# Numerical Modeling of Submarine Pipeline Scouring under Tropical Storms

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area

#### 2.2. Environmental Factors

#### 2.2.1. Topography

^{−3}. There are tidal channels, underwater shore slopes, comb-shaped sand ridges and the central submarine plain areas of the continental shelf from the land to the sea.

#### 2.2.2. Seafloor Sediments

#### 2.2.3. Marine Hydrology

#### 2.2.4. Wind Field

#### 2.3. Local Scour Modeling

#### 2.3.1. Storm Surge Model

#### 2.3.2. Storm Wave Model

#### 2.3.3. Coupling Model

#### 2.3.4. Scouring Model

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Burkow, M.; Griebel, M. A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle. Comput. Fluids
**2016**, 125, 1–10. [Google Scholar] [CrossRef] - Ajdehak, E.; Zhao, M.; Cheng, L.; Draper, S. Numerical investigation of local scour beneath a sagging subsea pipeline in steady currents. Coast. Eng.
**2018**, 136, 106–118. [Google Scholar] [CrossRef] - Chen, Y.; Lai, X.; Ye, Y.; Huang, B.; Ji, M. Wave-induced pore water pressure in marine cohesive soils. Acta Oceanol. Sin.
**2005**, 24, 138–145. [Google Scholar] - European Gas Pipeline Incident Data Group. Gas Pipeline Incidents, 9th Report of the European Gas Pipeline Incident Data Group (Period 1970–2013). Available online: https://www.egig.eu/ (accessed on 16 May 2021).
- Cacchione, D.A.; Drake, D.E. Measurements of storm-generated bottom stresses on the continental shelf. J. Geophys. Res.
**1982**, 87, 1952–1960. [Google Scholar] [CrossRef] - European Gas Pipeline Incident Data Group. Gas Pipeline Incidents, 10th Report of the European Gas Pipeline Incident Data Group (Period 1970–2016). Available online: https://www.egig.eu/ (accessed on 16 May 2021).
- Crompton, O.; Katul, G.G.; Thompson, S. Resistance Formulations in Shallow Overland Flow Along a Hillslope Covered with Patchy Vegetation. Water Resour. Res.
**2020**, 56, 1–12. [Google Scholar] [CrossRef] - Najafzadeh, M.; Barani, G.A.; Azamathulla, H.M. Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput. Appl.
**2014**, 24, 629–635. [Google Scholar] [CrossRef] - Najafzadeh, M.; Barani, G.A.; Hessami Kermani, M.R. Estimation of pipeline scour due to waves by GMDH. J. Pipeline Syst. Eng. Pract.
**2014**, 5, 2–6. [Google Scholar] [CrossRef] - Zhang, Q.; Draper, S.; Cheng, L.; An, H. Time scale of local scour around pipelines in current, waves, and combined waves and current. J. Hydraul. Eng.
**2017**, 143, 1–13. [Google Scholar] [CrossRef] - Sharafati, A.; Yasa, R.; Azamathulla, H.M. Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. J. Pipeline Syst. Eng. Pract.
**2018**, 9. [Google Scholar] [CrossRef] - Zhang, M.; Huang, Y.; Bao, Y. The mechanism of shallow submarine landslides triggered by storm surge. Nat. Hazards
**2016**, 81, 1373–1383. [Google Scholar] [CrossRef] - Xu, K.; Mickey, R.C.; Chen, Q.; Harris, C.K.; Hetland, R.D.; Hu, K.; Wang, J. Shelf sediment transport during hurricanes Katrina and Rita. Comput. Geosci.
**2016**, 90, 24–39. [Google Scholar] [CrossRef] - Williams, J.J.; Rose, C.P. Measured and predicted rates of sediment transport in storm conditions. Mar. Geol.
**2001**, 179, 121–133. [Google Scholar] [CrossRef] - Teague, W.J.; Jarosz, E.; Keen, T.R.; Wang, D.W.; Hulbert, M.S. Bottom scour observed under Hurricane Ivan. Geophys. Res. Lett.
**2006**, 33, 1–3. [Google Scholar] [CrossRef] - Wijesekera, H.W.; Wang, D.W.; Teague, W.J.; Jarosz, E. High sea-floor stress induced by extreme hurricane waves. Geophys. Res. Lett.
**2010**, 37, 4–7. [Google Scholar] [CrossRef][Green Version] - Li, Y.; Ong, M.C.; Fuhrman, D.R.; Larsen, B.E. Numerical investigation of wave-plus-current induced scour beneath two submarine pipelines in tandem. Coast. Eng.
**2020**, 156, 103619. [Google Scholar] [CrossRef] - Hasselmann, K.; Hasselmann, S.; Bauer, E.; Janssen, P.A.E.M.; Komen, G.J.; Bertotti, L.; Lionello, P.; Guillaume, A.; Cardone, V.C.; Greenwood, J.A.; et al. The WAM model—A third generation ocean wave prediction model. J. Phys. Ocean.
**1988**, 18, 1775–1810. [Google Scholar] - Booji, N.; Holthuijsen, L.H.; Ris, R.C. The SWAN Wave Model for Shallow Water. In Proceedings of the 25th International Conference of Coastal Engineering, Olando, FL, USA, 2–6 September 1996; ASCE: New York, NY, USA; pp. 668–676. [Google Scholar]
- Hasselmann, S.; Hasselmann, K. Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral. J. Phys. Oceanogr.
**1985**, 15, 1369–1377. [Google Scholar] [CrossRef][Green Version] - Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Div.
**1965**, 91, 105–139. [Google Scholar] [CrossRef]

**Figure 10.**The change in flow velocity and effective wave height over time around KP300. (

**a**) The flow velocity over time around KP300; (

**b**) The effective wave height over time around KP300.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, P.; Meng, X.; Dong, H.; Chong, L. Numerical Modeling of Submarine Pipeline Scouring under Tropical Storms. *Water* **2021**, *13*, 1425.
https://doi.org/10.3390/w13101425

**AMA Style**

Huang P, Meng X, Dong H, Chong L. Numerical Modeling of Submarine Pipeline Scouring under Tropical Storms. *Water*. 2021; 13(10):1425.
https://doi.org/10.3390/w13101425

**Chicago/Turabian Style**

Huang, Panyang, Xin Meng, Haiyang Dong, and Lin Chong. 2021. "Numerical Modeling of Submarine Pipeline Scouring under Tropical Storms" *Water* 13, no. 10: 1425.
https://doi.org/10.3390/w13101425