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Abstract: Transboundary water resources allocation is an effective measure to resolve water-related
conflicts. Aiming at the problem of water conflicts, we constructed water resources allocation models
based on game theory and multi-objective optimization, and revealed the differences between the
two models. We compare the Pareto front solved by the AR-MOEA method and the NSGA-II method,
and analyzed the difference between the Nash–Harsanyi Leader–Follower game model and the multi-
objective optimization model. The Huaihe River basin was selected as a case study. The results show
that: (1) The AR-MOEA method is better than the NSGA-II method in terms of the diversity metric (∆);
(2) the solution of the asymmetric Nash–Harsanyi Leader–Follower game model is a non-dominated
solution, and the asymmetric game model can obtain the same water resources allocation scheme
of the multi-objective optimal allocation model under a specific preference structure; (3) after the
multi-objective optimization model obtains the Pareto front, it still needs to construct the preference
information of the Pareto front for a second time to make the optimal solution of a multi-objective
decision, while the game model can directly obtain the water resources allocation scheme at one
time by participating in the negotiation. The results expand the solution method of water resources
allocation models and provide support for rational water resources allocation.

Keywords: game theory; multi-objective optimization; water resources allocation; asymmetric Nash–
Harsanyi Leader–Follower game model

1. Introduction

Transboundary water resources allocation usually involves multi-stakeholders. When
water resources are insufficient to meet the water demand of the whole basin, water
conflicts may arise among multi-stakeholders. In the case of water resources shortage,
transboundary water resources allocation become an important means to solve water
conflicts. Transboundary water resources allocation is a kind of complex decision-making
problem with nonlinear, multi-objective and multi-stage characteristics.

In transboundary water resources allocation based on game theory, the way various
stakeholders directly participate in the negotiation makes the water resources allocation
results more acceptable. Roger [1] originally applied game theory to solve water resources
conflicts. Since then, water resources allocation based on game theory has been studied.
Bogardi and Szidarovsky [2] applied the oligopoly game to different water resources
management problems. Parrachino et al. [3] applied cooperative game theory to solve water
conflicts. Carraro et al. [4–6] systematically described the application of non-cooperative
negotiation theory in water resources conflicts. Madani et al. [7] demonstrated that the
application of water resources allocation based on game theory can be divided into five
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parts. Kerachian et al. [8] applied a fuzzy game to analyze the best strategy of various
stakeholders. Wei et al. [9] applied a game theory-based model to analyze and solve water
conflicts concerning water allocation and nitrogen reduction in the Middle Route of the
South-to-North Water Transfer Project in China. Safari et al. [10] proposed a game model to
analyze a water conflict in the Zarrinehrud River while considering agricultural demand
and environmental constraints. Dinar et al. [11] summarized the application of game theory
in water resources allocation. Degefu et al. [12] proposed a water allocation framework by
combining the bankruptcy theory with the asymmetric Nash bargaining concept for solving
the water sharing problem in transboundary river basins under scarcity. He et al. [13]
presented a framework to allocate river water in a cooperative way based on game theory.
Khachaturyan and Schoengold [14] applied game theory to solve the water shortage and
pollution in the Kura-Araks basin. Yang et al. [15] proposed a repeated game model to
analyze evolutionary transboundary cooperation.

The transboundary water resources allocation model based on multi-objective opti-
mization focuses on solving water conflicts from the perspective of optimization objectives,
and uses the multi-objective optimization method to achieve the water resources allocation
results. In recent years, the multi-objective optimization algorithm has had the advantages
of obtaining a complete Pareto front at one time, dealing with large-scale search space
effectively and high universality, so the multi-objective optimization algorithm is widely
used to the solve water resources allocation model based on multi-objective optimization.
Rao et al. [16] applied a genetic algorithm to solve the water resources allocation model
under drought conditions. Reed et al. [17] described the evolutionary multi-objective
optimization in water resources. Tabari and Soltani [18] applied NSGA-II to solve the multi-
objective optimal model for water resources allocation. Sepahvand et al. [19] developed
the water resources allocation model based on bi-objective non-dominated sorting genetic
algorithm-Type II. Qi et al. [20] constructed a multisource and multiuser water resources
allocation model, and a genetic algorithm was used solve the model.

The above literature on transboundary water resources allocation seldom involve the
comparative study of transboundary water resource allocation models based on game
theory and multi-objective optimization. Moreover, from a mathematical point of view, the
solution of multi-objective optimization is the closest solution to the ideal optimal point
and the solution of game theory is the furthest distance to the worst solution. Therefore, it is
necessary to make a comparative study of water resources allocation models based on game
theory and multi-objective optimization. The asymmetric Nash–Harsanyi Leader–Follower
game model proposed by Fu et al. comprehensively considers the principles of fairness,
efficiency and sustainability, which can not only guarantee the basic water demand, but
can also better balance the economic development levels among followers [21]. Therefore,
this game model can obtain reasonable calculation results. The AR-MOEA method, which
is applicable to a different front, is introduced to solve the transboundary water resources
allocation model based on multi-objective optimization [22]. Therefore, this paper will
explore the differences between the multi-objective optimization model based on the AR-
MOEA method and the asymmetric Nash–Harsanyi Leader–Follower game model in
transboundary water resources allocation. First, we establish the transboundary water
resources allocation model based on multi-objective optimization. Second, the AR-MOEA
method is used to solve the Pareto front, and the Pareto front solved by AR-MOEA method
is compared with the Pareto front solved by the widely used NSGA-II method. Finally,
we analyze the relationship between the water resources allocation result of the Nash–
Harsanyi Leader–Follower game model and Pareto front of multi-objective optimization
solution, and illustrate the difference between water resources allocation based on the
asymmetric Nash–Harsanyi Leader–Follower game model and water resources allocation
based on the multi-objective optimization model.

The rest of this paper is organized as follows: Section 2 describes the material and
methods. Section 3 describes the results of the asymmetric Nash–Harsanyi Leader–Follower
game model and multi-objective optimization model based on the AR-MOEA method in the
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Huaihe River basin. Section 4 discusses the comparison of water resources allocation results
based on the NSGA-II method and the AR-MOEA method, and reveals the differences
between water resources allocation based on the asymmetric Nash–Harsanyi Leader–
Follower game model and the multi-objective optimization model based on the AR-MOEA
method. Section 5 concludes the paper.

2. Materials and Methods
2.1. Study Area

The Huaihe River basin located in the east (longitude from 111.9◦ to 121.4◦) and in
the north (latitude from 30.9◦ to 36.6◦) of China, with a total area of 19,000 km2. The
Huaihe River basin contains Henan province, Anhui province, and Jiangsu province (three
provinces). The problem of water resources shortage is prominent, and the inter-provincial
water resources conflict has become a serious problem. Though the study area is not
international, an inter-provincial basin is effectively equivalent to an international basin as
long as its boundaries do not match political boundaries. The stakeholders in the process of
the Huaihe River basin water resources allocation are the watershed management agency,
Henan province, Anhui province, and Jiangsu province. The spatial distribution and
location of the associated province of Huaihe River basinis described in Figure 1.
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2.2. Transboundary Water Resources Allocation Based on Asymmetric Nash–Harsanyi
Leader–Follower Game Model and Its Solution

Transboundary water resources allocation based on the asymmetric Nash–Harsanyi
Leader–Follower game model is proposed by Fu et al. [21]. The game model considering
fairness, efficiency, and sustainable principles can not only guarantee the basic water de-
mand, but also better balance the economic development levels among followers. Therefore,
the game model is used to compare with the multi-objective optimization model.

Transboundary water resources allocation based on the asymmetric Nash–Harsanyi
Leader–Follower game model is a combination of the leader–follower concepts and the
Nash–Harsanyi theory. This model involves a single leader and multiple followers. In this
study, a watershed management agency is considered to be the leader, who is responsible
for the eco-environmental benefit of the whole basin. The associated areas serve as the
followers. The eco-environmental water used by the whole basin in the allocation process
is the public water. If the public water allocation is unreasonable, the eco-environmental
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situation will deteriorate, and sustainable development is challenged. Therefore, it is
necessary to rationally distribute public water. The transboundary river water resources
allocation process can be divided into two stages. The first stage involves allocating the
public water. In the second stage, followers need to allocate water resources according to
the asymmetric Nash–Harsanyi game model after the decisions are given by the watershed
management agency.

The model of the watershed management agency (leader) can be described as the following:

V = max− (s− s∗)2, (1)

Subject to:
Water balance constraints:

s +
n

∑
i=1

wi = Q, (2)

Public water constraints:

0 ≤ s ≤ Q−
n

∑
i=1

λi, (3)

where V is the objective function of the watershed management agency, s is the public
water and the solution of the leader, s∗ is the ideal eco-environmental water demand,
−(s− s∗)2 is the eco-environmental benefit, w = {w1, w2, · · · , wn} is the decision vector
of water allocated to followers, wi is the water in the ith follower(i = 1, 2, · · · , n), Q is the
total allocable water, and λi is the minimum survival water demand in the ith follower.

The model of the regions (followers) can be described as the following:

max
n
Π

i=1
(ui(wi)− di)

αi , (4)

di = ui(Ii), (5)

Ii = max(λi, Q−∑
k 6=i

ri − s), (6)

αi = ηδ1i + (1− η)δ2i, (7)

δ1i =
ri − Ii

n
∑

i=1
(ri − Ii)

, (8)

δ2i =
βi

n
∑

i=1
βi

, (9)

βi = 1−
Di − 1

n

n
∑

i=1
Di

1
n

n
∑

i=1
Di

, (10)

Di =
e

∑
k=1

ri,k

ri
Di,k, (11)

Subject to:
Optimal solution existence constraints:

ui(wi) ≥ di, i = 1, 2, · · · , n, (12)

Water balance constraints:

s′ +
n

∑
i=1

wi = Q, (13)
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The bargaining weight constraints:

n

∑
i=1

αi = 1, (14)

Water resources allocation constraints in each region:

Ii ≤ wi ≤ ri, (15)

where ui(wi) is the objective function for follower i, di is the disagreement point for follower
i, αi is the bargaining weight for follower i, ui(Ii) is the benefit of minimum water allocation
for follower i, ri is the water demand for follower i, Ii is the minimum water allocation for
follower i, η is the weight of the equity principle, δ1i is the bargaining weight for follower i
when only considering the equity principle that represents the equity of water for follower
i, (1− η) is the weight of efficiency principle, δ2i is the bargaining weight for follower i
when only the efficiency principle is considered, βi is the water use correction coefficient
for follower i, Di is the integrated water utility for follower i, ri,k is the water demand of the
kth water user in the ith follower, and Di,k is the integrated water utility of the kth water
user in the ith follower.

The solution of the game model can refer to Fu’s article [21]. After the watershed
management agency obtains the public water, the followers can obtain the water resources
allocation results by using the successive linear programming method.

The successive linear programming method was first proposed in 1961 [23]. It is an
iterative optimization method using linear programming technology to solve nonlinear
problems. At present, this method has been widely used in practical engineering and
achieved good results. The steps for solving successive linear programming are as follows:

1. Let x0 be the initial feasible solution of the optimization problem, and the correspond-
ing objective function value is f (x0);

2. The nonlinear objective function is linearized by using the first order descriptive form
point (x0, f (x0)) of Taylor series, and the optimal solution (x′1, f (x′1)) of linearized
objective function in the neighborhood (x0 − δ, x0 − δ) is obtained by using the linear
programming method;

3. Taking the optimal solution (x′1, f (x′1)) as a new feasible solution, the nonlinear objec-
tive function is linearized again by using the first order description point (x′1, f (x′1))
of Taylor series, and the optimal solution (x′2, f (x′2)) of linearized objective func-
tion in the neighborhood (x1 − δ, x1 − δ) is obtained by using the linear program-
ming method;

4. Repeat the above step 3 for the optimal solution and continue to iterate until the
obtained optimal solution and the optimal objective function meet the condition of
iteration termination.

2.3. Transboundary Water Resources Allocation Based on Multi-Objective Optimization Model
and Its Solution
2.3.1. Transboundary Water Resources Allocation Based on Multi-Objective
Optimization Model

Transboundary water resources allocation is a multi-stakeholders utilization conflict
issue, involving watershed management agency and multiple areas.

The watershed management agency is responsible for the eco-environmental water
utilization of the entire basin in the process of water resources allocation. The optimization
goal of a watershed management agency is to maximize the eco-environmental benefit.
The specific formula is as follows:

F0(s) = max− (s− s∗)2 (16)
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The optimization goal of area i is to maximize the comprehensive benefit of the area.
The specific calculation formula is as follows:

Fi(wi) = maxui(wi) (17)

Constraints conditions for n + 1 targets:
Water balance constraints:

s′ +
n

∑
i=1

wi = Q (18)

Water resources allocation constraints in each region:

Ii ≤ wi ≤ ri (19)

In the multi-objective optimization model of transboundary water resources allocation,
the ecological environmental water used in the entire basin is public water. If the water
resources allocation result is not reasonable, the eco-environmental situation is severe, and
sustainable development is faced with challenges.

In the process of actual water resources allocation, due to the lack of consideration
of eco-environmental water requirements, the eco-environmental water consumption is
largely consumed by the production of water. This could not meet the sustainable devel-
opment of water resources, which brings about water resources and eco-environmental
problems, so the eco-environmental benefit of the watershed management agency needs to
be prioritized. Therefore, the objective function of the watershed management agency in
transboundary water resources allocation can be converted into constraint conditions, and
the n + 1 objective function converted into n objective function.

2.3.2. Multi-Objective Optimization Method

(1) AR-MOEA method.
The AR-MOEA method is an evolutionary algorithm by Tian, which can be used

to solve multi-objective optimization problems [22]. This method uses the enhanced
inverted generational distance indicator as the main environmental selection strategy. In
this method, a uniformly distributed group of reference points is used as the reference
points set for calculating the enhanced inverted generational distance indicator. Therefore,
the AR-MOEA method can be applied to a different front, and the distribution of reference
points can be adjusted automatically according to the current population distribution in
the calculation process.

The algorithm steps of AR-MOEA are as follows:

1. An initial population Pl of size M is randomly generated, save the population Pl to an
external document E, and multi-objective optimization method based on objective
decomposition is used to generated a set of reference points R with a scale of MR;

2. A mating pool selection strategy based on the enhanced inverted generational distance
with noncontributing solution detection is used to select the initial population Pl ,
mating pool p′l is selected and the offspring population P′

l
is generated;

3. The archive E and the adapted reference point set R′ are updated through the off-
spring population P′

l
, then the next generation population Pl+1 is selected by the

enhanced inverted generational distance with a noncontributing solution detection
selection strategy;

4. The above steps 1, 2, and 3 are repeated for the new initial population Pl+1 until a
termination criterion is reached.

The AR-MOEA method contains four solutions sets: initial population Pl , initial
reference point set R, archive set E, and adapted reference point set R′. The population Pl
contains the candidate solutions as final output, the initial reference point set R is used
to guarantee uniform distribution of the candidate solution in Pl , and the archive set E
provides the shape of the Pareto front of the adapted reference point set R′. An enhanced
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inverted generational distance indicator is used to select populations Pl to change the
adapted reference point set R′. The relationships between the four solution sets are shown
in Figure 2.
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(2) NSGA-II method.
The NSGA-II method is a multi-objective genetic algorithm proposed by Deb, which

can be used to solve multi-objective optimization problems [24]. The NSGA-II method has
the advantages of reducing the complexity of the algorithm, fast operation speeds, and good
distribution of the solution set, so the method has become a widely used multi-objective
genetic algorithm.

The algorithm steps of AR-MOEA are as follows:

1. An initial population pl of size M is randomly generated, and the initial population is
stratified by non-inferiority, and the genetic operator (selection operator, crossover
operator, mutation operator) is used to obtain an offspring population ql . Then, the
initial population pl and the offspring population ql are mixed together to form a new
population Nl of size 2M;

2. The new population Nl of size 2M is rapidly sorted to form a non-dominated set El ,
then the crowding degree of the individuals in the non-dominated set El is calculated.
According to the non-dominant relationship and the crowding degree of individuals,
a new initial population pl+1 with the appropriate individual composition size of M
is selected;

3. The above steps 1 and 2 are repeated for the new initial population pl+1 until a
termination criterion is reached.

Figure 3 shows the specific calculation flow chart of NSGA-II.
(3) Linear weighted sum method.
The linear weighted sum method transforms the multi-objective optimization problem

into a single objective problem to solve. The specific solving steps are as follows:
According to the importance of each goal, a set of non-negative weights τi(i =

1, 2, · · · , n) corresponding to the objective function Fi is given,
n
∑

i=1
τi = 1.The non-negative

weight of the objective function is closely related to the preference structure information of
the decision maker.

Each objective function is multiplied by its corresponding non-negative weight, then
added to obtain a single objective function.
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The formula for the linear weighted sum method can be written as the following:

minF(wi) =
n

∑
i=1

τiFi(wi), wi ∈W (20)

Subject to:
Inequality constraints:

Gi(wi) ≥ 0 (21)

Equality constraints:
Hi(wi) = 0 (22)

The linear weighted sum method can be solved by the successive linear program-
ming method.
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2.3.3. Performance Metrics for Multi-Objective Optimization Evolutionary Algorithms

According to the characteristics of the solution set measured by the performance
metrics, the existing algorithm performance metrics can be divided into three categories:

(1) Convergence metrics—evaluate the approximation degree between the true Pareto
front and non-dominated solution.

Generational distance (GD) can be used to measure the convergence of non-dominated
solutions obtained by multi-objective evolutionary algorithms [25]. The smaller the GD
is, the better the convergence of non-dominated solutions obtained by multi-objective
evolutionary algorithms is. It is assumed that P∗ is a set of solutions uniformly distributed
on the real Pareto front and A is the non-dominated solution set obtained by multi-objective
evolutionary algorithms. The expression of GD can be defined as:

GD(A, P∗) =

√
∑

y∈A
min
x∈P∗

d(x, y)2

|A| , (23)

where d(x, y) is the Euclidean distance between point x in P∗ and point y in A, and |A| is
the number of non-dominated solutions.

(2) Diversity metrics—evaluate scatter of non-dominated solutions. Diversity metrics
can be subdivided into the evenness and spread of the non-dominated solutions in the
whole feasible region. Evenness in diversity metrics reflects the evenness of distribution in
non-dominated solutions. Spread in diversity metrics reflects the spread degree of solution
set in target space.

A range metric (∆) is employed to measure the diversity of non-dominated solutions
obtained by the multi-objective evolutionary algorithm [24]. The mathematical definition
of diversity metrics is described as:

∆ =

d f + dl +
N−1
∑

i=1

∣∣∣di − d
∣∣∣

d f + dl + (N − 1)d
, (24)

where d f and dl are the Euclidean distance between the extreme non-dominated solution
and the boundary solutions of the obtained non-dominated solution set, N is the number
of non-dominated solutions obtained by multi-objective evolutionary algorithms, di is the
distance between continuous solutions in obtained non-dominated solution set, and d is the
average of all di(i = 1, 2, . . . , N − 1). When ∆ is zero, it indicates that the non-dominated
solution set calculated by the multi-objective optimization algorithm has good diversity.

(3) Composite metrics considering convergence and diversity.
Inverted generational distance (IGD) and hypervolume (HV) are employed to measure

the convergence and diversity of a non-dominated solution obtained by the multi-objective
evolutionary algorithm.

IGD can be used to measure the mean of the minimum distance between point x
in P∗ and point y in A. The smaller IGD is, the better the convergence and diversity of
non-dominated solutions obtained by multi-objective evolutionary algorithms is. The
expression of IGD can be described as the following:

IGD(A, P∗) =
∑

x∈P∗
min
y∈A

d(x, y)

|P∗| , (25)

where d(x, y) is the Euclidean distance between point x in P∗ and point y in A, |P∗| is the
number of true Pareto solutions.

HV is the volume in the target space region enclosed by the non-dominated solutions
A and the reference point set R [25]. The larger the HV, the better the convergence and
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diversity of non-dominated solutions obtained by multi-objective evolutionary algorithms.
The calculation formula of HV is:

HV = volume
(
∪N

i=1vi

)
, (26)

where volume(·) is Lebesgue measure, N is the number of non-dominated solutions ob-
tained by multi-objective evolutionary algorithms, and vi is the volume enclosed between
the ith non-dominated solution and the reference point.

We selected the above representative performance metrics to evaluate the AR-MOEA
method and the NSGA-II method.

2.4. Data of Nash–Harsanyi Leader–Follower Game Model and Multi-Objective
Optimization Model

The stakeholders in the Huaihe River basin are the watershed management agency and
the three previously mentioned provinces. According to the two water resources allocation
models mentioned in Sections 2.2 and 2.3, the data required for the two models are total
allocable water Q, ideal eco-environmental water demand s∗, weight of the equity principle
η, weight of efficiency principle (1− η), water demand in each province ri, minimum
survival water demand in each province λi, minimum water allocation in each province Ii,
disagreement point in each province di, bargaining weight in each province αi, objective
function in each province ui(wi), and integrated water utility in each province Di. The
data used in the two models are all taken from Fu et al. (2018) [21]. Table 1 shows the data
required for two transboundary water resources allocation models.

Table 1. Data required for two transboundary water resources allocation models.

Parameter Henan Province Anhui Province Jiangsu Province

Q 400.5 (Hundred million m3)
s∗ 100.1 (Hundred million m3)
η 0.667

(1− η) 0.333
ri 126.4 (Hundred million m3) 135.2 (Hundred million m3) 137.3 (Hundred million m3)
λi 27.7 (Hundred million m3) 37.0 (Hundred million m3) 50.4 (Hundred million m3)
Ii 27.9 (Hundred million m3) 37.0 (Hundred million m3) 50.4 (Hundred million m3)
di 273.443 (Hundred million yuan) 289.476 (Hundred million yuan) 389.663 (Hundred million yuan)
Di 666.8 (m3/Hundred million yuan) 1035.2 (m3/Hundred million yuan) 1034.7 (m3/Hundred million yuan)
αi 0.423 0.288 0.289

ui(wi) u1(w1) = −0.0302w̃2
1 + 10.5478w̃1

+2.6678
u2(w2) = −0.0254w̃2

2 + 8.6364w̃2
+0.1733

u3(w3) = −0.024w̃2
3 + 8.9395w̃3

+0.0763

3. Results
3.1. Water Resources Allocation Based on Asymmetric Nash–Harsanyi Leader–Follower Game
Model and Its Solution in Huaihe River Basin

For the four stakeholders in the Huaihe River basin, the watershed management
agency serves as leader and the three provinces serve as followers. The model of the
watershed management agency is as follows:

V = max− (s− 100.5)2 (27)

Subject to:
Water balance constraints:

s +
n

∑
i=1

wi = 400.5 (28)

Public water constraints:
0 ≤ s ≤ 285.4 (29)

The public water s obtained by the above model of watershed management agency is
100.1 hundred million m3.
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After the watershed management agency determines that the public water to be 100.1
hundred million m3, the model of the three provinces is as follows:

max(u1 − d1)
α1(u2 − d2)

α2(u3 − d3)
α3

= max(−0.0302w2
1 + 10.5478w1 + 2.6678− 273.443)0.373

(−0.0254w2
2 + 8.6364w2 + 0.1733− 289.476)0.323,

(−0.024w2
3 + 8.9395w3 + 0.0763− 389.663)0.300

(30)

Subject to:
Optimal solution existence constraints:

u1 ≥ 273.443, (31)

u2 ≥ 289.476, (32)

u3 ≥ 389.663 (33)

Water balance constraints:

w1 + w2 + w3 + 100.1 = 400.5 (34)

The water allocation constraints in Henan province:

27.9 ≤ w1 ≤ 126.4 (35)

The water allocation constraints in Anhui province:

37.0 ≤ w2 ≤ 135.2 (36)

The water allocation constraints in Jiangsu province:

50.4 ≤ w3 ≤ 137.3 (37)

We used the successive linear programming method to solve the above model for the
three provinces. The amount of water allocated to Henan province, Anhui province, and
Jiangsu province were 95.5 hundred million m3, 97.5 hundred million m3, and 107.4 hun-
dred million m3, respectively, and the satisfaction of rates in the corresponding provinces
were 68.6%, 61.6%, and 65.6%, respectively. In addition, the benefit of the three provinces
were 734.6 hundred billion yuan, 600.8 hundred million yuan, and 683.3 hundred million
yuan; the total benefit was 2018.7 hundred million yuan.

3.2. Water Resources Allocation Based on Multi-Objective Optimization Model and Its Solution in
Huaihe River Basin

In the water resources allocation based on multi-objective optimization model, the
eco-environmental benefit F0 of the watershed management agency is given priority, so
the public water allocated to watershed management agency is 100.1 hundred million
m3. The objective function of the watershed management agency in transboundary wa-
ter resources allocation can be converted into constraint conditions, then four objective
functions converted into three objective functions. Water resources allocation based on the
multi-objective optimization model is established as follows:

The objective function of Henan province is:

F1 = max(−0.0302w2
1 + 10.5478w1 + 2.6678) (38)

The objective function of Anhui province is:

F2 = max(−0.0254w2
2 + 8.6364w2 + 0.1733) (39)
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The objective function of Jiangsu province is:

F3 = max(−0.024w2
3 + 8.9395w3 + 0.0763) (40)

Subject to:
Water balance constraints:

w1 + w2 + w3 = 400.5− 100.1, (41)

The water allocation constraints in Henan province:

27.9 ≤ w1 ≤ 126.4, (42)

The water allocation constraints in Anhui province:

37.0 ≤ w2 ≤ 135.2, (43)

The water allocation constraints in Jiangsu province:

50.4 ≤ w3 ≤ 137.3, (44)

where w1 is the amount of water allocated to Henan province, w2 is the amount of water
allocated to Anhui province, and w3 is the amount of water allocated to Jiangsu province.

The NSGA-II method and the AR-MOEA method are used to solve the multi-objective
optimization model established above. The population size of the two methods (NSGA-II
method and AR-MOEA method) are both 100, and the maximum iterations of the two
methods are both 1000. The multi-objective optimization model based on the NSGA-II
method and the AR-MOEA method are both solved by using PlatEMO platform [26].

The Pareto front of multi-objective optimization based on NSGA-II method in the
Huaihe River basin is shown in Figure 4. As can be seen from Figure 4, the points on the
Pareto front solved by NSGA-II method are not uniformly distributed.
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Figure 5 shows the Pareto front of multi-objective optimization based on the AR-
MOEA method in the Huaihe River basin. In Figure 5, the points on the Pareto front solved
by the AR-MOEA method are uniformly distributed.
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4. Discussion
4.1. Comparison of Water Resource Allocation Results Based on NSGA-II Method and
AR-MOEA Method

In order to measure the effect of the NSGA-II method and the AR-MOEA method
on multi-objective optimization in the three provinces of the Huaihe River basin, we
introduced three categories of performance metrics (convergence metrics, diversity metrics,
and the metrics considering convergence and diversity), as mentioned in Section 2.3.3. The
average value and significance test of algorithm performance metrics of the two methods
running for 30 times are shown in Table 2.

Table 2. The average value and significance test of algorithm performance metrics of the two methods
running for 30 times.

Metrics
Average Value Significance Test

NSGA-II Method AR-MOEA Method

Convergence metric
GD 17.18 16.99 h = 0 1

Diversity metric ∆ 2.74 1.97 h = 1 2

Composite metric
IGD 40.94 40.93 h = 0

Composite metric HV 3.22 3.30 h = 0
1 indicates that significance test does not reject the null hypothesis at the 5% significance level, this means that
there is no significant difference in the values of algorithm performance metrics of two methods; 2 indicates
that significance test rejects the null hypothesis at the 5% significance level, this means that there is significant
difference in the values of algorithm performance metrics of two methods.
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Table 2 shows:

1. The convergence metric (GD) and composite metrics (IGD, HV) pass a 5% significance
level; this means that there is no significant difference in convergence metric (GD)
and composite metrics (IGD, HV). Therefore, we think that the two methods have
almost the same effect on convergence metric (GD) and composite metrics (IGD, HV);

2. The diversity metric (∆) cannot pass a 5% significance level; this means that there
is a significant difference in the diversity metric (∆). As for the diversity metric (∆),
when ∆ tends to zero, it indicates that the non-dominated solution set calculated by
the multi-objective optimization algorithm has good diversity. The average value of
the diversity metric (∆) in the AR-MOEA method is lower than that in the NSGA-II
method. Therefore, the AR-MOEA method is better than the NSGA-II method in
terms of the diversity metric (∆).

In conclusion, the AR-MOEA method is better than the NSGA-II method in terms of
the diversity metric (∆).

4.2. Comparison of Water Resource Allocation Results Based on Multi-Objective Optimization
Model and Game Model

Because the AR-MOEA method is superior in the diversity metric (∆) when solving the
multi-objective optimization model of the Huaihe River basin water resources allocation,
we choose the AR-MOEA method to solve the multi-objective optimization model of water
resource allocation in the Huaihe River basin. Then, we compared the water resources
allocation results based on the the asymmetric Nash–Harsanyi Leader–Follower game
model and the multi-objective optimization model based on the AR-MOEA method. The
benefits for the three provinces of Huaihe River obtained by the two model are shown in
Figure 6.
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Figure 6 shows that the water resources allocation result of the asymmetric Nash–
Harsanyi Leader–Follower game model is on the Pareto front solved by the AR-MOEA
method, that is, the solution of the asymmetric Nash–Harsanyi Leader–Follower game
model is a non-dominated solution.

The multi-objective optimization solution is the closest solution to the ideal optimal
point, and the ideal optimal point is different under different preference information. The
asymmetric Nash–Harsanyi Leader–Follower game model considers the principles of
fairness and efficiency, so the solution nearest to the ideal optimal point under the principle
of efficiency and the principle of fairness is chosen for the multi-objective optimization
solution. The multi-objective optimization solution under the principle of efficiency can
be converted into solving non-dominated solution of maximum comprehensive benefit.
The non-dominated solution with the maximum comprehensive benefit can be obtained by
the linear weighted sum method with equal non-negative weights. The multi-objective
optimization solution under the principle of fairness can be converted into solving non-
dominated solution of equal water demand satisfaction rate. The non-dominated solution
with an equal water demand satisfaction rate can be solved by the water balance equation
and an equal water demand equation in the three provinces of the Huaihe River basin.

The water resources allocation results in the three provinces of the Huaihe River basin
solved by the multi-objective optimization solution under different preference information
(focusing on overall comprehensive benefit or overall fairness) and the asymmetric Nash–
Harsanyi Leader–Follower game model (considering the principle of efficiency and fairness)
were compared and analyzed, as shown in Table 3.

Table 3. Water resources allocation results under different scenarios.

Province Parameters
Multi-Objective Optimization Solution Asymmetric Nash–Harsanyi

Leader–Follower Game ModelEfficiency Fairness

Henan
w1 (Hundred million m3) 107.8 92.2 95.5

F1 (Hundred million yuan) 788.8 718.4 734.6
water demand satisfaction rate (%) 81.1 65.3 68.6

Anhui
w2 (Hundred million m3) 90.5 101.1 97.5

F2 (Hundred million yuan) 573.7 613.7 600.8
water demand satisfaction rate (%) 54.5 65.3 61.6

Jiangsu
w3 (Hundred million m3) 102.1 107.1 107.4

F3 (Hundred million yuan) 662.6 682.2 683.3
water demand satisfaction rate (%) 59.5 65.3 65.6

Total benefit (Hundred million yuan) 2025.1 2014.3 2018.7

Table 3 shows:

1. The water demand satisfaction rate of the three provinces of the Huaihe River basin
is not balanced in the multi-objective optimization solution under the principle of
efficiency, so the fairness of water resources allocation result in the multi-objective
optimization solution under the principle of efficiency is ignored. The water demand
satisfaction rate of Henan province is higher than that of Anhui province and Jiangsu
province, which makes Anhui province and Jiangsu province unable to accept the
water resources allocation scheme;

2. The multi-objective optimization solution under the principle of fairness satisfies the
fairness of water resources allocation result in the three provinces, but the total benefit
of the multi-objective optimization solution under the principle of fairness is lower
than the water resources allocation result solved by the asymmetric Nash–Harsanyi
Leader–Follower game model. The above analysis makes the three provinces unable
to accept the water resources allocation scheme;

3. The water resources allocation result of the asymmetric Nash–Harsanyi Leader–
Follower game model is a compromise solution between two kinds of multi-objective
optimization solutions under different preference information (focusing on overall
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comprehensive benefit or overall fairness). The efficiency and fairness are considered
comprehensively in the game model, which makes it easier for the three provinces to
accept the water resources allocation scheme.

In order to explore the relationship between the water resources allocation results
obtained by the linear weighted sum method with different objective function non-negative
weights and the water resource allocation results based on the asymmetric Nash–Harsanyi
Leader–Follower game model, the non-negative weights of objective function in linear
weighted sum method are fitted by using a trial and error method.

When the non-negative weights of Henan province, Anhui province, and Jiangsu
province are 0.281, 0.364, and 0.355, respectively, the water resources allocation obtained by
the linear weighted sum method are equal to the water resources allocation results obtained
by the asymmetric Nash–Harsanyi Leader–Follower game model. This result shows that
the multi-objective optimization model can obtain the same water resources scheme as the
Nash–Harsanyi Leader–Follower game model under a specific preference structure.

After the multi-objective optimization model obtains the Pareto front, it still needs
to construct the preference information of Pareto front for the second time to make the
optimal coordinated solution of the multi-objective decision. In this kind of integrated
water resources allocation, each stakeholder cannot directly participate in water resources
allocation, and the behavior influence of various stakeholders cannot be taken into account,
which may make the obtained water resources unacceptable to various stakeholders. The
asymmetric Nash–Harsanyi Leader–Follower game model can not only guarantee basic
water demand, but can also better balance the economic development level among the three
provinces. Moreover, in the asymmetric Nash–Harsanyi Leader–Follower game model,
the three provinces of the Huaihe River basin can directly participate in the negotiation to
make the water resources allocation results acceptable to all stakeholders, and the obtained
result has a practical guiding role in water resources allocation.

5. Conclusions

In this study, we analyzed the difference between the asymmetric Nash–Harsanyi
Leader–Follower game model and the multi-objective optimization model in water re-
sources allocation. First, we established a transboundary water resources allocation model
based on multi-objective optimization. Second, the AR-MOEA method was used to solve
the Pareto front, and the Pareto front solved by AR-MOEA method was compared with
the Pareto front solved by NSGA-II. Finally, we analyzedthe relationship between the
water resources allocation result of the Nash–Harsanyi Leader–Follower game model
and the Pareto front of the multi-objective optimization solution, and illustrated the dif-
ference between the asymmetric Nash–Harsanyi Leader–Follower game model and the
multi-objective optimization model in water resources allocation. The asymmetric Nash–
Harsanyi Leader–Follower game model and the multi-objective optimization model based
on AR-MOEA method were applied to the Huaihe River basin. The main conclusions are
as follows:

1. The AR-MOEA method and the NSGA-II method were applied to solve the multi-
objective optimization model of the Huaihe River basin water resources allocation.
The results show that the AR-MOEA method is better than the NSGA-II method in
terms of the diversity metric (∆);

2. The solution of the asymmetric Nash–Harsanyi Leader–Follower game model is a
non-dominated solution, and the asymmetric Nash–Harsanyi Leader–Follower game
model can obtain the same water resources allocation scheme of the multi-objective
optimal allocation model under a specific preference structure;

3. After the multi-objective optimization model obtains the Pareto front, it still needs to
construct the preference information of the Pareto front for the second time to make
the optimal solution of multi-objective decision, while the game model can directly
obtain the water allocation scheme in one time by participating in the negotiation.
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