According to the literature [24,50,51], the continuous decrease in pH of the plasma-
activated nonbuffered solution (soft hardness of 2.0 mg/L CaCO3 of our tap water) with
increasing treatment time form new chemical species that be responsible for the decrease
in the pH of water. However, as shown in Figure 5a the pH reaches a steady state after a
certain activation period and remains constant. Another parameter that increased 10 times
after the treatment was the ORP, which determines the ability of solutions to oxidize or
reduce a substance. The ORP concerns the concentration of oxidizers and their strength or
activity [50]. ORP is reported to be the principal responsible for destructing microbiological
systems’ membrane integrity with the fundamental function of affecting the cells’ inner and
outer membranes [52]. Among the RONS generated in PAW, hydrogen peroxide (H2O2) is
mainly responsible for the formation of ORP [53] and has a rapid potential for disinfection
of liquids [17,54,55].

3.1.3. Thermal Analysis of tap Water during Plasma Treatment

Figure 6 show the infrared thermal images of the beaker with water during the plasma
treatment in stagnant and stirred modes, respectively. The thermal images of the beaker
during the activation of the water by plasma were recorded in 0 min; 1 min; 5 min; 10 min;
15 min; 20 min; and 30 min, respectively. For stagnant water, a slow temperature gradient
can be seen through the color gradient. This behavior can be compared to the difficulty
of reactive species from plasma, such as RONS, in migrating to the bottom of the beaker,
a fact that is correlated to the slow reduction in pH over the volume of water (as shown
in Figure 5a). However, this fact is not observed in the case where the water remained
agitated throughout the treatment. In this case, a continuous temperature gradient occurs,
where, in 20 min of treatment, a continuum of the color gradient was observed which
shows a thermal balance of the PAW contained in the beaker. This result resonates with
the saturation of pH and ORP presented in Figure 5a (stirred on). Therefore, the thermal
analysis of water during the plasma activation process demonstrates the importance of the
effect of agitating large volumes of water during its treatment, especially for the case of
non-contact plasma jet treatment.
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3.2. Microbiological Analyses

To screen PAW antimicrobial activity, three clinically relevant microbial species, were
included in the study. Staphylococcus aureus and Escherichia coli were included, as they
are related to infections acquired in hospital environments [55] and represent the main
groups of bacteria (Gram-positive and Gram-negative, respectively). Candida albicans are a
species of opportunistic fungus that can cause various human diseases, from superficial to
widespread infections [56]. Therefore, the inclusion of several microbial species in antimi-
crobial screening studies is vital due to the different cellular structures and metabolism
that considerably affect susceptibility.

Figure 7 shows the results obtained for the effect of PAW in S. aureus. As can be seen,
a significant reduction in viable cells was detected after contact with PAW for 10 min and
distilled water pH 3.5 (p = 0.0001) when compared to non-activated tap water (p = 0.0035).
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Exposure to PAW for 30 min showed the same results presented for 10 min, i.e.,
PAW and distilled water with pH 3.5 significantly reduced the viability of S. aureus when
compared to the control (p = 0.0014 and 0.0016, respectively). Therefore, our results showed
a reduction of 3-log UFC-mL−1, which is similar to the result obtained previously by Zhang
et al. [57]. However, these authors used deionized water exposed to argon and oxygen
(2% Ar/O2) and a dielectric barrier discharge plasma reactor (DBD) for 5 min. Also, the
time of water exposure to plasma was longer than that used in our study (40 min). Pemen
et al. [58] reported that PAW produced from tap water using a transient arc plasma reactor
and a loop system could inhibit Staphylococcus epidermidis after 20 min of exposure. In
the present work, PAW and distilled water with pH 3.5 showed a similar inhibition effect
(p > 0.05) in S. aureus.

On the other hand, the PAW significantly reduced the number of E. coli after 10 min of
exposure, both to non-activated tap water (p = 0.0002) and distilled water pH 3.5 (p = 0.0498)
(Figure 8). Interestingly, after 30 min of exposure, no differences were detected between
the groups to the control (p > 0.05). A previous study reported the effect of PAW on E.
coli contained in a mixed suspension with Klebsiella pneumoniae, Acinetobacter baumannii,
and Pseudomonas aeruginosa, where PAW was obtained after exposure of distilled water to
the gliding arc discharge for 10 min, and E. coli was inhibited after 20 min of contact [59].
In addition, Traylor et al. [42] observed a significant reduction in E. coli after 15 min of
exposure to PAW produced by the air dielectric barrier discharge.
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activated water (PAW) for 10 and 30 min. TW: non-activated tap water (negative control); Control (pH): distilled water pH
3.5. Different superscript letters indicate significant differences among the groups. (p < 0.05) based on ANOVA statistical
test followed by Kruskal-Wallis and Dunn’s post hoc test.

No significant reduction in the C. albicans count was detected after contact with PAW
or distilled water with pH 3.5 (p > 0.05) exposed for 10 or 30 min periods (Figure 9). These
results differ from a previous study in which PAW, generated by the exposure of deionized
water exposed to air plasma prepared in a DBD reactor for 5 min, showed an inhibitory
effect on the suspension of C. albicans [60]. The impact of PAW on fungi species has been
little investigated so far, and future studies using different parameters should be performed.
The differences in the susceptibility of C. albicans to PAW, when compared to bacterial
species, can be correlated to other cellular components, notably the fungal cell wall that
presents several peculiarities [61].
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The antimicrobial effect of PAW has been correlated with reactive oxygen and nitrogen
species [62]. Oxidizing species are formed in aqueous solutions and can vary considerably
depending on the gas mixture used for plasma formation [63], but the presence of nitrites,
nitrates, and H2O2 is highlighted [64]. The role of peroxynitrite on the antimicrobial
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activity of PAW has been also suggested [30,60] as it can damage biologic molecules, such
as membranes and DNA [65]. In the present study, reactive species’ presence was proven
by a set of parameters such as pH, the potential of oxidizing and reduction, and electrical
conductivity [66].

Another factor often related to the antimicrobial effect is acidification. Previous studies
have suggested that water acidification and the presence of reactive species (such as OH,
NO2−, OH−) act synergistically in PAW [60,62]. To investigate the extent of pH effect on
antimicrobial activity, microbial suspensions were exposed to distilled water adjusted to
pH 3.5 with HCl. However, it is essential to note that PAW inhibition and distilled water
with pH 3.5 should be compared with caution since HCl is a strong oxidizer.

Interestingly, the bacterial species included in this study behaved differently in these
trials. For S. aureus, PAW and distilled water at pH 3.5 showed similar inhibitory effects
after 10 and 30 min of exposure, suggesting that acidification has an essential role in the
inhibitory process. On the other hand, for E. coli, PAW was significantly more effective than
distilled water at pH 3.5 after 10 min of exposure, suggesting that reactive species played a
central role. It can also be inferred that short-lived reactive species mediate the inhibition
of E. coli in PAW since no inhibitory effect was observed after 30 min of contact. Nitric
oxide, hydroxyl radicals, superoxide, peroxynitrite, and peroxynitrite are the short-lived
reactive species most frequently encountered [63].

4. Conclusions

This experimental study explored and discussed the antimicrobial effect of plasma
activated tap water (PAW) prepared using an atmospheric pressure gliding arc plasma jet
generated in a forward vortex flow reactor (FVFR) type. Its potential antimicrobial activity
was investigated against the following microorganisms: Staphylococcus aureus, Escherichia
coli and Candida albicans. For this, we carried out a comprehensive characterization of
the physicochemical characteristics of PAW in two treatment conditions: stagnant water
and agitated water at 200 rpm. The PAW obtained under agitation conditions showed a
more uniform acidity between the areas evaluated with pH 3.5 and ORP of 215 mV. These
parameters are related to the long-lived RONS species, namely, ozone (O3), hydrogen
peroxide (H2O2), nitrates (NO3

−) and nitrites (NO2
−) [8,52–55]. Thus, the FVFR G arc

system with moving water proved to be a very efficient activation treatment for tap water
compared to the DBD system [46] and Inductively Limited Discharge [24]. Finally, S. aureus,
E. coli and C. albicans were put in contact with PAW to assess antimicrobial activity through
statistical analysis.

According to our results, PAW has an excellent antimicrobial potential to inactivate S.
aureus and E. coli due to the low pH 3.5 and high oxidation-reduction potential (ORP) of
220 mV achieved by the FVFR G arc. This antibacterial effect is related to the interaction
between reactive species (RONS) present in PAW and microbial species. The presence
of RONS in PAW was confirmed by a set of parameters such as pH, ORP and electrical
conductivity [66]. Probably, the interaction between long-lived RONS (H2O2, NO3

− and
NO2

−) and bacterial species was responsible for damaging biological molecules, such as
membranes and DNA [65]. For S. aureus, the results suggest that there is a dependence
between acidification and the inhibitory process due to similar inhibitory effects after
10 and 30 min of exposure to PAW and distilled water at pH 3.5. For E. coli, PAW was
significantly more effective, showing that reactive species played a central role. However,
no significant antimicrobial activity has been achieved for C. albicans. Further studies are
necessary to improve antifungal activity of PAW produced by gliding arc plasma jet.
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