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Abstract: The water quality of the Dongjin River deteriorates during the irrigation period because
the supply of river maintenance water to the main river is cut off by the mass intake of agricultural
weirs located in the midstream regions. A physics-based model and a data-driven model were
used to predict the water quality in the Dongjin River under various hydrological conditions. The
Hydrological Simulation Program–Fortran (HSPF), which is a physics-based model, was constructed
to simulate the biological oxygen demand (BOD) in the Dongjin River Basin. A Gamma Test was
used to derive the optimal combinations of the observed variables, including external water inflow,
water intake, rainfall, and flow rate, for irrigation and non-irrigation periods. A data-driven adaptive
neuro-fuzzy inference system (ANFIS) model was then built using these results. The ANFIS model
built in this study was capable of predicting the BOD from the observed hydrological data in the
irrigation and non-irrigation periods, without running the physics-based model. The predicted
results have high confidence levels when compared with the observed data. Thus, the proposed
method can be used for the reliable and rapid prediction of water quality using only monitoring data
as input.

Keywords: data-driven model; HSPF model; ANFIS; BOD; Water quality prediction

1. Introduction

The Saemangeum project in Korea, pursued for over three decades, involves building
the longest sea dike in the world for the reclamation of land and lakes with the goals of
expanding land area, developing water resources, and providing extra land for farming.
However, with increasing concerns regarding water pollution due to accelerated devel-
opment, alleviating water pollution and achieving the target water quality have emerged
as key factors. Currently, a large quantity of river water is used for agriculture through
large irrigation systems in the Mangyeong and Dongjin River basins, which drain into the
Saemangeum Lake. This has significantly hampered the flow of rivers and increased their
susceptibility to drying up, leading to difficulties in water quality management [1]. The
Ministry of Environment (MOE) conducted a quantitative assessment of the effects of the
Master Plans for Water Quality Improvement using water quality modeling techniques.
They found that the increase in the external water inflow had the largest effect on water
quality improvement. Hence, the ministry proposed measures to secure the flow rate,
including an increase in the discharges from the Yongdam and Seomjin River Dams to the
upstream regions of the Mangyeong and Dongjin Rivers [2]. In particular, the water quality
of the Dongjin River deteriorates during the irrigation period due to the mass intake of
river maintenance water at the Nakyang Weir, a diversion weir located in the midstream
region of the Dongjin River.
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Therefore, it is necessary to analyze and predict water quality according to the complex
hydrological conditions for an effective water quality management in the Dongjin River
Basin. To achieve this, a physics-based model or data-driven model can be applied [3]. A
physics-based model enables the prediction of water quality by treating the watershed
as a closed system and formulating, applying, and analyzing all physical, chemical, and
biological mechanisms present in the system. However, as there are numerous models
available, an appropriate model must be selected based on the characteristics and choice
of water quality parameters of the target watershed, while also considering the purpose
of the analysis and available computing power. Furthermore, as various input data are
required, it is difficult to estimate the optimal parameters, and the subjective interpreta-
tions of model developers may introduce data biases. Conversely, data-driven models
have a better structure for analyzing complex nonlinear relationships between input and
output data (i.e., water quality) [4], reduce data uncertainty by relearning in response to
environmental changes, and produce relatively reliable data. However, describing these
structures and relationships are complex. Examples of data-driven models include artificial
neural networks (ANNs), genetic algorithms, and fuzzy models.

Faruk [4] developed a hybrid model using an autoregressive integrated moving
average model and an ANN to predict water quality from time-series data. Khadr et al. [5]
constructed an adaptive neuro-fuzzy inference system (ANFIS) model to predict total
phosphorus (TP) and total nitrogen (TN). Sarkar and Pandey [6] used the feed forward
error back propagation algorithm, which is an ANN technique, to predict dissolved oxygen
(DO). Najah et al. [7] used an ANN to predict dissolved solids, electrical conductivity, and
turbidity. These studies constructed data-driven models based on actual observed data
obtained on a monthly timescale or longer. In Korea, water quality has been estimated
using observed data from the water quality monitoring networks of the MOE. Among
these networks, official water quality measurements supported by the largest quantity of
data comprise total maximum daily load (TMDL) monitoring network data (measured
every 8 days); however, the quantity of data is insufficient to build a data-driven model
based only on the observed data [8,9]. In addition, according to Park et al. [10], the TMDL
monitoring network data are not fully representative of the overall flow rate because only
approximately 40 observations are made per year, and if water quality measurements are
concentrated during specific flow conditions (i.e., dry conditions and low flows), the water
quality reflecting these conditions will be overrepresented.

In this study, we propose an efficient technique for predicting the water quality of the
Dongjin River Basin, which combines the advantages of physics-based and data-driven
models (Figure 1). First, a physics-based model, Hydrological Simulation Program—Fortran
(HSPF), was employed to reproduce the daily water quality according to various hydrolog-
ical conditions and pollutant discharge loads in the Dongjin River Basin. Additionally, the
Adaptive Neuro-Fuzzy Inference System (ANFIS) model, which is a data-driven model,
was constructed to maximally reflect the variability of the water quality according to
various hydrological conditions, enabling rapid and accurate water quality predictions.
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2. Materials and Methods
2.1. Study Area and Scope

The Saemangeum Watershed is divided into the Mangyeong River, Dongjin River,
and is part of the west coast, with a total area of 3319 km2. The target water quality of Sae-
mangeum Lake is grade 4 (COD ≤ 8.0 mg/L, TP ≤ 0.100 mg/L, and Chl-a ≤ 35.0 mg/m3)
for the midstream and upstream regions, which comprises agricultural land according to the
land use plan, and grade 3 (COD≤ 5.0 mg/L, TP≤ 0.050 mg/L, and Chl-a ≤ 20.0 mg/m3) for
the downstream region, planned for tourism and urban development. To achieve the target
water quality for Saemangeum Lake, the pollutant load from the Mangyeong and Dongjin
Rivers must be minimized first. The area selected for this study was the Dongjin River
Basin, with an area of 1397.0 km2, of which 629.7 km2 is agricultural land, accounting for
approximately 45.1% of the total area. This is approximately twice the average agricultural
area in Korea (23%). Thus, the water quality of this region is expected to be significantly
affected by agricultural inputs and utilization systems [11].

The flow of water through the Dongjin River Basin is illustrated in Figure 2. Water
from the Seomjin River Dam flows through the Unam waterway and the Chilbo power
plant in the upstream part of the Dongjin River. The water from the Chilbo power plant
is then diverted into the Dongjin waterway, located immediately downstream of the
plant. Some of the water from the Dongjin River is collected at the Sanseong intake
station for domestic use. Then, at the Nakyang Weir, located midstream of the Dongjin
River, most of the water is supplied for irrigation to the Gimje and Jeongeup irrigation
canals. For 11 years (2008–2018), the Dongjin River Basin has received approximately 83%
(413.7 million m3/year) of the total discharge (496.7 million m3/year) of the Seomjin River
Dam. As shown in Figure 3, the monthly discharge begins to increase from April with the
advent of the irrigation period; it is largest in June at 28.9 m3/s, and smallest in December
at 1.9 m3/s. Approximately 90% of this discharge is used for agricultural and domestic
purposes. Because there are no regulatory standards for water intake, most of the dam
discharge is consumed during the irrigation period, except when flooding occurs. Hence,
the actual flow rate of water to the main Dongjin River downstream of the Nakyang Weir
is very limited.
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Figure 3. Monthly dam discharge and water intake data for the Dongjin River Basin (2008–2018).

To reflect the hydrological characteristics of the Dongjin River Basin in our water
quality predictions, irrigation and non-irrigation periods were differentiated. The irrigation
water supply period in the water-use license for the Seomjin River Dam is from 20 April to
30 September annually. Based on this, the period from April to September was set as the
irrigation period, and October to March was set as the non-irrigation period.

The Dongjin River 3 (Dongjin A), situated at the end of the Dongjin River, was selected
as the site for water quality predictions, as the target water quality is monitored here
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according to Korea’s Water Environmental Management Plans. Dongjin River 3 is a river
management monitoring station situated upstream of the Saemangeum Lake, wherein the
target water quality, in terms of biological oxygen demand (BOD), must be achieved within
a specific planned year.

The duration considered for the physics-based model was approximately 11 years
(from 2007–2018). Excluding the stabilization period, the calibration and validation periods
were set based on recent data. The learning period for constructing the data-driven model
was divided into irrigation and non-irrigation periods. Approximately 10 years of data
from 2008 to 2017 were used, and the applicability of the data-driven model developed in
this study was assessed using the HSPF simulation results for 2018.

2.2. Physics-Based Model

The HSPF model is appropriate for simulating the runoff and water quality of a
watershed in both urban and rural or mountainous areas to analyze water quality variations
depending on the daily and seasonal pollutant discharge characteristics [12]. To use the
HSPF model, basic information was input using the better assessment science integrating
point and non-point sources (BASINS), which is an integrated management system that
manages significant amounts of data based on Geographic Information System (GIS) and
supports various models. First, a river network was generated by calculating the flow
direction and flow accumulation from a digital elevation model, and it was segmented by
specifying the exit point of the watershed as the outlet. Land cover was classified into seven
categories: urban or built-up land, wetland, agricultural land, forest land, pastureland,
barren land, and water. Then, the land use information for each segmented sub-watershed
was extracted using the land use and soil definition utility of the model.

With regard to meteorological parameters, seven types of observed values for each
hour, including rainfall, temperature, dew point, cloud cover, solar radiation, wind speed,
and evapotranspiration were input into the model. Among the disaggregate functions
included in WDMUtil, the evapotranspiration function was used to generate evapotranspi-
ration data.

The pollutant load data calculated from the pollutant source data for the 2008–2018
period were input to obtain point-source pollutant load data. The daily water discharge
and the quality data of discharged water (BOD, SS, TN, and TP) were collected and input
for the sewage treatment facilities which recorded daily average discharges of 500 m3 or
higher (Sintaein, Jeongeup, Buan, and Gimje).

Daily hydrological data including dam discharge (Unam waterway and Chilbo power
plant) and water intake (Dongjin waterway, Nakyang Weir, and Sanseong intake station)
for agricultural and domestic uses were surveyed and used as the daily inputs.

2.3. Calibration and Validation of the HSPF Model

The flow rates measured at the three gauging stations, Haengjeonggyo, Chogangri,
and Jeongugyo, were used for the calibration and validation of the HSPF model. The
Total Maximum Daily Loads (TMDL) monitoring network data measured at Dongjin A,
approximately 40 times per year at the end of each unit of watershed, were used for the
water quality assessments. The calibration and validation periods were 2016–2018 and
2013–2015, respectively. The calibration and validation were conducted every three years,
and their periods were defined based on the water quality data that could be collected.

To evaluate the accuracy of the calibration and validation results for the flow rate,
the coefficient of determination (R2) was calculated, and the criteria in Table 1 suggested
by Donigian [13] were used. In the case of water quality, to evaluate the appropriateness
of the simulation results for the measured values, the percentage difference confidence
interval listed in the BASINS/HSPF Training Lecture (Table 2) as well as the average (0.89),
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range (0.71–0.61), and root mean square error (RMSE) of the actual measured values and
the simulation values were calculated.

RMSE =

√
∑N

i=1(Pi −Oi)
2

N
, (1)

where Pi denotes the predicted values, Oi denotes the observed values, and N is the total
number of observations.

Table 1. General calibration/validation target or tolerance for HSPF application.

Criteria Very Good Good Fair Poor

R2 >0.8 0.8–0.7 0.7–0.6 <0.6

Table 2. Percentage difference for model performance.

Constituent Very Good Good Fair

Hydrology/Flow <10 10–15 15–25
Water Quality <15 15–25 25–35

The parameters of flow rate applied in this study were adjusted to the following
variables: lower zone nominal soil moisture storage (LZSN), infiltration capacity of the
soil (INFILT), basic groundwater recession rate (AGWRC), fraction of groundwater inflow
which will enter deep groundwater (DEEPER), interflow inflow (INTEW), and interflow
recession (IRC; Table 3). In the case of water quality calibration, the water temperature
and DO were first calibrated, followed by the BOD. Tables 3 and 4 show the parameters
applied in this study and those applied in the previous studies.

2.4. Gamma Test

A Gamma test was performed to analyze the correlations between the input and
output variables to select the optimal input data combination that shortened the simulation
time, while increasing the accuracy of the data-driven model.

Table 3. HSPF parameter values for hydrological simulation.

Parameter Definition Typical Range Final Calibrated Value Jaswinder et al.
(2005) [14]

Ribarova et al.
(2008) [15]

LZSN Lower zone nominal soil
moisture storage (in) 3.00–8.00 4.90–12.00 5.00 15.00

INFILT Infiltration capacity of the
soil (in/h) 0.010–0.25 0.06–0.10 0.20 0.05–0.16

AGWRC Basic groundwater
recession rate (1/day) 0.92–0.99 0.98 0.98 0.99

DEEPER
Fraction of groundwater
inflow which will enter

deep groundwater
0.00–2.00 0.05 0.05 0.15

INTEW Interflow inflow parameter 1.00–10.00 1.00–2.00 1.20–1.80 1.25

IRC Interflow recession
parameter (1/day) 0.30–0.85 0.30–0.80 0.60–0.80 0.3.
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Table 4. HSPF parameter values for the water quality simulations.

Parameter Definition Unit Typical Range Final Calibrated Value Jang (2010) [16] Jeon (2011) [17]

KBOD20 BOD decay rate at 20 ◦C 1/h 0.001–0.140 0.002–0.006 0.011–0.015 0.004–0.067

KODSET Rate of BOD settling ft/h >0 0.001–0.027 0.018–0.033 0.011–0.027

REAK Reaeration coefficient 1/h - 0.20 0.48 0.05–0.20

CVBO
Conversion from

milligrams biomass to
milligrams oxygen

mg/mg 1.00–5.00 1.00–2.70 - 1.63

CVBPC
Conversion from

biomass expressed as
phosphorus to carbon

moles/mol 50–200 106–180 - 106

CVBPN
Conversion from

biomass expressed as
phosphorus to nitrogen

moles/mol - 16 - -

A Gamma Test is used to estimate the least mean square error calculated when model-
ing the data using a continuous nonlinear method. First published by Agalbjorn et al. [18],
the technique has been advanced and established by many researchers [19]. The basic
concept of the Gamma Test differs from conventional preprocessing data analyses using
nonlinear methods. The analysis is performed under the assumption that the data are
prepared as shown in Equation (2).

(xi, yi), 1 ≤ i ≤ M. (2)

Here, the input vector xi ∈ Rn is limited to the closed set C ∈ Rn, and the output
yi ∈ Rn, which corresponds to the result of the general model or the dependent variable, is
scalar. Vector x affects the output value y and is the independent variable that can be used
as the input for prediction. The basic assumption for the relationship between x and y is
as follows:

y = f (x1 · · · · · · xm) + r. (3)

Here, f is an exponential smoothing function and y is a probability variable indicating
noise. In Equation (3), the x value represents the input data, and the y value represents
the prediction (target value). The Gamma Test performs a nonlinear analysis based on
the kth (1 ≤ i ≤ p) closest variable N[i, k] for each vector xi(1 ≤ i ≤ M). For each input
data x, the mean square root distance to the k closest neighbor data is calculated. This is
shown in Equation (4). The mean square root distance with the k closest neighbor data is
also calculated using the same method for y, which is the result (or target) value for the
independent variable, x (Equation (5)).

δM(k) =
1
M

M

∑
i=1

∣∣∣xN(i,k) − xi

∣∣∣2 (1 ≤ k ≤ p), (4)

γM(k) =
1

2M

M

∑
i=1

(
yN[i,k] − yi

)2
(1 ≤ k ≤ p). (5)

When the relationship with the physical distance to the closest neighbor data is
calculated for each variable, the same number of δ and γ values as the number of data are
generated, and a regression equation is derived to calculate τ from these two variables.
The gamma statistic τ is an estimate of the variance of the ANN’s result that cannot be
explained by the exponential smoothing data model.

γ = Aδ + τ (6)

Vratio =
τ

σ2(y)
(7)
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Here, τ is used to calculate the Vratio uncertainty index according to a specific com-
bination of input data. In Equation (7), σ2(y) is the variance of output y, which makes it
possible to judge the predictability of the output in terms of whether it can be modeled
smoothly and reliably, independent of the output range. A Vratio value close to 0 indicates
a high predictability of the output y. The above process can help determine the amount of
data required to build a model with a mean square error that approximates the expected
noise variance [20].

2.5. Data-Driven Model (Adaptive Neuro-Fuzzy Inference System; ANFIS)

This study applied the ANFIS model, developed using the neuro-fuzzy model theory
combining an ANN with fuzzy theory, which is appropriate for nonlinear prediction and
simplifying the complex relationships of the numerous input variables. The ANFIS model
has been applied in various fields to combine the advantages of the neural network and
fuzzy theory, while minimizing the disadvantages.

Neural networks have an excellent data-based processing ability because of their large
flexibility in system configuration. In contrast, fuzzy theory is appropriate for processing
and inferring ambiguous information within a logical system. However, membership func-
tions and rules need to be determined through trial and error, and repeated readjustment
of the processes is required to build the desired fuzzy theory system [3].

A neuro-fuzzy model has been proposed to solve these issues. This model automat-
ically adjusts the membership functions and rules in accordance with the control object
using the input and output information obtained from the control environment with the
structure and learning ability of the neural network. Determining the membership function
for fuzzy inference using a neural network has the following advantages [3]:

1. Because the membership function is determined by the learning of the neural network
instead of the user’s subjective judgment, trial and error and readjustment processes
can be omitted, thus shortening the system construction time.

2. The neural network is nonlinear; thus, the accuracy of the results can be improved by
selecting a nonlinear membership function to represent the relationships of nonlinear
input and output data.

3. The rules can be automatically obtained using the learning function of the neural network.

The neuro-fuzzy structure is composed of five layers with a node output in each layer.
Layer 1 is an input node and Layer 2 is an adaptive node, and they act as a membership
function. Layer 3 is a fixed node indicated as Prod, and the output of each node represents
the connection strength. Layer 4 is a fixed node indicated as Norm, and the output
represents the normalized connection strength. Layer 5 calculates the weighted value of
the output of the previous layer. Layer 6 is represented as the sum of all input signals to
calculate the inference result for the entire system (Figure 4).
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We applied the subtractive clustering algorithm for the fuzzy clustering technique
in the neuro-fuzzy model. This algorithm assumes that each data point is a potential
cluster center and uses the density of object data to determine the object data closest
to the cluster center to define the representative cluster center; therefore, it has a high
application potential.

In addition, data with low Epochs error values were selected as the parameters through
the trial-and-error method, and included the range of influence, squash factor, accept ratio,
and reject ratio.

2.6. Composition of Training Data for ANFIS Model Application

The data-driven model must be trained by a combination of variables that have a
high correlation with the target variable to predict the target outputs. Thus, this study
selected BOD as the target variable for predicting water quality. With regard to the input
variables, the discharges of the Seomjin River Dam (Unam and Chilbo), Sanseong water
intake, Nakyang Weir water intake (Gimje and Jeongeup irrigation canals), rainfall, and
flow rate (t), and the input variables of one day before (t − 1) and one day after (t + 1)
were used. These input variables were selected considering the usability of the data-driven
model because the corresponding observation data were generated every day, and when
they were input into the data-driven model, the water quality (BOD) for Dongjin River
3 point could be predicted without running the HSPF model. A gamma test was performed
first to determine which composition of input variables could improve the ability to predict
BOD, and thus, the optimal combination of input variables was determined.

The ANFIS model, which was constructed through training, verification, and testing,
was employed in this study. The parameters of the membership function were determined
through the training and verification processes. As the parameter values of the membership
function change based on the conditions used in this process, the results of the ANFIS
model also vary. The ANFIS model was built for irrigation and non-irrigation periods, as
the target watershed is highly affected by agricultural water intake because of its large
irrigation system. To split the input data for learning, the specified indices method, which
best reflected the time-series data, was used among the random indices method, blocks of
indices method, specified indices method, and interleaved indices method [21].

3. Results and Discussion
3.1. HSPF Model Calibration and Verification Results
3.1.1. Flow Rate

Model calibration refers to the process of configuring the initial conditions and param-
eters of the model, in accordance with the actual conditions and estimating the parameter
values that can generate simulated values closest to the observed values [22]. The trial-and-
error method was used to make the simulation result of the model as close as possible to
the observed values for the calibration period. By performing the verification, the model
parameters adjusted during the calibration period were validated.

The coefficient of determination (R2) and percent (%) difference were calculated as
mentioned in the previous section. As shown in Table 5, the results were very good,
indicating that the simulated values of the model reflected the measured values very well
for all three gauging stations. Figure 5 shows the calibration and validation results for the
Jeongugyo gauging station located in the main Dongjin River as the representative station.
Most of the simulated peak values during the rainfall events were slightly smaller than the
observed values, indicating that the simulation reproduced the flow rate during the dry
and low flow seasons more accurately.
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Table 5. Calibration and verification results of the flow rate in the Dongjin River Basin.

Gauging Station
Calibration Valification

R2 % Difference R2 % Difference

Haengjeonggyo 0.97 1.05 0.89 10.03
Jeongugyo 0.80 4.37 0.86 10.82
Chogangri 0.85 12.51 0.91 14.32Water 2021, 13, 1383 10 of 16 
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results. The RMSE values, which are close to zero if the simulated and measured values 
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for the averages of the measured and simulated values was also within the confidence 
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well, as shown in Figure 5. Considering the complex water quality mechanisms and the 
various spatial characteristics of the watershed, the overall simulation was performed suf-
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3.1.2. Water Quality

The HSPF model was first calibrated for water temperature and DO, and then for
BOD, TN, TP, TOC, and Chl-a. In this study, only the results of BOD, the indicator used
for predicting water quality, are presented. In the calibration and validation results for
BOD, the percentage (%) difference values were all 15 or lower, indicating “very good”
results. The RMSE values, which are close to zero if the simulated and measured values are
identical, were 1.35 and 1.65, respectively (Table 6, Figure 6). The concentration ratio for
the averages of the measured and simulated values was also within the confidence range
(0.71–1.06), and the simulated values reflected the trend of the observation values well, as
shown in Figure 5. Considering the complex water quality mechanisms and the various
spatial characteristics of the watershed, the overall simulation was performed sufficiently
during the simulation period.

Table 6. Calibration and verification results of BOD at Dongjingang 3 (Dongjin A).

Year Mean OBS Mean SIM % Diff RMSE Criteria

Calibration (16–18 y) 2.9 2.8 4.37 1.65 0.96 (very good)
Verification (13–15 y) 2.6 2.3 10.8 1.35 0.89 (very good)
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3.2. Prediction of Water Quality Using the Data-Driven Model
3.2.1. Selection of Optimal Input Variables

To consider the correlations between the input and output variables before building
the ANFIS model for BOD prediction, as described in Section 2.6, a combination of various
input variables was selected (Table 7). The results of the gamma test include gamma,
gradient, standard error, and V-ratio. A larger gamma value indicates a low correlation
between the data and a high uncertainty. The standard error indicates the standard
deviation of the data. A gradient closer to 0 indicates a higher BOD predictability based on
the input data [23]. The results of the gamma tests for irrigation and non-irrigation periods
are outlined in Tables 8 and 9. Cases with a ranking closer to 1 can provide better prediction
owing to the lower uncertainty of the combination of input variables. In Case 1, all the
data were excluded from the ranking to measure uncertainty according to the selected
combination of hydrological conditions of the Dongjin River, and unnecessary variables
were removed. The results showed that during the irrigation period, Case 6, which did
not use rainfall, showed the lowest gamma value and V-ratio, with a ranking of 1. In the
non-irrigation period, Case 4 was ranked 1, and the rainfall condition had a greater effect
on the BOD than that during the irrigation period when the amount of discharge flowing
into the Seomjin River Dam was constant. This implies that a more stable result can be
obtained from the data-driven model using the combination in Case 6 for the irrigation
period and the combination in Case 4 for the non-irrigation period. The variability of
gamma, gradient, standard error, and V-ratio according to the length of each input data
combination is shown in Figures 7 and 8, which visually show the uncertainty relative to
the quantity of data used.

Table 7. Combination of input variables.

Case
Input Data

Target
Discharge and Intake Flow Rate (Jeongugyo) Rainfall

1
Seomjin River Dam discharge

(Unam waterway, Dongjin
waterway), water intake

(Nakyang weir, Sanseong)

Q(t), Q(t − 1), Q(t + 1) R(t), R(t − 1), R(t + 1)

BOD

2 Q(t), Q(t − 1), Q(t + 1) R(t)
3 Q(t), Q(t − 1) R(t), R(t − 1)
4 Q(t) R(t), R(t − 1), R(t + 1)
5 - R(t), R(t − 1), R(t + 1)
6 Q(t), Q(t − 1), Q(t + 1) -

Table 8. Averages of the gamma test results (irrigation period).

Case
Input Data

Ranking
Gamma Gradient Standard Error V-Ratio

1 0.032481 0.039864 0.013330 0.126649 -
2 0.047462 0.113928 0.008299 0.195536 4
3 0.019416 0.101115 0.007077 0.080209 2
4 0.033563 0.109131 0.008234 0.137404 3
5 0.077909 0.088863 0.010356 0.319419 5
6 0.011280 0.124402 0.007989 0.041198 1

Table 9. Averages of the gamma test results (non-irrigation period).

Case
Input Data

Ranking
Gamma Gradient Standard Error V-Ratio

1 0.072242 0.062415 0.006974 0.283613 -
2 0.070719 0.088788 0.007914 0.279658 5
3 0.070464 0.103065 0.009455 0.257889 4
4 0.062585 0.124396 0.010028 0.230381 1
5 0.064329 0.092028 0.008816 0.267492 2
6 0.068359 0.144772 0.010034 0.272255 3
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3.2.2. BOD Prediction Result for the Dongjin River Basin

The BOD was predicted by inputting data from 2018 to the data-driven model (ANFIS)
constructed using the datasets in Cases 6 and 4 for the irrigation and non-irrigation periods,
respectively (Figure 9, Table 10). These results were compared with the simulated values
from the calibrated and validated HSPF model. In the irrigation period, R2 was 0.84, the
percent difference was 1.48, and the RMSE was 0.57. In the non-irrigation period, R2 was
0.84, the percent difference was 0.70, and the RMSE was 0.33.
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Table 10. BOD prediction results at Dongjingang 3 (Dongjin A).

BOD (2018) R2 % Diff RMSE Mean HSPF Mean ANFIS

Irrigation period 0.84 1.48 0.57 4.4 4.4
Non-irrigation period 0.84 0.70 0.33 2.2 2.2

For additional validation of the ANFIS model, the amount of discharge, water intake,
precipitation, and flow data from the water level observation for 2019 were collected,
entered into the ANFIS model, and compared with the data for the eight-day interval
observation at the Dongjin A location (Figure 10, Table 11). For the irrigation period, R2

was 0.88, the percent difference was 1.73, and the RMSE was 4.79. For the non-irrigation
period, R2 was 0.90, the percent difference was 1.61, and the RMSE was 0.13. Thus, the
model effectively predicted both the irrigation and non-irrigation periods.
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Table 11. BOD prediction results at Dongjingang 3 (Dongjin A).

BOD(2019) R2 % Diff RMSE Mean OBS Mean ANFIS

Irrigation period 0.88 1.73 4.79 4.4 4.5
Non-irrigation period 0.90 1.61 0.13 2.2 2.3

The data-driven model developed in this study showed an excellent predictive perfor-
mance for the BOD at the targeted river management points of the Dongjin River. These
points were those designated for TMDL monitoring and target water quality management
in Korea. Our results confirm that it is possible to predict water quality under various
hydrological conditions on a more scientific basis, especially in a watershed highly affected
by a large irrigation system.

To predict the water quality using a physics-based model, regularly adding input
data (hourly meteorological data, geospatial data, the pollutant load data, hydrological
conditions, etc.) to run the model is necessary. In addition, processing the input data,
which is suitable for the model, and running the model consumes time.

However, the use of the daily observation data as input variables in the ANFIS model
developed in this study increased the reliability and convenience of prediction of the water
quality under various hydrological conditions, without running the physics-based model.

4. Conclusions

Big-data-based analysis techniques are being used for watershed management. Among
them, predictive analytics aim to construct future analysis and prediction functions through
the identification of past patterns using a physics-based model. Moreover, predictive an-
alytics can be used to develop a data-driven model using an ANN trained with past
observation data. The models can then be applied to develop sufficient and sustainable wa-
ter management strategies to mitigate the negative effects associated with water disasters
such as floods and water quality pollution [24]. Predicting water quality with a physics-
based model can provide more accurate results. However, the pre- and post-processing
of the model can be time-consuming. This study derived water quality data under var-
ious hydrological conditions for approximately 10 years for the target watershed from
a physics-based model, which was then used as the basis for constructing a data-driven
model, thus presenting a highly reliable and fast water quality prediction method using
simple input data.

First, the HSPF model was built by inputting available watershed environmental
conditions, including geospatial data, meteorological data, hydrological conditions, and
the pollutant load of the Dongjin River Basin. Then, the BOD values were obtained under
various hydrological conditions through calibration and validation processes based on the
observed values. To predict the BOD values using the data-driven model at the Dongjin
River 3 (Dongjin A) station, the target water quality evaluation point of the Dongjin River
Basin, the Seomjin River Dam discharges (Unam and Chilbo), Sanseong water intake,
Nakyang Weir water intake (Gimje and Jeongeup irrigation canals), rainfall, and flow rate
at the gauging station were selected as the input variables. These variables were chosen
considering the usability of the data-driven model as they are measured daily. When they
were input into the data-driven model, the BOD values for the Dongjin River target station
could be predicted without running the HSPF model.

A Gamma Test was performed to improve the BOD prediction efficiency before
building the data-driven model (ANFIS), and the optimal combination of input variables
was derived separately for the irrigation period (April–September) and the non-irrigation
period (October–March). Consequently, the most appropriate combination was the Seomjin
River Dam discharge, Sanseong water intake, Nakyang Weir water intake, and flow rates
at the Jeongugyo gauging station for the irrigation period. For the non-irrigation period,
the additional rainfall was analyzed to be appropriate.
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The ANFIS model simulation results showed an excellent predictive performance for
both the irrigation and non-irrigation periods.

The proposed BOD prediction model minimizes the time required to predict water quality,
while using fewer variables, and provides more efficient and reliable results. Thus, the model
will serve as an essential tool for the decision-makers who manage the intake of agricultural
weirs in determining the water quality of the main river in the Dongjin River Basin.

The model built in this study is a data-driven model that uses the results of the
verified HSPF model as training data in place of insufficient water quality observation data.
Therefore, for a more accurate water quality prediction, the data-driven model needs to
be upgraded through continuous calibration of the HSPF model and periodic training. In
the future, higher amounts of representative water quality data for the Dongjin River will
enable the development of a more reliable data-driven model.
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