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Abstract: This research aims to identify the number of pumps that should be working at any moment
during the operation of a pumping station in order to provide the desired volume of water whilst
consuming the least amount of energy. This is typically done by complex iterative algorithms that
require much computational effort. The pumping station should pump the desired volume of water
V* using the least specific energy e* (energy per volume). In the methodology of this article, the shape
of the curves e*–V* was analyzed. The result is that such curves present a convex hyperbola shape.
This is a straightforward analytic solution that does not require any iterations. The representation
of the Convex Hyperbolas Charts will indicate the best pump combination during the operation
of a pumping station. Therefore, this is a straightforward resource for practitioners: the curves
immediately tell engineers the number of pumps that should be turned on, depending on the desired
volume of water to pump. The elaboration of such charts only requires the use of any calculation
sheet, only once, and it is a permanent resource that can be used at any time during the operation. In
addition, the Convex Hyperbolas Charts are completely compatible and complementary with any
other operation control technique.

Keywords: water supply systems; operation; pumping station; energy

1. Introduction

Once a water supply system has been designed, the operation of the utility becomes
the protagonist. When the water supply system requires pumping, it is essential to properly
manage the number of pumps that are working at a time, in order to minimize the energy
expenditure whilst ensuring the water supply. The optimization of the operation should
be able to be quickly and easily performed for any pumping situation and at any time of
the functioning of the station. This research study will focus on finding the best pumping
configuration (e.g., the number of pumps that should be working) to optimize the operation
and minimize energy costs.

In the matter of optimizing the operation of a pumping station, many various factors
contribute to the performance of the facility, and different approaches can be considered to
make the best of the installation: starting at the design stage, the operation costs should
be considered from the beginning of the project. This will ensure a better selection of
the pumps. Pumping schedules highly rely on the water regulation capacity, and for this
matter, the aid of tanks comes in handy. Another popular approach is to use a speed
controller; however, this is not always available at all stations. Finally, the latest advances
in optimization of pump operation rely on Monte Carlo procedures that explore all the
solution space by calculating the objective function for each possible combination of
variables. All of these different approaches are analyzed hereafter.

Optimization at the Design Stage.
Helena Mala-Jetmarova (2018) [1] provides a remarkable summary of the state of the

art when it comes to the design of water supply systems. In her work, a brief analysis
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of the pumping station schedule is covered. Lansey and Awumah (1994) [2] present a
methodology to determine the pumping schedule. They use a dynamic programming
optimization algorithm. One of the most interesting aspects of this work is that they limit
the number of times pumps can be switched on and off. The reason for this is to minimize
the weathering and aim for better maintenance of the station. Even though the station
may better adjust the energy consumption by switching pumps on and off, in the long
run, it can be detrimental to the well-being of the pumps. Kang and Lansey (2012) [3] also
propose a design methodology for water supply systems. In their work, they consider pipe
and pump station construction costs but also operational costs. These operational costs are
evaluated using the average demand for the entire planning period assuming a constant
energy tariff, which is a fair approach.

Stokes et al. (2015) [4] provide a fantastic integration of all optimization strategies
into a single software that can be edited and upgraded by the community (the “Water
distribution cost-emissions nexus (WCEN)” computational software). In this software,
operational management options are represented as integer-coded decision variables.
Pumping operational management options considered include discrete scheduling of
pumps. Pump schedule options represent the time at which a pump is turned on and off,
using a time-step of 30 min. In these options, the number of pumps’ on/off switches made
each day is limited by the users’ criteria so that the weathering of the pump is accounted
for, as Lansey and Awumah (1994) [2] propose. The methodology proposed in this paper
can be integrated into this software.

Storage Tanks for Better Regulation.
Stokes et al. (2015) [5] remind designers of the possibility of optimizing the pumping

operation by the construction of storage tanks. The use of storage tanks allows the pumps
to operate at those times at which the tariffs are the lowest. The larger the tank, the easier
the operation; however, large tanks can have prohibitive costs. In their work, they carry out
a sensitivity analysis to evaluate the impact of the size of the tank, finding the right balance
between operation and construction costs. The use of the reservoir tank is desirable and
perfectly compatible with the methodology proposed in this work.

Vamvakeridou-Lyroudia et al. (2005) [6] propose the use of genetic algorithms for
a simulation of tanks as network storage, taking into account the tank shape. In their
work, they impose the condition of a full tank at the end of the night, and for that, with
fuzzy aggregation operators, they find the number of pumps to use. This procedure is
part of a design methodology, and it could be very helpful to obtain an idea of how the
station would look. However, it requires a large computational effort that is not suitable
for day-to-day operation. For that, this research proposes a complementary methodology
that would be more indicated for daily use. Genetic algorithms are also used by Jin et al.
(2008) [7], in this case in a rehabilitation model that minimizes the energy cost per year.
They consider the number of pumps that need to be rehabilitated, and they find the optimal
design solution to meet the pressure in all nodes; however, they do not find the optimal
operation regime. Walters et al. (1999) [8] use a different variant of genetic algorithm,
which is the “messy genetic algorithm”, and they establish four pumping periods during
the day. Whilst this helps simplify calculations at a design stage, it can be very limited at
the actual operation stage.

Variable Speed Controllers.
Wu et al. (2011) [9] confirm with a sensitivity analysis an intuitive and important

conclusion: the electricity tariffs have a tremendous impact on the design of a water supply
system. However, this analysis is carried out with a non-variable pumping situation.
Wu et al. (2011) [10] expose the benefits of using variable speed pumps versus fixed
speed pumps, since better adequacy to the operating point can be achieved. Nevertheless,
this requires, indeed, having a variable speed controller. The proposed methodology is
compatible with those stations that have both variable and fixed speed pumps. Shokoohi
et al. (2017) [11] affirm that water age is influenced by pumping schedule, since booster
pumps are used in order to inject chlorine into the system. Hence, this is another reason to
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properly address the pumping operation. Kurek et al. (2013) [12] focus on regulating the
pumping flow in combination with the tank storage capacity. However, all pumps function
at the same time (using variable speed controllers), and no different pump combinations
are evaluated.

Solutions Inspired by Monte Carlo Methods.
In Babaei et al. (2015) [13], the ant colony algorithm is used to minimize the chlorine

dosage as well as the energy consumed during the working of a pump station. It is a
two-objective optimization, and the authors choose EPANET as the calculating software.
Both the dosage and the pump configuration are calculated for each hour, using an iterative
process. Variable speed pumps are considered. Continuing with the variable speed pumps
(VSP), Wu et al. (2012) [10] decided to compare the greenhouse emissions (GHG) and energy
expenditure using VSP and fixed speed pumps (FSP), using as an optimization tool what
they define as the power estimation method. They carry out a fantastic analysis, showing
important savings using VSP. Nevertheless, in that study, the number of pumps that
should be working at each moment is not considered, since they use a fixed configuration.
EPANET is also used in Ostfeld (2005) [14]. In their work, they incorporate a genetic
algorithm into the software to optimize minimization of the total cost of designing and
operating the system for a selected operational time horizon. The decision variables are the
pipe diameters, tank maximum storage, maximum pumping unit power, and maximum
removal ratios at the treatment facilities. However, as in the previous case, they do not
consider different pump configurations. Oshurbekov et al. (2020) [15] prove that almost
30% of energy savings can be achieved by the use of variable speed drive. Nevertheless,
as Goman et al. (2019) [16] point out, most pumping units are still operating without
speed control, although in some countries 20–30% of them already count on variable speed
control, according to Kazakbaev et al. (2019) [17].

The operation needs to ensure the correct water supply. This can be controlled by a
series of quality parameters. Vicente et al. (2011) [18] summarize these quality parameters
of the operation. Vicente et al. (2015) [19] focus on how to control the pressure provided
during the operation, which needs to be sufficient at every node. Pérez-Sánchez et al.
(2018) [20] change the perspective into valve control to analyze the correct operation of
the system.

Luna et al. (2019) [21] present a very complete optimization of the operation of a
pumping system. In their work, they use a hybrid optimization method, which is a genetic
algorithm with selective mutation mechanisms to boost convergence. The importance
of tanks and energy price is once again highlighted. However, most importantly, they
prove that the optimization of the pumping schedule can save 15% of energy costs on
average. They show the convergence curve of their optimization, which is a typical
metaheuristic convergence curve. In this curve, the minimum number of iterations required
to start finding a sign of cost reduction is 15, and up to 140 to get the best results (as
expected, the larger the number of iterations, the better the optimization). Considering
the magnitude of the task and the great number of variables counted in the method,
these are good results. Torregosa and Capitanescu (2019) [22] compare the efficiency of
different algorithm techniques (genetic algorithm, simulated annealing, and particle swarm
optimization) obtaining similar values to these. The best performance was reached by the
genetic algorithm.

Having to carry out the correspondent iterations is typically beyond the capability of
real-time optimization frameworks, as Salomons and Housh (2020) [23] state. However,
by reducing the number of decision variables, the process can be shortened, whilst still
achieving cost reductions. In their work, they balance accuracy and practicality to make
nonlinear programming more suitable for real-time situations. Nevertheless, it would
always be better if no iterations had to be made because an analytic solution was possible.

This Research´s Solution: An Analytic Proposal.
The approach of this research is analytic, whilst most of the other popular methodolo-

gies are inspired by Monte Carlo Simulations. These methods explore the whole solution
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space, trying the optimization function for each combination of variables, and thus, this
requires numerous iterations [22]. The advantage of the analytic approach is that it directly
provides the solution, and hence, the optimization is immediate, and the methodology
does not rely on computational power.

Therefore, in this research study, we propose an analytic methodology to elaborate a
series of guidance charts for the operation of a pumping station. These charts will indicate
for each pumping situation the number of parallel pumps that should be turned on or off.
These charts are compatible with any other control mechanism. They are elaborated to
find out the best pump configuration in order to minimize the energy expenditure. Our
paper is organized as follows: The methodology will explain the mathematical reasoning
behind these charts, and in the results section, the Convex Hyperbola Charts will be fully
presented and explained. In the discussion, the main conclusions will be exposed.

2. Methodology

The theory: the starting point.
When pumps are displayed in a parallel configuration, these consume different energy

depending on the number of groups working at the time. The aim is to operate at the
minimum cost, and therefore, pump the required volume of water using the minimum
energy E. The objective of this study is to find the number of groups that should be working
to pump a required volume of water using the least amount of energy when pumps are
displayed in a parallel configuration. The initial hypothesis is that all pumps are identical
and that they work parallel to each other.

The specific energy e is defined as the amount of energy required to pump each cubic
meter of water m3, and thus, the objective can be seen from the perspective of operating at
the minimum specific energy. Equation (1) shows the definition of e:

e =
E
V

. (1)

2.1. The Pumping Variables

When the pump station presents a parallel configuration, the operating points and
figures vary depending on the number of pumps that are activated. Figure 1 schematically
represents the different operating points of a pump when it is working on its own, along
with a second parallel pump, or with also a third parallel pump.
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Figure 1. Different operating points of a pump depending on the number of parallel pumps active
at the time. H is the pumping head. The pump’s flow rate is qB, and when there are one, two, and
three groups working, it is specified as qB 1g, qB 2g, and qB 3g, respectively. Finally, µB is the pump
efficiency, and it is once again specified for the number of active groups.
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The power consumed by the pumping station N is defined by Equation (2):

Power: N = 9.81·Q·hB·
1
µB
· 1
µM

, (2)

where Q is the total pumping flow rate pumped by the station. Since this study focuses on
a parallel configuration, Q is the sum of the flow rates pumped by each pump (assuming
all pumps are equal), and thus Q = qB·ng. On the other hand, hB is the pumping head,
and it is coincident with the pumping head of the station H, since it is the case of a parallel
configuration. µB and µM are the pump and engine efficiency, respectively. µB can be easily
obtained by the empiric curve proposed by Martin-Candilejo in [24,25]. With all of the
above in mind, the unit power consumed by the pumping station N

Q , understood as the
amount of kW needed for each m3/s, is calculated with Equation (3):

Unit power: N/Q = 9.81·hB·
1
µB
· 1
µM

. (3)

On the other hand, the energy E used by the station can be obtained using Equation (5).
When the flow rate is expressed in m3/s, time in hours, the equation of the energy in KWh
can be simplified as follows:

E = N·t =
[

9.81·Q·hB·
1
µB
· 1
µM

]
·t , (4)

Q
[
m3/s

]
, t[h]→ E [KWh] = 9.81· V

3600
·hB·

1
µB
· 1
µM

, (5)

being V the total volume of water pumped in that time period t. Knowing this, the specific
energy e used by the station can be calculated as Equation (6):

e =
E
V

= 9.81· 1
3600

·hB·
1
µB
· 1
µM

. (6)

which, written in a different way, is the same as:

Specific energy: e =
E
V

=
N/Q
3600

. (7)

Depending on the number of parallel groups ng that are working at the same time,
these variables may change, but all of them are straightforward and can be calculated
with the above equations. All values are known. For instance, when there are two groups
of parallel pumps working at the same time ng = 2, the flow rate of each pump qB 2g is
obtained graphically from the operating point as shown in Figure 1, as well as the pump
efficiency µB 2g. Knowing this, the flow rate pumped by the whole station is calculated as
Q2g = qB·ng = qB 2g·2, the power N and the unit power N/Q consumed by the station
would, respectively, be:

N2g = 9.81·Q2g·hB 2g·
1

µB 2g
· 1
µM 2g

, (8)

N2g/Q2g = 9.81·hB 2g·
1

µB 2g
· 1
µM 2g

. (9)

In that same example, the total volume of water that the pumping station would
supply V2g if those two groups were pumping the whole time tt would be obtained as:

V2g = Q2g·tt. (10)



Water 2021, 13, 1474 6 of 19

tt would be the desired amount of time for which operators want to make the pumps work
with a specific configuration. This could typically be 1 h, 24 h, etc.

The specific energy consumed by the station e2g could be calculated as:

Specific energy: e2g =
E2g

V2g
=

N2g/Q2g

3600
. (11)

For better visualization of the terminology that will be used in the upcoming mathe-
matical deduction, variables are compiled in the following Table 1.

Table 1. Key variables of the pump station.

Pumping Variables

Group
Number

Pump’s
Flow Rate

Pumping
Height

Pump
Efficiency

Station
Flow Rate

Station
Power

Station
Unit Power

Station
Volume 1

Station
Specific
Energy

ng
qB hB = H µB Q N N/Q V e

From pump’s characteristic curve Q = qB·ng Equation (2) Equation (3) V = Q· tt e = N/Q
3600

1g qB 1g hB 1g = H1g µB 1g Q1g N1g N1g/Q1g V1g e1g =
N1g/Q1g

3600
. . .

ng qB ng hB ng = Hng µB ng Qng Nng Nng/Qng Vng eng =
Nng/Qng

3600
1 If the station was pumping the whole time tt using ng.

2.2. The Problem to Be Solved—The General Case

As a general rule, the more pumps are working, the more energy is consumed. This
occurs because the station is providing a greater total flow rate Q that translates into
bigger head losses ∆h, which are directly related to the energy use. If the specific energy is
graphed against the volume of pumped water, as Figure 2 illustrates, ej should generally be
drawn above ei (ei being the specific energy spent when i number of groups are working
ng = i; ej is the specific energy spent with a greater number of groups working ng = j > i
(not necessarily the immediately superior number)). Therefore, picking an example, e2g
is typically higher than e1g. Additionally, from Figure 2, the energy E consumed by the
system is directly obtained as the area delimited by the rectangle Vng and eng, when ng
groups of pumps are working the full-time tt.
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Figure 2. General case. Specific energy and the volume of pumped water. The energy consumed by
the system when 1 group of pumps E1g is working the whole time tt is obtained as the blue area.

It should be noted that the volume pumped in Figure 2 is a discrete variable: when
ng groups of pumps are working the full-time tt, the operating point is determined in the
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characteristic pump and the volume Vng and specific energy eng define a discrete series
of points (the blue points in Figure 2), as Table 1 states. Therefore, the main question this
research study wants to answer is what to do when the desired volume of water V* is other
than those predetermined Vng. How should the desired water volume V* before a certain
time tt be pumped to consume the least amount of energy? How many groups of pumps
should be activated? For the mathematical deduction, the following theoretical example
represented in Figure 3 will be used: the desired volume of water V* is somewhere in
between V1g and V2g.

Water 2021, 13, x FOR PEER REVIEW 7 of 21 
 

 

certain time tt be pumped to consume the least amount of energy? How many groups of 
pumps should be activated? For the mathematical deduction, the following theoretical 
example represented in Figure 3 will be used: the desired volume of water V* is some-
where in between V1g and V2g. 

 
Figure 3. Problem to be solved: how many groups should be activated to pump V* before a certain 
time tt. Illustration theoretical example with V1g < V* < V2g. 

2.2.1. Solution A: Use Only One Pump Configuration 
Solution A consists of pumping with two groups the whole time, consuming a spe-

cific energy e2g continuously until the desired volume V* is fully supplied. The total en-
ergy consumed with this solution E*2g can be obtained, as Figure 4 illustrates, from the 
blue area delimited by e2g and V*. 

 
Figure 4. Solution A. Pump all V* with two pumps. 

It should be noted that pumping the desired volume V* continuously with only one 
group of pumps could not be possible, because it would require a longer time than the 
available tt to fulfill the task. Using only one pump would be insufficient to provide the 
full V* on time. However, by using two pumps, V* would be provided before tt finishes 
(remember that V2g would be the volume of water obtained after pumping with two 
groups during the whole tt). 

2.2.2. Solution B. The Right Approach. Combine Different Numbers of Pumps 
Solution B consists of combining the number of groups working during the available 

time tt. This means that the desired volume V* would be pumped using one group of 

Figure 3. Problem to be solved: how many groups should be activated to pump V* before a certain
time tt. Illustration theoretical example with V1g < V* < V2g.

2.2.1. Solution A: Use Only One Pump Configuration

Solution A consists of pumping with two groups the whole time, consuming a specific
energy e2g continuously until the desired volume V* is fully supplied. The total energy
consumed with this solution E*

2g can be obtained, as Figure 4 illustrates, from the blue
area delimited by e2g and V*.
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Figure 4. Solution A. Pump all V* with two pumps.

It should be noted that pumping the desired volume V* continuously with only one
group of pumps could not be possible, because it would require a longer time than the
available tt to fulfill the task. Using only one pump would be insufficient to provide the
full V* on time. However, by using two pumps, V* would be provided before tt finishes
(remember that V2g would be the volume of water obtained after pumping with two groups
during the whole tt).
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2.2.2. Solution B. The Right Approach. Combine Different Numbers of Pumps

Solution B consists of combining the number of groups working during the available
time tt. This means that the desired volume V* would be pumped using one group of
pumps part of the time, and two groups of pumps the rest of the time. Solution B is
represented in Figure 5.
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Figure 5. Solution B. Combine the number of pumps.

One portion of the V* is pumped using one group of pumps. This portion is V*1g,
and it consumes E*1g energy, represented by the area of the rectangle surrounded by the
dark blue intermittent lines). The reaming portion of V*, which is V*2g, is pumped using
two groups of pumps, meaning an energy consumption of E*2g, and on this occasion, it
is graphed using the color pink. Altogether, the energy consumed to pump V* would
be the light blue area, resulting from the sum of the dark blue and pink rectangles. The
time the system is working with one pump has been called t*1g, and the time used by the
station with two groups of pumps was called t*2g. Together, t*1g and t*2g complete the full
amount of available time tt. Equations (12) and (13) summarize the statements that govern
Solution B:

tt = t*1g + t*2g (12)

V* = V*1g + V*2g (13)

2.2.3. Solution Comparison

To the problem “How to pump the desired water volume V* before a certain time tt,
consuming the least amount of energy? How many groups of pumps should be activated?”,
two different solutions have been proposed: Solution A and Solution B. It is time now to
analyze which solution uses the least energy. For that, Figure 6 compiles the characteristics
of each solution to help visualize the comparison.

The total energy E* consumed by each solution is represented by the blue areas of the
graphs. As can be seen, Solution B consumes less energy than Solution A, because it does
not include the striped orange rectangle. Therefore, it can be concluded that less energy is
spent when combining the number of active groups to pump the desired water volume V*.
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2.3. The Problem to Be Solved—The Anomaly Case

Both Solutions A and B are formulated regarding a General Case problem in which
e1g < e2g. As a reminder, this is generally the case because when an additional group is
activated, the total flow rate consumed by the station Q increases, and so do the head losses.
To compensate for this increase in head losses, the pumps have to pump at a higher head,
consuming more energy to do so. Therefore, typically e1g < e2g. Nevertheless, it may be the
case that e1g > e2g. This may occur if the pump efficiency µB is significantly better when
an additional pump is working, that is to say, when µB 1g <<< µB 2g. When this happens,
such improvement in µB with an additional pump may compensate for the increase in
energy use due to the greater head losses, and it can translate into e2g < e1g. This is feasible,
although it is an anomaly case. Figure 7 represents this anomaly.
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For these situations, it is always better to pump with an additional pump ng = 2, since
it consumes less specific energy e2g and covers up V2g to a greater volume in the available
time tt. This can be seen in the two examples on the right of Figure 7. Even when the
desired volume V* is equal to V1g, it would be better to activate ng = 2 instead of ng = 1.

The theory: deducing the optimal group combination.
Even though it is proven that pumping part-time with ng = 1 and ng = 2 is a better

solution than only pumping with ng = 1, it is possible that it could be better with ng = 1
and ng = 3. Therefore, the next question is to find out, for the general case, “What group
combination is the best?” and also “How long should each group combination be working
for?” The mathematical deduction will be covered in this section.

2.4. Deduction of e*

When the desired volume V* is pumped using a combination of groups consuming
E* energy, e* will be called the average specific energy at which the station works. The
objective is to find the expression of e* to afterward determine the combination of groups
that mean the least e*. The same theoretical example used in Solution B will be used to find
the equation of e*, and it is represented in the following Figure 8:
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From Solution B, the following equations can be stated. Equation (12) combined with
Equations (13) and (14) are the expressions that govern the solution. To summarize them
all, they are rewritten here:

Equation (12)→ tt = t*1g + t*2g ,

Equation (13)→ V* = V*1g + V*2g ,

E* = E*1g + E*2g → V*·e* = V*1g·e1g + V*2g·e2g → e* =
V*1g·e1g + V*2g·e2g

V*
. (14)

It is important to remember which of these values are known and which are not yet.
The known values are:

• The desired volume V*. It is the independent variable.
• The available time tt.
• The specific energy the station would consume if one pump was working the full tt,

e1g. See the last column from Table 1.
• The specific energy the station would consume if two pumps were working the full tt,

e2g. See the last column from Table 1.
• All other values from Table 1, including V1g and V2g.
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The unknown values are:

• The time that the station would be working with only ng = 1, t*1g.
• The time that the station would be working with only ng = 2, t*2g.
• The partition volume of V* that would be supplied with ng = 1, V*1g.
• The partition volume of V* that would be supplied with ng = 2, V*2g.
• The average specific energy e*. That is the key variable of this mathematical deduction.

In Equation (14), e* is expressed in terms of unknown terms, since:

Equation (14)→ e* =
V*1g·e1g + V*2g·e2g

V*
= f
(
V*1g , V*2g, V*

)
.

The idea is to obtain e* only as a function of V*, e* = f(V* ). For that, V*1g and V*2g
need to be removed from the equation.

2.4.1. Solving the Deduction of e*. Removing V*2g

From Equation (13), V*2g is cleared away, and then introduced in Equation (14),
leading to:

V*2g = V*−V*1g → e* =
V*1g·e1g +

(
V*−V*1g

)
·e2g

V*
→ e* =

V*1g·
(
e1g − e2g

)
+ V*·e2g

V*
→

e* = e2g −
V*1g

V*
·
(
e2g − e1g

)
= f
(
V*1g, V*

)
. (15)

2.4.2. Solving the Deduction of e*, Removing V*1g

In order to remove V*1g from Equation (15), the following relations will be refreshed
from Table 1: {

Q1g =
V1g
tt

Q2g =
V2g
tt

, (16)

{
V1g* = Q1g· t1g*
V2g* = Q2g· t2g*

→

 t1g* =
V1g*
Q1g

t2g* =
V2g*
Q2g

→ Introducing Equation (16)→

 t1g* =
V1g*
V1g
·tt

t2g* =
V2g*
V2g
·tt

. (17)

Equation (12) is rewritten with Equation (17) as:

tt = t*1g + t*2g =
V1g*
V1g
·tt +

V2g*
V2g
·tt →

V1g*
V1g

+
V2g*
V2g

− 1 = 0 →

V1g*·V2g + V2g*·V1g −V1g·V2g = 0 . (18)

In Equation (18), Equation (13) is introduced:

Equation (13) V*2g = V*1g −V*→ Equation (18)
→ V1g*·V2g +

(
V*1g −V*

)
·V1g − V1g·V2g = 0

(19)

Finally, V*1g is cleared out from Equation (19):

V1g*·
(
V2g −V1g

)
+ V*·V1g − V1g·V2g = 0 →

V1g* =
V1g·V2g −V*·V1g(

V2g −V1g
) . (20)
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Therefore, V*1g is ready to be introduced in Equation (15) to find e* = f(V*):

Equations (15) and (20): e* = e2g −
[

V1g·V2g −V*·V1g(
V2g −V1g

) ](
e2g − e1g

)
V*

→

e* = e2g −
V1g·

(
V2g −V*

)
V*·
(
V2g −V1g

) ·(e2g − e1g
)
= f(V* ). (21)

2.5. Time with Each Number of Groups

The time t*ig that the station would be working with ng = 1 and ng = 2 can be calculated
from Equation (17):

Equation (17)→ tig* =
Vig*
Vig
·tt .

For that, V*1g and V*2g are needed. These can easily be cleared out from the equation
system formed by Equations (13) and (14):{

Equation (13)→ V* = V*1g + V*2g
Equation (14)→ V*·e* = V*1g·e1g + V*2g·e2g

,

V*2g = V*−V*1g → in Equation (14) : V*·e* = V*1g·e1g +
(
V*−V*1g

)
·e2g

V*·e* = V*1g·e1g + V*·e2g −V*1g·e2g
V*·e*−V*·e2g = V*1g·

(
e1g − e2g

)
V*1g = V*· (e*−e2g)

(e1g−e2g)

V*ig = V*·
(e*− ejg)(
eig − ejg

) (22)

tig* =
V*·tt

Vig
·
(e*− ejg)(
eig − ejg

) . (23)

3. Results

Interpretation of the analytic solution.
Equation (21) shows the analytic solution to find the average value of the specific

energy e* required to pump the desired volume combining one and two groups of pumps.
If instead of one and two groups of pumps, the expression is written for any group
combination ni and nj (e.g., ng = 1 and ng = 3; or ng = 2 and ng = 3, or ng = 2 and ng = 4,
etc.), the expression has this generic form:

e* = ejg −
Vig·

(
Vjg −V*

)
V*·
(
Vjg −Vig

) ·(ejg − eig
)
= f(V* ). (24)

In Equation (24), all values Vig, Vjg, eig, and ejg are known, because Table 1 is calculated
in the first place. Therefore, it should be noted that this expression can be written in terms
of constants in the following way:

e* =∝ − β

V*
= Constant−Hyperbola . (25)

Being:

• ∝= Constant 1 = ejg → On the example case : α = e2g

• β = A different constant =
Vig·(Vjg−V*)
(Vjg−Vig)

·
(
ejg − eig

)
→

On the example case : β =
V1g·(V2g−V*)
(V2g−V1g)

·
(
e2g − e1g

)
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Therefore, the most important conclusion extracted from Equation (25) is that the
specific energy e* follows an inverted hyperbola shape, otherwise baptized as the Convex
Hyperbola. To help visualize this conclusion, Figure 9 is shown:
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Figure 10. Solution of the specific energy e* of the example case, where the station would combine
ng = 1 and ng = 2.

It is important to notice that the combination of working groups does not have to
be a consecutive number. The convex hyperbola can be graphed between any group
combination ni and nj, such as. ng = 1 and ng = 3, etc. In the following section, this aspect
will be covered in depth.

How to use the results: practical steps.

3.1. The Optimal Group Combination

In order to pump the desired water volume V*, the pumping station can be working
for a portion of time with a certain amount of active groups of pumps ni, and the rest of
the time with a different number of active groups nj. For instance, it could be initially one
group of pumps ni = 1, and after a certain time, switch into two groups nj = 2, or instead, it
could begin with three groups of pumps ni = 3, and then change to five groups of pumps
nj = 5, etc.
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How to choose which pump combination is the key question, and the answer is simple:
the combination that consumes the least amount of energy to pump the desired volume V*
should be chosen. That is to say, the combination that consumes the least specific energy e*.

3.1.1. How to Use the Results for A Certain Volume V*—Specific Case

Equation (21) demonstrates how e* can be calculated given a combination of pumps.
Therefore, the strategy will consist of forming different groups of pump combinations, then
calculating e* and seeing which combination works at the minimum e* for that specific V*.
This process is illustrated in the following Table 2:

Table 2. Steps to select the group combination for a certain volume V*.

Steps to Select the Group Combination for A Certain Volume V*

Step 0: Calculate Table 1.
Step 1 Step 2 Step 3 Step 4 Step 5

Step 6
Choose the

group
combination that

gives the
minimum e*

Form the
groups

combination

Obtain the Station Volume
(if the station was

pumping the whole time tt
using ng)

Obtain the Specific Energy
(if the station was

pumping the whole time tt
using ng)

Define the
desired

volume V*

Calculate the
specific energy e*

ni nj Vig Vjg eig ejg V*
e*

eg eg Colum 8 from Table 1. Colum 9 from Table 1. Equation (22)

1 2 V1g V2g e1g e2g V* e* with 1 g and 2 g
1 3 . . . . . . . . . . . . V* . . .
2 3 . . . . . . . . . . . . V* . . .

. . . . . . . . . . . . . . . . . . V* . . .

Once identified the best group combination, the final step (7) would consist of using
Equation (23) to find out the time each number of groups should be working.

Equation (23)→ tig* =
V*·tt

Vig
·
(e*− ejg)(
eig − ejg

) .

3.1.2. How to Use the Results for Any Desired Volume V*—General Case

The previous section focuses on one specific volume V*; however, a more interesting
approach is to be able to find the best combination of pumps for any desired volume V*.
This can be achieved by creating a chart collection for the pumping station. In this chart,
all possible volumes V* are contemplated, and it offers the best combination of pumps for
any situation. To create this chart, engineers may represent the convex hyperbolas of all
possible groups’ combinations of the station, using Equation (21).

The compiled steps to generate these charts are:

• Step 0: Choose the regulation period (e.g., hourly, daily, etc.) and calculate all values
from Table 1.

• Step 1: Form all possible group combinations ni and nj.
• Step 2: For each group combination, create a table such as Table 3. This table should

include sufficient values of V* to draw the hyperbolas with accuracy.

Table 3. Calculation of the convex hyperbola for a certain group combination.

Group Combination: ni and nj

Volume V* Specific Energy e*
(Equation (21))

10 . . .
20 . . .
. . . . . .



Water 2021, 13, 1474 15 of 19

• Step 3: Represent all the previous Table 3 in one chart.
• Step 4: Identify the curves that are the lowest. Those indicate the most convenient

pump combinations for any desired volume.
• Step 5: Once the best group combination is identified, use Equation (23) to find out

the time each number of groups should be working.

Equation (23)→ tig* =
V*·tt

Vig
·
(e*− ejg)(
eig − ejg

) .

The generation of these charts only requires a calculation sheet, and it could save a lot
of energy and money by only knowing which is the least energy-using group combination
to use. They do not need to be changed; on the contrary, they are a permanent guide chart
for any pumping situation.

Examples
Figure 11 shows an example of a pumping station that has up to three pumps. Opera-

tors have chosen the time tt (this could be e.g., 1, 6, 24 h, etc.). During that time, they may
wish to supply different volumes of water V*. For example, if it is an hourly regulation,
from 06:00–07:00, a volume of V* = 600 l might be needed, but from 07:00–08:00, they might
need V* = 12.000 l. In this example, to pump any desired volume V*, operators could
choose to use any of the following configurations:

• One group for a while and then switch to 2 groups for the rest of the time. This is
ni = 1 and then nj = 2.

• One group for a while and then switch to 3 groups for the rest of the time. This is
ni = 1 and then nj = 3.

• Two groups for a while and then switch to 3 groups for the rest of the time. This is
ni = 2 and then nj = 3.
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Figure 12 represents different examples of how these charts could look: 

Figure 11. Conservation of the energy. Solution of the specific energy e* of the example case, where
the station would combine ng = 1 and ng = 3. The average specific energy e* will be the sum of the
energy spent when the station is working with ng = 1 and when the station works with ng = 3.

Since there are three possible pumping configurations, three possible Convex Hyper-
bolas can be graphed, Equation (24). The steps to map out these hyperbolas are explained
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in the preceding section. Once the Convex Hyperbolas (the green lines) have been drawn
(two upper figures on Figure 11), the guidance chart for that regulation period (e.g., hourly
regulation) is obtained. For each pumping station, the curves of the hyperbolas can look
completely different (e.g., one hyperbola above or under the other, etc.). The curves in
Figure 11 are only an example of what they could look like.

In this figure, it is represented that the best solution would be to (always) combine
one group ng = 1 and three groups of pumps ng = 3 to pump any desired volume V*, since
it is the lowest convex hyperbola (and therefore, the cheapest pump combination). The
energy spent in this combination E* is the sum of the energy consumed while using ng = 1
(E*1g) and ng = 3 (E*3g).

One must always select the lowest Convex Hyperbola, since it indicates the least
energy use. The strategy is, therefore, to always look for the lowest curve.

Figure 12 represents different examples of how these charts could look:
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From the different boxes in Figure 12:

• Case (a) and (b): They represent the same pumping station with three pumps. In case
(a), the desired volume V*. V1g < V* < V2g would be best to pump with one and two
groups. However, if the desired volume is greater, V2g < V* < V3g, the least-energy-use
combination is to use two and three groups of pumps.

• Case (c): The pumping station also counts with three pumps, but the convex hyper-
bolas show a different shape, and the least-energy-use option is to use one and three
groups of pumps, for any desired volume V1g < V* < V3g.

• Case (d): It illustrates a more complex situation, where the station counts for up to
five pumps. In this example, the convex hyperbolas have a shape in which the lowest
curves (those that show the least energy use combinations) are only the combina-
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tion of one and three groups (when V1g < V* < V3g), or for bigger volumes (when
V3g < V* < V5g), three and five groups.

Minimizing the vibrations in pumps by turning on and off.
It must be kept in mind that the Convex Hyperbola Charts are drawn for a defined time

tt (for example 5 min, 1 h, 6 h, 24 h, etc.). During that time, operators need to provide the
demanded volume of water, and the charts will indicate the best configuration (for example,
firstly using 2 pumps and then switching to 4 pumps). The shorter tt (the reevaluation
period), the better adjustment to variable demands. However, short reevaluation periods
implicate that the pumps will be switching on and off very frequently to adjust to the
demand. This is never good for the sake of the durability of the machinery, especially when
the pumps are large and the vibrations can be strong. Therefore, it is always desirable to
have facilities to regulate the demand at the destination point, such as tanks or reservoirs.

The present methodology requires only one change (and no more) in the configuration
during each tt (because, as it was proven in the Section 2.2.2. Solution B, this way, the
system consumes less energy). The important point is that turning on or off will only
happen once during each tt. How this one configuration change affects the durability of
the pumps only depends on tt (the reevaluation period): one configuration change in, for
example, tt = 6 h, is a minimal impact, but one configuration every tt = 5 min, for example,
can be damaging for the pumps.

However, this is external to the present method. All other optimization methods have
the same restraint: every method needs to reevaluate the configuration every certain time
tt. It only depends on the capability to regulate the demand, and it is always better and
desirable to have some sort of deposit for this task at the destination point.

4. Discussion

This research aimed to address the number of pumps that should be working at
any moment during the operation of a parallel pumping station to provide the desired
volume of water whilst consuming the least amount of energy. This is not only one of
the biggest environmental challenges today, but also it goes hand in hand with being
economically responsible.

This research proposes the preparation of the Convex Hyperbolas Charts to indicate
the best pumping strategy during the operation of a facility. These charts take their name
from the shape of the specific energy–volume curves. The specific energy e* is the amount
of energy consumed by the station per unit of volume. The pumping station should pump
the desired volume of water V* using the least specific energy e*. This research analyzes the
shape of the curves e*–V*. The result is that such curves have a convex hyperbola shape.

Strengths and limitations
The elaboration of the Convex Hyperbolas Charts allows engineers to know exactly

what is the best number of active pumps for any pumping situation. The making of
such charts only requires the use of any calculation sheet, only once, and it is a permanent
resource that can be used at any time during the operation. It immediately tells the operator
how many pumps should be turned on, depending on the desired volume of water. As
simple as they are, these charts could save great quantities of energy and money, in both the
short and the long run. The proposed methodology is completely inexpensive, in both the
material and the computational aspect. It does not require any heavy complex algorithm,
but on the contrary, it could be simply done with a calculation sheet. It simply comes from
the mathematical deduction of the specific energy used, and not from any iterative process
that is the current trend, all its applicability relying on powerful computers. Hence, the
solution is not approximate, but exact. This work offers an analytic solution, which is a
great advancement compared to the existing methods.

In addition, the Convex Hyperbolas Charts are completely compatible and comple-
mentary with any other operation control algorithm, and they do not need to adapt the
installations or machinery. An additional advantage is that our methodology is energy
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cost-free: our methodology does not need to be updated with energy price changes, because
it optimizes the amount of energy consumed and not its cost.

Practitioners can easily benefit from this tool thanks to its simple application: no
programming or computational skills are needed. Once the charts are plotted, it is only
a matter of identifying the lowest curve in the graph and selecting the indicated pump
configuration. The proposed methodology is very operational-friendly. A powerful and
simple tool to be more energetically mindful in the operation of water supply systems
was presented.

As a limitation, it should be recalled that, just like any other optimization method,
operators will need to reevaluate the pump configuration after a certain time tt, depending
on the variability of the demand and the water regulation capacity. Different Convex
Hyperbolas Charts will need to be elaborated for the same pumping station depending
on the period considered for the optimization tt (e.g., hourly regulation, daily regulation,
etc.). During the night, longer periods could be considered, whilst during the daytime,
the reevaluation periods might be shorter. Nevertheless, this is a minor limitation, since it
would be enough to plot a small collection of charts, according to different reevaluation
periods. Additionally, all other optimization methods have the same restraint: every
method needs to reevaluate the configuration every certain time. This aspect is always
improved when regulation in the destination point is available (e.g., tanks, reservoirs, etc.).

Future research
One of the initial hypotheses of the method is that all pumps in the pumping station

are parallel and identical. Future research will be undertaken to analyze the effects of
speed controllers. The effect of the speed controller is equivalent to “changing the pumping
curve”, and in this way, pumps can no longer be considered identical. This is a research
line that will be studied in depth in future investigations.

5. Conclusions

A new methodology to select the number of pumps during the operation has been
exposed. The objective function is to minimize the energy consumed during the operation.
The energy function can be represented in the Convex Hyperbolas Charts. With these
charts, operators can immediately visualize what the combination of pumps is that means
the least energy consumption in order to pump any determined volume of water. These
charts are obtained analytically, which means that no iterations are needed. They can be
calculated just through a calculation sheet.

Author Contributions: conceptualization, F.J.M.-C.; methodology, F.J.M.-C., A.M.-C., and D.S.;
validation, F.J.M.-C., A.M.-C. and D.S.; formal analysis, F.J.M.-C., A.M.-C. and D.S.; investigation,
F.J.M.-C., A.M.-C. and D.S.; resources, F.J.M.-C., A.M.-C. and D.S.; data curation, F.J.M.-C., A.M.-
C. and D.S.; writing—original draft preparation, A.M.-C.; writing—review and editing, F.J.M.-C.,
A.M.-C. and D.S.; visualization, F.J.M.-C., A.M.-C. and D.S.; supervision, F.J.M.-C., A.M.-C. and D.S.;
project administration, F.J.M.-C., A.M.-C. and D.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in optimisation of water distribution systems? A literature review of system

design. Water 2018, 10, 307. [CrossRef]
2. Lansey, K.E.; Awumah, K. Optimal pump operations considering pump switches. J. Water Resour. Plan. Manag. 1994, 120, 17–35.

[CrossRef]

http://doi.org/10.3390/w10030307
http://doi.org/10.1061/(ASCE)0733-9496(1994)120:1(17)


Water 2021, 13, 1474 19 of 19

3. Kang, D.S.; Lansey, K. Revisiting optimal water-distribution system design: Issues and a heuristic hierarchical approach. J. Water
Resour. Plan. Manag. 2012, 138, 208–217. [CrossRef]

4. Stokes, C.S.; Simpson, A.R.; Maier, H.R. A computational software tool for the minimization of costs and greenhouse gas
emissions associated with water distribution systems. Environ. Model. Softw. 2015, 69, 452–467. [CrossRef]

5. Stokes, C.S.; Maier, H.R.; Simpson, A.R. Effect of storage tank size on the minimization of water distribution system cost and
greenhouse gas emissions while considering time-dependent emissions factors. J. Water Resour. Plan. Manag. 2015, 142, 04015052.
[CrossRef]

6. Vamvakeridou-Lyroudia, L.S.; Walters, G.A.; Savic, D.A. Fuzzy multiobjective optimization of water distribution networks. J.
Water Resour. Plan. Manag. 2005, 131, 467–476. [CrossRef]

7. Jin, X.; Zhang, J.; Gao, J.-L.; Wu, W.-Y. Multi-objective optimization of water supply network rehabilitation with non-dominated
sorting genetic algorithm-II. J. Zhejiang Univ. SCIENCE A 2008, 9, 391–400. [CrossRef]

8. Walters, G.A.; Halhal, D.; Savic, D.; Ouazar, D. Improved design of “anytown” distribution network using structured messy
genetic algorithms. Urban Water 1999, 1, 23–38. [CrossRef]

9. Wu, W.; Simpson, A.R.; Maier, H.R. Sensitivity of optimal trade-offs between cost and greenhouse gas emissions for water
distribution systems to electricity tariff and generation. J. Water Resour. Plan. Manag. 2011, 138, 182–186. [CrossRef]

10. Wu, W.; Simpson, A.R.; Maier, H.R.; Marchi, A. Incorporation of variable-speed pumping in multiobjective genetic algorithm
optimization of the design of water transmission systems. J. Water Resour. Plan. Manag. 2012, 138, 543–552. [CrossRef]

11. Shokoohi, M.; Tabesh, M.; Nazif, S.; Dini, M. Water quality based multi-objective optimal design of water distribution systems.
Water Resour. Manag. 2017, 31, 93–108. [CrossRef]

12. Kurek, W.; Ostfeld, A. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution
systems. J. Environ. Manag. 2013, 115, 189–197. [CrossRef]

13. Babaei, N.; Tabesh, M.; Nazif, S. Optimum Reliable operation of water distribution networks by minimizing energy cost and
chlorine dosage. Water SA 2015, 41, 149–156. [CrossRef]

14. Ostfeld, A. Optimal design and operation of multiquality networks under unsteady conditions. J. Water Resour. Plan. Manag.
2005, 131, 116–124. [CrossRef]

15. Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Gevorkov, L. Energy Consumption Comparison of a Single Variable-
Speed Pump and a System of Two Pumps: Variable-Speed and Fixed-Speed. Appl. Sci. 2020, 10, 8820. [CrossRef]

16. Goman, V.; Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V. Energy Efficiency Analysis of Fixed-Speed Pump Drives
with Various Types of Motors. Appl. Sci. 2019, 9, 5295. [CrossRef]

17. Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Ibrahim, M.N.; Oshurbekov, S.; Sarapulov, S. Efficiency Analysis of low Electric Power
Drives Employing Induction and Synchronous Reluctance Motors in Pump Applications. Energies 2019, 12, 1144. [CrossRef]

18. Vicente Gonzalez, D.J.; Sánchez, E.H.; Sánchez Calvo, R.; Martínez, Á.; Pinilla, A.; Garrote de Marcos, L. Hacia el diseño óptimo de
un Plan de gestión de Presiones en redes de Distribución de Agua Urbana. 2011. Available online: http://www.ingenieriadelagua.
com/2004/JIA/Jia2011/pdf/p572.pdf (accessed on 1 May 2021).

19. Vicente, D.; Garrote, L.; Sánchez, R.; Santillán, D. Pressure management in water distribution systems: Current status, proposals,
and future trends. J. Water Resour. Plan. Manag. 2015, 142, 04015061. [CrossRef]

20. Pérez-Sánchez, M.; López-Jiménez, P.A.; Ramos, H.M. PATs Operating in Water Networks under Unsteady Flow Conditions:
Control Valve Manoeuvre and Overspeed Effect. Water 2018, 10, 529. [CrossRef]

21. Luna, T.; Ribau, J.; Figueiredo, D.; Alves, R. Improving energy efficiency in water supply systems with pump scheduling
optimization. J. Clean. Prod. 2019, 213, 342–356. [CrossRef]

22. Torregrossa, D.; Capitanescu, F. Optimization models to save energy and enlarge the operational life of water pumping systems.
J. Clean. Prod. 2019, 213, 89–98. [CrossRef]

23. Salomons, E.; Housh, M.; Asce, M. A Practical Optimization Scheme for Real-Time Operation of Water Distribution Systems. J.
Water Resour. Plan. Manag. 2020, 146, 04020016. [CrossRef]

24. Martin-Candilejo, A.; Santillán, D.; Garrote, L. Pump Efficiency Analysis for Proper Energy Assessment in Optimization of Water
Supply Systems. Water 2019, 12, 132. [CrossRef]

25. Martin-Candilejo, A.; Santillan, D.; Iglesias, A.; Garrote, L. Optimization of the Design of Water Distribution Systems for Variable
Pumping Flow Rates. Water 2020, 12, 359. [CrossRef]

http://doi.org/10.1061/(ASCE)WR.1943-5452.0000165
http://doi.org/10.1016/j.envsoft.2014.11.004
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000582
http://doi.org/10.1061/(ASCE)0733-9496(2005)131:6(467)
http://doi.org/10.1631/jzus.A071448
http://doi.org/10.1016/S1462-0758(99)00005-9
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000169
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000195
http://doi.org/10.1007/s11269-016-1512-6
http://doi.org/10.1016/j.jenvman.2012.11.030
http://doi.org/10.4314/wsa.v41i1.18
http://doi.org/10.1061/(ASCE)0733-9496(2005)131:2(116)
http://doi.org/10.3390/app10248820
http://doi.org/10.3390/app9245295
http://doi.org/10.3390/en12061144
http://www.ingenieriadelagua.com/2004/JIA/Jia2011/pdf/p572.pdf
http://www.ingenieriadelagua.com/2004/JIA/Jia2011/pdf/p572.pdf
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000589
http://doi.org/10.3390/w10040529
http://doi.org/10.1016/j.jclepro.2018.12.190
http://doi.org/10.1016/j.jclepro.2018.12.124
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001188
http://doi.org/10.3390/w12010132
http://doi.org/10.3390/w12020359

	Introduction 
	Methodology 
	The Pumping Variables 
	The Problem to Be Solved—The General Case 
	Solution A: Use Only One Pump Configuration 
	Solution B. The Right Approach. Combine Different Numbers of Pumps 
	Solution Comparison 

	The Problem to Be Solved—The Anomaly Case 
	Deduction of e* 
	Solving the Deduction of e*. Removing V*2g 
	Solving the Deduction of e*, Removing V*1g 

	Time with Each Number of Groups 

	Results 
	The Optimal Group Combination 
	How to Use the Results for A Certain Volume V*—Specific Case 
	How to Use the Results for Any Desired Volume V*—General Case 


	Discussion 
	Conclusions 
	References

