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Abstract: Precipitation is the most important input to hydrological models, and its spatial variability
can strongly influence modeled runoff. The highly dense station network WegenerNet (0.5 stations
per km2) in southeastern Austria offers the opportunity to study the sensitivity of modeled runoff to
precipitation input. We performed a large set of runoff simulations (WaSiM model) using 16 sub-
networks with varying station densities and two interpolation schemes (inverse distance weighting,
Thiessen polygons). Six representative heavy precipitation events were analyzed, placing a focus
on small subcatchments (10–30 km2) and different event durations. We found that the modeling
performance generally improved when the station density was increased up to a certain resolution:
a mean nearest neighbor distance of around 6 km for long-duration events and about 2.5 km for
short-duration events. However, this is not always true for small subcatchments. The sufficient
station density is clearly dependent on the catchment area, event type, and station distribution. When
the network is very dense (mean distance < 1.7 km), any reasonable interpolation choice is suitable.
Overall, the station density is much more important than the interpolation scheme. Our findings
highlight the need to study extreme precipitation characteristics in combination with runoff modeling
to decompose precipitation uncertainties more comprehensively.

Keywords: precipitation variability; extreme events; rain gauge network; hydrological modeling;
sensitivity analysis; spatial rainfall resolution; precipitation interpolation

1. Introduction

Heavy precipitation events can have significant impacts on society and ecosystems by
causing severe floods and landslides. Moreover, such events are intensifying due to climate
change in many areas [1–4]. Hydrological models have served as an important tool to
assess the impacts of heavy precipitation events on runoff and other hydrological processes.
Since precipitation is the most important input in hydrological models [5–7], it is crucial to
understand its uncertainty and how this uncertainty affects the simulated runoff. Assessing
the spatial and temporal heterogeneity of precipitation is becoming increasingly important,
especially with respect to heavy precipitation events [8,9]. Convective storm cells with large
volumes of precipitation can easily trigger hazards, but the limited spatial and temporal
extent of these cells is associated with huge levels of measurement uncertainty [10]. In
addition to the measurement uncertainty of rain gauges, considerable uncertainty can
arise when point-level measurements are spatially interpolated to obtain final gridded
products [10–13]. Such gridded datasets are crucial in that they allow researchers to collect
areal precipitation information within catchment and subcatchment areas, which can then
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especially be used in spatially distributed hydrological models. Areal precipitation data can
also be derived from radar and satellite-based observations. However, all measurements
come with their own uncertainty levels and pros and cons [7,14]. On the one hand, the point
measurements are most reliable for quantitatively measuring amounts of precipitation,
whereas such measurements often do not provide reliable information about the spatial
patterns of heavy precipitation because of the sparse distribution of point measurement
sites. On the other hand, radar systems and satellites provide higher spatial resolution
data, but the indirect precipitation estimates they provide do not allow the quantitation of
specific precipitation amounts [15–21].

Despite the availability of remote-sensing data, ground-based precipitation measure-
ment tools are still widely used in hydrological modeling [6,22]. Many studies, such as
those by Lopez et al. [22], Goovaerts [23], and Zeng et al. [6], pointed out the advantages
of dense and regularly distributed precipitation station networks. For many years, re-
searchers have analyzed the effect of precipitation station density on hydrological model
performance [5,6,12,24–27]. Dong et al. [25] and Xu et al. [27] used a statistical approach to
identify the appropriate number of precipitation gauges and the influence of gauge density
on the model performance of a lumped model. Both studies found a threshold above which
an increase in station density does not lead to better model performance. Such a threshold
can also be seen in many other studies [5,6]. Meselhe et al. [26] applied a conceptual and a
physically based model to identify the impact of temporally and spatially sampling precip-
itation on runoff predictions (using a highly dense station network). The physically based
model was more sensitive to changes in the spatial and temporal resolution of rainfall. A
threshold with no significant increase in model performance can also be seen in this case
for both models. Huang et al. [12] used a lumped and a distributed hydrological model to
study the sensitivity of model performance to spatial rainfall resolution. They identified
temporal resolution as the most important aspect, observing better model performance at
higher temporal resolutions. Many of these studies placed a focus on the model perfor-
mance and used lumped hydrological models. Here, we focus on the sensitivity of runoff
in small subcatchments and report results of a process-based model.

When using station data as rainfall input for hydrological models, the spatial interpo-
lation schemes must also be considered. Many different interpolation options and possi-
bilities have been broadly studied [28–30] including arithmetic mean [12,25,31], Thiessen
polygons (TP) [6,26,32], inverse distance weighting (IDW) [13,33–35], and different types of
kriging, such as ordinary kriging [8,33,35] or external drift kriging [5,27,33]. The differences
between the interpolation schemes are especially pronounced when extreme values are
included [30]. Therefore, the selection of interpolation schemes can affect hydrological
simulations, especially under heavy rainfall events. Given that our study area has a mod-
erate topography with regularly distributed stations [36], we did not expect to obtain
added value by using more complex geostatistical methods such as kriging. Therefore,
we decided to focus on the two most widely used deterministic interpolation schemes, TP
and IDW. We further analyzed the weighting power parameter of the IDW interpolation,
which indicates the weight of the surrounding stations. A weighting power of 2 is nor-
mally used for IDW interpolations [37] but without making any further considerations [38].
Only a few studies have analyzed the influence of the weighting power on hydrological
model simulations [38,39], while some other studies have focused only on the interpolated
precipitation [37,40].

To counteract the uncertainty with respect to spatial and temporal resolution, it is
possible to take ground-based measurements from a highly dense station network. In this
study, the following research questions were addressed: How many precipitation stations
do we need to reliably model runoff during heavy rainfall events? Are there specific
features of small subcatchments to reliably model runoff under heavy rainfall events? How
strongly does the interpolation scheme influence runoff results when the precipitation
station density is the same? The highly dense station network WegenerNet (WEGN)
(about 0.5 station per 1 km2 over an area of around 300 km2) in the southeastern Alpine
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forelands of Austria was used to ask these questions as applied to the Raab catchment and
its subcatchment areas. The region is well known for its heavy precipitation events [35,41].
Because of the exceptionally dense data coverage, it was possible to analyze the influence
of precipitation station densities on runoff in detail. Therefore, we set up the widely used,
physically based “Water Flow and Balance Simulation Model” WaSiM [42] and simulated
runoff with varying station densities. All subnetworks were simulated using different
precipitation interpolation schemes, namely, one TP scheme and three IDW schemes with a
weighting power of 1 (IDW1), of 2 (IDW2), and of 3 (IDW3). Previous studies have assessed
the impact of the station density and interpolation on precipitation data quality, such as
mean and extreme rainfall values [43–45]. We go one step further, applying our initial study
approach and focus to study the impact of such precipitation uncertainty on hydrologic
simulation results, and especially on runoff peaks, using a combination of station densities
and interpolation methods.

2. Study Area and Data
2.1. Study Area

The study area is part of the Raab catchment, an area of southeastern Alpine foreland
draining into the Raab river. The Raab river flows from the “Passailer” Alps in the province
of Styria, Austria, at an altitude of around 1150 m.a.s.l. until it joins the Danube river
in Hungary. The area covered in this study ranges from the gauging station Takern II/
Raab to Neumarkt/Raab, including a total area of around 500 km2 (Figure 1). The gauging
station Feldbach/Raab is located between these two stations. Beside the main river Raab,
we analyzed five subcatchments (Table 1, Figure 1) with areas of around 10 to 30 km2, all of
which are covered by the WEGN. Two subcatchments are located on the northern side of
the Raab and three on the southern. Since we did not have measured runoff data for these
subcatchments, we implemented pour points in the model directly before they flowed into
the Raab river.
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shows a map of Europe; Austria is shown in yellow and the Raab catchment, in red. An enlarged view of the study area 
(right) shows the station subnetworks and subcatchments used in this study. 
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(ZAMG), which has a 15-min time resolution, and from the Austrian Hydrographic Ser-
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Figure 1. Map of the Raab catchment area in southeastern Austria (left), including the full catchment area extending down
to the runoff gauge Neumarkt/Raab (red line), the focus area (grey area), the subcatchments (orange line), the WegenerNet
region (violet box), the locations of rain gauge stations (dot symbols), and the runoff gauges (triangle symbols). Inset shows
a map of Europe; Austria is shown in yellow and the Raab catchment, in red. An enlarged view of the study area (right)
shows the station subnetworks and subcatchments used in this study.
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Table 1. Characteristics of the study catchment area and representative subcatchment areas with the
total basin area of the latter extending up to the gauging station/pour point into the river Raab.

Catchment Area (km2) Location from Raab

Neumarkt/Raab (total catchment) 987 -
Neumarkt/Raab (focus area) 488 -

Feldbach/Raab (total catchment) 689 -
Feldbach/Raab (focus area) 190 -

Subcatchment Area (km2) Location from Raab

Auersbach 28.9 north
Saazerbach 27.2 south
Giemerbach 16.0 south
Haselbach 12.3 south
Kornbach 12.2 north

The total study area is moderately hilly with elevations ranging from 230 to 530 m.
The land use is predominately agricultural with some patchy forest areas. The dominant
soil texture is sandy loam. The mean annual precipitation is around 850 mm, and the mean
annual temperature about 9.5 ◦C. The study area was chosen because of its vulnerability
to heavy/convective precipitation events [41] and climate change [46], as well as the
data availability. Since the region has a very dense climate network, the WEGN, which
is operated by the Wegener Center for Climate and Global Change, University of Graz,
Austria [36]. The WEGN has been used to measure precipitation, temperature, humidity,
and other variables since early 2007 and includes 150 stations within an area of around
23 × 18 km. All data are quality controlled by the WEGN QC system [36], and additional
bias correction is implemented for precipitation data [47].

2.2. Data

To perform hydrological modeling with WaSiM, we need meteorological data for
precipitation, temperature, relative humidity, wind speed, global radiation, and air pressure
aggregated at a 30-min time resolution. Table 2 provides an overview of the maximum
available number of stations for each parameter, as well as the station source. The WEGN
has a dense station network and a 5-min time resolution, forming a rectangular grid due to
the comparability to climate models. It is located in the middle of the focus area around
the Feldbach/Raab gauging station, but does not cover the total Raab catchment area.
Therefore, we also needed to include data from the Austrian Weather Service (ZAMG),
which has a 15-min time resolution, and from the Austrian Hydrographic Service (AHYD),
which has a 1- to 15-min time resolution to properly simulate runoff (Table 2). In order to run
the model only for the focus area, the Takern II/Raab gauging station was used as an inflow
point. Runoff data from the Neumarkt/Raab gauging station were used for calibration
and from the Feldbach/Raab gauging station for cross checks and further analysis. For
precipitation event identification, the Integrated Nowcasting through Comprehensive
Analysis (INCA) system developed by Haiden et al. [48] was used, which is a multivariable
analysis and nowcasting system developed at the ZAMG.
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Table 2. Catchment attributes and hydrometeorological data used for hydrological modeling with
WaSiM with the following sources: HYDROBOD—homogeneous soil and land use grids by Klebinder
et al. [49]; LStmk/LBgld—state government offices of the provinces of Styria and Burgenland;
TANALYS—pre-processing tool of the hydrological model WaSiM [42]; WEGN—highly dense station
network data version 7.1 [50]; ZAMG—data from the Austrian Weather Service; AHYD—data from
the Austrian Hydrographic Service.

Catchment Attributes Source Resolution

Land use types HYDROBOD 100 m
Soil information HYDROBOD 100 m

DEM LStmk, LBgld 10 m
River network LStmk, LBgld -

Geological information LStmk, LBgld -
Subcatchments, slope,
river width and depth,

other information
TANALYS output 100 m

Meteorological Data Source Number of Stations

Precipitation WEGN 150
ZAMG 5
AHYD 3

Temperature WEGN 150
ZAMG 5
AHYD 3

Relative humidity WEGN 150
ZAMG 5
AHYD 3

Wind speed WEGN 12
ZAMG 5

Air pressure WEGN 1
ZAMG 5

Global radiation ZAMG 5
Runoff AHYD 3

Static attributes are needed in addition to hydrometeorological station data. The
digital elevation model (DEM), river network, and geological information were provided
by the Austrian state government offices of Styria and Burgenland. The topographic
analysis tool (TANALYS) of WaSiM uses the DEM to calculate other required grids, such
as flowtime, subcatchments, slope, river width, and depth [42]. Homogeneous soil and
land use grids (HYDROBOD) were provided by Klebinder et al. [49] with a resolution of
100 × 100 m in our research area. The HYDROBOD maps were created using the methods
cited in Krammer et al. [51]. Maps for every single soil layer (0–20, 20–50, 50–100 cm) and
parameters such as soil texture (percentage of sand, silt, and clay), saturated hydraulic
conductivity, Mualem van Genuchten parameters (combinations of residual water content
and saturation water content), and soil thickness were used.

3. Modeling Approach
3.1. Model Setup and Calibration

We used the hydrological model WaSiM, which was developed by Schulla [42], at the
ETH Zurich in Switzerland for studying climate change in Alpine catchments. WaSiM is a
well-established, widely used, distributed, and process-oriented hydrological model. It
has been used in similar catchments and for many different purposes, such as to perform
climate change studies [46,52,53], land use change studies [54,55], and measure operational
uses (e.g., at FOEN Switzerland). We focused on a process-oriented model to keep the
model uncertainty as small as possible as compared to conceptual models, which are often
used for similar precipitation runoff studies [6,12,25]. Using this type of model also allowed
us to study ungauged subcatchments within our calibrated catchment area. Furthermore,
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WaSiM had already been successfully applied by Hohmann et al. [46] in the study area to
perform a climate change sensitivity study with a low-flow focus.

In this study, we used the WaSiM-Richards Version 10.04.07. All modules of WaSiM
used are shown in Figure 2. For more information about the modules, see Schulla [42] or
the WaSiM user guide by Schulla [56]. The model was set up with a spatial resolution of
100 × 100 m and a temporal resolution of 30 min. WaSiM allows the option to internally
interpolate the meteorological station data to grids. The evapotranspiration was estimated
with the Penman–Monteith equation [57], and the unsaturated zone with the Richards
equation, parameterized after van Genuchten [58]. The soil was split up into four calcula-
tion layers (0–20, 20–50, 50–100 cm, 1–20 m) with a total depth of 20 m, including the first
groundwater layer. By including the data from Klebinder et al. [49], we could include a
total of 416 soil parameter combinations in the soil table of WaSiM for our study domain.
The final groundwater parameters of the 2D groundwater module were fitted to represent
the baseflow quite accurately during the calibration period. Therefore, the saturated hori-
zontal conductivity was split up into areas around the river with 1 × 10−3 m s−1 and the
surrounding hilly areas with 5 × 10−4 m s−1. Adopting reasonable values, the colmation
factor was set to 5 × 10−5, and the unitless specific storage coefficient to 0.2. In addition
to the gridded groundwater parameters, WaSiM was calibrated using four soil module
parameters, which influence the shape and volume of the simulated runoff hydrograph
when no measured or literature data were available [56]: these were the storage coefficient
of the surface runoff kd (shape of the surface runoff hydrograph) and interflow ki (shape of
the interflow hydrograph), the drainage density for interflow dr, and a recession constant
of the soil krec (both of which influence the amount of interflow).

The model calibration period was from 1 May to 30 September 2009 with a model
spin-up period from 1 November 2007 to 30 April 2009. We calibrated the model only
for the extended summer months (May to September), since most of the heavy rainfall
events occur during these months in southeastern Styria. The validation periods were
the extended summers of 2010 and 2011. The model performance was assessed with the
Nash–Sutcliffe model efficiency coefficient (NSE) [59], logarithmic Nash–Sutcliffe efficiency
(logNSE), Kling–Gupta efficiency (KGE) [60], and percent bias (PBIAS) [61]. NSE is the most
frequently used performance measure in hydrological modelling and places a focus on peak
flow [62]. To collect information about the overall flow and especially about the low-flow
periods, logNSE was included [46]. KGE provides information about the correlation, bias,
and variability between the simulations and observed discharge [62]. PBIAS provides the
average tendency of the over- and underestimation of the discharge [61].

The calibration was mostly performed manually. To obtain a first best-guess of the
model parameters, the shuffled complex evolution optimization algorithm developed at the
University of Arizona (SCE-UA) [63] was used. The manual calibration was first performed
with a focus on the efficiency measures and by carrying out a visual comparison of the time
series of measured and simulated runoff. Second, since the runoff components such as base
flow, interflow, and surface runoff are important in process-based modelling, we visually
analyzed the distribution of the runoff components for specific events. Because manual
calibration steps were necessary, the model was calibrated with the IDW2 interpolation and
158 precipitation stations and was not recalibrated with all different precipitation inputs and
interpolation schemes. This approach is considered as appropriate, because the deviation
between the efficiency measures for all studied cases from those observed in the calibration
run was found to be negligible. The deviations observed in the calibration/validation
period exhibited a maximum deviation of 0.04/0.02 in NSE, 0.07/0.13 in logNSE, 0.08/0.04
in KGE, and 11/14% for PBIAS, respectively.

The best model performance was obtained with the parameter set of krec = 0.8, dr = 40,
kd = 1.5, and ki = 2. This setup resulted in a model performance for the river runoff in the
calibration period of summer 2009 with an NSE of 0.80, logNSE of 0.76, KGE of 0.77, and
PBIAS of 8%. The validation period of summer 2010 and 2011 resulted in an NSE of 0.63,
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logNSE of 0.56, KGE of 0.69, and PBIAS of 19%. The observed and simulated runoff for the
calibration and validation periods are plotted in Figure A2 in Appendix A.
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after scheme of Schulla [56]). The focus of this study was to evaluate runoff output data (box marked
in dark blue) as simulated by WaSiM with various precipitation data resolutions at input (blue
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3.2. Experimental Design

Our study design is visualized in Figure 3 and described in the following sections.
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Figure 3. Overview of the study design with total catchment and subcatchment areas, gauge station subnetworks (ZAMG—
data from the Austrian Weather Service; AHYD—data from the Austrian Hydrographic Service; WEGN—highly dense
station network), and full precipitation network (Ref-158-Stations), analyzed short-duration and long-duration events,
spatial interpolation schemes (inverse distance weighting with power of 1 (IDW1), power of 2 (IDW2) and power of 3
(IDW3); Thiessen polygons (TP)) for precipitation input data, and the key runoff output data analyzed.

3.2.1. Selection of Precipitation Station Network Densities

To obtain precipitation input data at various spatial resolutions, we defined subnet-
works (Table 3 and Figure 3) using the 158 stations. The lowest-density network includes
only the five ZAMG stations (5-Stations); the mean nearest neighbor distance is 11.0 km.
This corresponds to an operational meteorological monitoring setup in Austria. The next
subnetwork includes three more stations from the AHYD network (8-Stations). This would
be a typical setup for the operational use of hydrological models.

In addition to the operational setup, precipitation stations from the WEGN are in-
cluded for higher resolution subnetworks. For the main analyses, we defined seven evenly
distributed subnetworks consisting of rain gauges ranging from 12–109 stations (primary
subnetworks in Table 3 and Figure 1). In addition, we defined six complementary sub-
network cases ranging from 12–75 stations with different actual WEGN stations (Table 3
and Figure A1 in Appendix A). The spatial uncertainty of the precipitation depends not
only on the number of gauges or station density, but also on their spatial configuration [13].
Therefore, these complementary subnetworks were considered to further investigate the
uncertainty that was related to a given number of pre-defined subnetworks.

All available precipitation stations, 158 in total, served as our reference (Ref-158-
Stations) with a mean nearest neighbor distance of 1.4 km. We assumed that the most
accurate areal precipitation information could be obtained from Ref-158-Stations, and
therefore, we calibrated the model using this setup.
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Table 3. Precipitation stations of the operational subnetwork cases, the primary subnetwork cases,
the complementary subnetwork cases, and the reference subnetwork with the total number of stations
per subnetwork, together with the specific station data source (Z: ZAMG, A: AHYD, W: WEGN)
and the estimated mean nearest neighbor distance. The distance estimates were calculated with an
ArcGIS software tool.

Subnetworks Gauge
Subnetwork Case

Number
of Stations (Z/A/W)

Mean Nearest
Neighbor Distance (km)

Operational 5-Stations 5 (5/-/-) 11.0
8-Stations 8 (5/3/-) 10.5

Primary 12-Stations 12 (5/3/4) 7.2
17-Stations 17 (5/3/9) 5.9
25-Stations 25 (5/3/17) 4.0
36-Stations 36 (5/3/28) 3.2
52-Stations 52 (5/3/44) 2.6
75-Stations 75 (5/3/67) 2.0
109-Stations 109 (5/3/101) 1.7

Complementary 12-comp-Stations 12 (5/3/4 comp) 8.3
17-comp-Stations 17 (5/3/9 comp) 5.4
25-comp-Stations 25 (5/3/17 comp) 4.1
36-comp-Stations 36 (5/3/28 comp) 3.0
52-comp-Stations 52 (5/3/44 comp) 2.4
75-comp-Stations 75 (5/3/67 comp) 2.0

Reference Ref-158-Stations 158 (5/3/150) 1.4

3.2.2. Selection of Precipitation Events

We selected heavy precipitation events observed with the WEGN during the extended
summer (May–September) period in 2009–2014 (see also [11]). We first defined rain events
with a minimum inter-event time of 6 h [64,65] and then selected the top 10% of the
heaviest rainfall events. Finally, for the case studies, the three most extreme, small-scale,
short-duration and the three most extreme, large-scale, long-duration events were selected
(see also Figure A3 in Appendix A). The short-duration events were identified as the
three events with the strongest peak hour during our study period. The long-duration
events were selected as those with the largest total precipitation amount. We additionally
conducted a visual inspection of the INCA data across the study area (Figure 4) to check the
spatial scales of the selected rainfall events. Table 4 shows a description of the six rainfall
events considered in this study.

Table 4. Precipitation events selected for this study and associated key characteristics. The precipitation information
indicated for the events was estimated from WEGN data. The runoff information included the measured peak runoff at
the total catchment outlet, the Neumarkt/Raab gauging station. The HQ gives a rating if the peak runoff was statistically
reached or exceeded once per year (HQ1) or once per ten years (HQ10).

Event Start Date Duration
(h)

Total Precipitation
(mm)

Peak Hourly
Precipitation (mm)

Peak Runoff
(m3 s−1) HQ

short-1 10 August 2009 4 34 19 107 HQ1
short-2 19 August 2011 2 23 18 36 <HQ1
short-3 01 September 2011 4 28 26 26 <HQ1

long-1 22 June 2009 66 121 10 244 >HQ10
long-2 03 August 2009 25 106 10 213 HQ10
long-3 17 September 2010 54 60 5 55 <HQ1
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Figure 4. Precipitation time series of the “short-1 event” measured at WEGN and ZAMG stations (left panel) throughout
the WEGN network area (purple box in the four panels on the right). In the panel on the left, “WEGN” shows mean areal
precipitation computed from the 150 stations (black line) with a min–max range among the stations (gray shaded), while
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(yellow-shaded). The map sequence in the four panels on the right shows the evolution of the precipitation event as revealed
by the gridded INCA analysis across the WEGN network (purple box) and the Raab catchment area (red line).

3.2.3. Spatial Interpolation Schemes

In this work, we employed three different IDW setups and the TP interpolation. We
decided to use these methods for several reasons: IDW and TP are both widely used
interpolation methods in hydrological studies [30,66]. Our network is fairly dense, with
regularly distributed stations in a landscape with moderate topography; therefore, we do
not expect to obtain additional value from taking more complex geostatistical measures.
The literature is ambiguous regarding which interpolation method is the best, and especially
for high-resolution station networks, more complex geostatistical methods do not provide
additional value [40,67]. The important influence of the weighting power of IDW on
modeling results has not yet been studied broadly, nor has it been studied for such a
dense station network [38,39]. The methods of IDW and TP are implemented in WaSiM
and, therefore, widely used by the model users. Additional altitude information was not
included, because the elevation differences in the area are fairly small (altitude differences
are no more than about 300 m).

IDW is the sum of all contributing station data with specific weights [42]. It is calcu-
lated as follows:

ẑ(u) = ∑
j

(
wj·z

(
uj
) )

(1)

with wj =
1

d
(
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)p · 1
C
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1
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wj = 1 (2)

ẑ(u) interpolated value at location u.
wj weight of the observed value at the station j.
z
(
uj
)

observed value at the station j.
d
(
u, uj

)
distance to the station j.

p weighting-power exponent of the inverse-distance scheme.
In our study, we used the standard weighting power p of 2 (IDW2) as well as the

weighting power p of 1 (IDW1) and of 3 (IDW3) for comparison. The search radius was
set differently for the core WEGN region and the surrounding stations. Since our focus
region was the WEGN region itself, and we do not have such a dense network throughout
the entire catchment area, we maintained a fixed precipitation input for the surrounding
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area. So, for the 12-Stations case and onwards, the IDW2 interpolation case with the five
ZAMG and three AHYD stations and a 60 km radius of influence was maintained for the
surrounding area.

The WEGN region (23 × 18 km) was then interpolated with each subnetwork and
interpolation scheme, respectively. A smoothing buffer of 3 km was set, between the WEGN
region and its surroundings. This setup enabled us to change the radius of influence for the
WEGN stations individually without losing important information from the supporting
weather stations. The radius of influence was subsequently set to 20 km for the 12- and
17-Stations cases and to 10 km for the 25-Stations case and onward so that we could include
all supporting information and still obtain proper information for all locations.

Using the TP interpolation, the precipitation data collected at the nearest station were
always taken. Each grid cell of the model received information from the nearest station,
and the polygons formed (Thiessen polygons) represent lines of equal distance between
two stations [42]. Hence, TP is a simpler method to apply than IDW, but the former is still
widely used in hydrological modeling [6,26,32].

3.2.4. Runoff Analysis Approach

In our study, we analyzed an event-specific time series of runoff and peak flow
deviations. The time series are visualized for all events individually, but are combined
with different station network densities and interpolation schemes. For each catchment,
interpolation method, and event, the peak flow deviation was calculated individually as
a percent of the total value. For this purpose, the maximum runoff value was calculated
using the simulation results from every subnetwork case (MAX value); this value was
then compared to the maximum runoff value from the full-network reference case (MAX
Ref-158-Stations), which best captures the “true” spatial variability of precipitation in the
study area. This deviation metric is computed as follows:

peak flow deviation [%] =
(MAX value)− (MAX Ref-158-Stations)

(MAX Ref-158-Stations)
× 100 (3)

The timing of the maximum peak flow was also calculated. Therefore, the difference
between the earliest and the latest peak flows with all station densities (including the
complementary subnetworks) of every single event and each catchment was calculated sep-
arately.

4. Results
4.1. Results for Individual Example Events

In this section, we focus on individual precipitation events. Figure 5 shows exemplary
maps of the interpolated precipitation data, as well as the resulting runoff in the represen-
tative small subcatchment of Haselbach (12 km2) for the short-1 event. With the 12-Stations
case, the maps of the two interpolation schemes and the resulting runoffs at Haselbach are
very different. In the case of the Ref-158-Stations, the interpolation schemes have a smaller
impact on the areal precipitation estimation as compared to the 12-Stations case. In the
Haselbach subcatchment at this short-1 event, the difference between the IDW2 and TP
interpolation in the 12-Stations case is more pronounced than the difference between the
12-Stations and Ref-158-Stations cases.

In Figure 6, the runoff time series of the short-1 event and the long-1 event for the
interpolation schemes of IDW2 and TP are visualized for three subcatchments.

The short-1 event in the Haselbach subcatchment shows very little runoff for the
8-Stations case under the IDW2 interpolation as compared to the other cases. When
examining the range of gauge densities, no systematic variation of simulated runoff peaks
is observed. For instance, while the lowest runoff is simulated from 8-Stations with IDW2,
the highest runoff was seen from 36-Stations with the same interpolation scheme. In the
Giemerbach subcatchment, the lowest runoff is seen in the 5- and 8-Stations cases, and
the highest runoff with the 36-Stations case (both TP interpolation). Applying the IDW2
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interpolation, the 36-Stations case also shows the highest value, but the 8- and 12-Stations
cases show the lowest. In the Auersbach subcatchment, the IDW2 interpolation shows the
lowest values with 5- and 8-Stations cases, and the highest runoff with the 52-Stations case.
Applying the TP interpolation, the 5- and 8-Stations cases produce the same minimum
runoff results. The maximum runoff is seen in the 52-Stations case.
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Figure 5. Exemplary precipitation maps using the WaSiM interpolation schemes of inverse distance weighting with power
of 2 (IDW2) and Thiessen polygons (TP) for the short-1 event (10 August 2009 at 17:30), for the 12-Stations and Ref-158-
Stations subnetwork cases (four panels on the upper-left). The time series (bottom row and right column panels) show the
precipitation (dashed, from top) and the modeled runoff (solid) of this event in the representative small subcatchment of
Haselbach (12 km2).

The runoff results obtained for the long-1 event are almost ten times higher than that
of the short-1 event. The order, maxima, and minima also differ greatly between the two.
The IDW2 and TP interpolation schemes lead to a different runoff curve order and even
different curve shapes. This becomes visible in the Haselbach runoff curves, which have
different shapes in the two interpolation schemes and different minima and maxima. In the
Giemerbach subcatchment, the highest value is simulated for the 12-Stations case with the
TP interpolation and for the 5-Stations case under IDW2. In the Auersbach subcatchment,
the lowest runoff is seen in the 12-Stations case with both interpolation schemes. The
highest values are modelled in the 8-Stations cases when using IDW2, and in the 5- and
8-Stations cases when using TP interpolation.

These are examples of one short- and one long-duration event for three subcatchments,
but they do not cover the total range of setups and results. Therefore, the combined figures
are shown in Section 4.2.
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six-panel plate), respectively, for all subnetwork cases and the full Ref-158-Stations network; the complementary runs (comp
runs) for the 12-comp-Stations to 75-comp-Stations subnetworks are depicted in gray. Results are shown for the inverse
distance weighting with power of 2 (IDW2) and Thiessen polygons (TP) interpolation schemes (top and bottom rows per
plate), for the Haselbach (left), Giemerbach (middle), and Auersbach (right) subcatchments.

4.2. Combined Results for All Events
4.2.1. Timing of Peak Flow

We calculated the differences in the timing of the runoff peak using all densities
and interpolation schemes for all (sub)catchments (Table 5). The deviations range mostly
between 0 and 3.5 h, with the exception of the long-3 event. The long-3 event shows huge
timing differences, with up to 31 h in the Saazerbach subcatchment. Here, the first peak
flow was measured on 17 September 2010 at 23:30 and the last on 19 September 2010 at 6:30.
Haselbach shows a similar timing of the runoff peaks, with the exception of the 8-Stations
case, when applying all interpolation schemes. In this case, the timing of the runoff peak
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is also one day later than in the other cases. At Neumarkt/Raab gauging station, the
difference is mostly just 3 h, but the TP 8-Stations case has a maximum peak flow that is
around 15 h later than the other cases.

When examining the short-1 event, we see that the runoff peaks at the Neumarkt/Raab
and Feldbach/Raab gauging station were always at the same time. For the short-2 event
at station Neumarkt/Raab, the timing of the peak runoff is mostly the same, but the two
cases show a half-hour difference. This event also shows the smallest deviations in the peak
timing, i.e., just 1.5 h. The short-3 event shows no specifically noticeable cases, whereby
the timing differences at Neumarkt/Raab gauging station are up to 3 h; in the Saazerbach
subcatchment up to 3.5 h; 1.5 h or less for the other catchments. When examining the long-1
and long-2 events, no specifically noticeable cases are visible, and the timing differences
are just between 0.5 and 2/2.5 h.

Table 5. Calculated differences in the timing of the runoff peak for all subnetwork station densities and interpolation
schemes separately for all (sub)catchments.

Event Neumarkt/Raab Feldbach/Raab Kornbach Haselbach Saazerbach Auersbach Giemerbach

short-1 0 h 0 h 0.5 h 2 h 3.5 h 1 h 2 h
short-2 0.5 h 0.5 h 1.5 h 1 h 1.5 h 0.5 h 0.5 h
short-3 3 h 0.5 h 1.5 h 1.5 h 3.5 h 1 h 1.5 h
long-1 1 h 1 h 0.5 h 2 h 2 h 1.5 h 0.5 h
long-2 1.5 h 0.5 h 2.5 h 2 h 1.5 h 1 h 1 h
long-3 15.5 h 1.5 h 1 h 28.5 h 31 h 1 h 1 h

4.2.2. Peak Flow Deviation

Figure 7 shows the peak flow deviations as calculated with Equation (3) for all ana-
lyzed station cases and for the IDW and TP interpolations, respectively. The interpolation
schemes of IDW1 and IDW3, as well as all results of the complementary subnetworks, are
plotted in Appendix A (Figure A4). We can see that the different short- and long-duration
rainfall events lead to a significantly different runoff picture, while the interpolation
schemes and different catchments are much more similar. Lower station densities (<12-
Stations) mostly show larger deviations from the Ref-158-Stations full network case (darker
colors) than cases with more stations (lighter colors).

The three short events show more extreme differences between the station densities
than the three long events. When a comparison was made between the (sub)catchments,
no single (sub)catchment was especially noticeable. Using the TP interpolation generally
results in more extreme values than using IDW2. Differences between the results obtained
with three IDW interpolation schemes are less pronounced than differences seen between
the results from IDW and TP interpolation (Figures 7 and A4).

If we take a look at the short-1 event under all interpolation schemes and for all
(sub)catchments, we see that the 8-Stations subnetwork shows the strongest negative peak
flow deviation as compared to the Ref-158-Stations case. This sums up to nearly –70% at
Saazerbach when using the IDW2 interpolation. The Saazerbach subcatchment modeling
results also show slightly different behavior than the others, with a positive peak flow
deviation being seen for the 5-Stations case when using the TP interpolation. Haselbach
shows the most positive value of around +50% with the 36-Stations subnetwork and the
IDW1 interpolation conditions.

The short-2 event reveals a similar picture as the short-1 event, with pronounced
negative peak flow deviations also seen for the less dense networks. Again, the most
negative deviation appears in the Saazerbach subcatchment in the 8-Stations case (IDW2)
with nearly –65%. The most positive values are obtained when TP interpolation is used for
the Saazerbach, Giemerbach, and Haselbach subcatchments.

The short-3 event shows a more positive peak flow deviation pattern as compared
to those obtained in the short-1 and short-2 events. Especially Auersbach shows positive
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deviations, with more simulated runoff seen than in the Ref-158-Stations cases for almost all
interpolations and station density cases. Including data from the complementary network,
but also the primary networks, results in quite extreme values for the short-3 event. The
runoff gauges at the main river stations of Neumarkt/Raab and Feldbach/Raab seem
to reflect the mix of extreme positive and extreme negative peak flow deviations with
maximum values of around +15% and −30%.
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The long-1 event shows the strongest peak flow deviations among the long duration
events. Giemerbach shows especially high positive values when TP interpolation is used,
deviating from the Ref-158-Stations case by up to 90%. Auersbach shows different behavior,
with the most negative values observed for the 12- to 52-Stations cases and deviations
of up to –35%. The 5- and 8-Stations cases result in positive peak flow deviations in
all catchments.

The long-2 event shows less pronounced peak flow deviations than the long-1 event.
Haselbach and Kornbach show the most positive deviations with up to +60% seen in the 5-
and 8-Stations cases.

The long-3 event appears to be very similar to the long-2 event, showing little peak
flow deviations in most of the cases. Here, Saazerbach shows the most positive peak flow
deviation in the 8-Stations case when TP interpolation is used, i.e., +75%.

By comparing all events together, some results can be summarized for individ-
ual (sub)catchments. For the Raab river gauging stations of Feldbach/Raab and Neu-
markt/Raab, the peak flow deviation starting from the 25-Stations subnetwork is almost
the same as the Ref-158-Stations full network (less than 10%). This implies that data from
the 25-Stations network would be sufficient to adequately simulate the Raab river runoff.
However, the complementary network shows deviations of up to 14% for the gauge at Neu-
markt/Raab in the 25-Stations case, and here, using only the 36-comp-Stations case would
be sufficient, as it shows deviations below 10%. At the Feldbach/Raab gauging station,
using the 36-Stations case of the primary subnetwork results in deviations below 10%, but
using only the complementary subnetwork is not sufficient, even with 75-comp-Stations.

Auersbach and Saazerbach show a deviation of more than 10% at least for one event,
where even the 109-Stations case does not result in the same runoff as the 158-Ref-Stations
case. Giemerbach and Kornbach show a threshold at the 109-Stations case, after which
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no large improvement in the accuracy of the simulated runoff is seen, compared to the
Ref-158-Stations case. Haselbach already shows such a threshold in the 75-Stations case.

On the one hand, the inclusion of data from a specific number of stations leads to
large changes in simulated runoff in many subcatchments. Giemerbach shows such a large
step/change from the 25- to the 36-Stations case (e.g., in the short-1 event when using the
TP interpolation, the value for the 25-Stations case is around −50%, and for the 36-Stations
case +30%). These large steps are especially noticeable for the short-duration events, but
are also measurable for the long-duration ones. The Haselbach subcatchment also shows
this behavior, but between the 17- and 25-Stations cases.

On the other hand, no changes between some subnetworks are visible in some sub-
catchments, especially when using the TP interpolation. The northern catchments Auers-
bach and Kornbach almost do not show differences if we simulate runoff using data from
5- or 8-Stations subnetworks and all interpolation schemes (<1%). If we use the TP interpo-
lation, the analysis of data from the 17-, 25-, and 36-Stations subnetworks lead to the same
peak flow results in these northern catchments. Giemerbach shows almost the same runoff
in all events in the 5-, 8-, and 12-Stations, and also between the 17- and 25-Stations cases.

In Figure 8, we summarize the results for peak flow deviations as a function of all
station subnetworks for the primary and the complementary subnetworks. These results
highlight the fact that the direction of biases (overestimation vs. underestimation) is
affected primarily by the gauge network density rather than the interpolation scheme used.
For long-duration heavy precipitation events, assessing a mean value over all catchments,
we find that the biases decrease more rapidly when the number of gauges in the network
increases. The long-duration heavy precipitation events as a mean over all (sub)networks
show a threshold behavior with 17 regularly distributed stations, yielding satisfactory
performance for all interpolation schemes. From the 17-Stations case and onward, the bias
is less than about 10% and converges with higher subnetwork densities.

Note that our subnetworks represent a quite regularly distributed gauge configuration,
and therefore, the uncertainty in the runoff simulations can be somewhat greater than
for more irregular gauge location configurations, which is visible in the complementary
station case. Here, the 25-comp-Stations case would be sufficient, after which no large
improvement in the runoff accuracy compared to the Ref-158-Stations case becomes visible.

The short-duration heavy precipitation events show such a threshold behavior in the
52-Stations case, within the 10% range. Above this threshold, the values converge with
higher subnetwork densities. In the complementary network, 75-comp-Stations are also
below the 10% deviation, so this case would be as good as the Ref-158-Stations case if data
are averaged across all (sub)catchments.
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5. Discussion

In our event-based study, we chose the three most extreme short- and long-duration
events. Significant differences in peak runoff among these six events were observed at the
Neumarkt/Raab gauging station, in part due to different preconditions: the short-1 event,
with over 100 m3 s−1 peak flow, was influenced by the long-2 event that had occurred
a few days before, and the other two short events in 2011 had drier preconditions and
consequently smaller peak flows with 26 to 36 m3 s−1.

5.1. Threshold Behavior

The mean over all catchments and events (Figure 8) shows a “sufficiency threshold”;
above this density, only small runoff changes of about 10% can be observed, which converge
when higher subnetwork densities are used. For the long-duration events, this threshold
occurs in the 17-Stations case using a regularly distributed subnetwork. This corresponds
to a mean nearest neighbor distance of 5.9 km or around 30 stations per 1000 km2. The
short-duration events only show such threshold when the 52-Stations case is analyzed
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using the primary subnetwork (mean distance of around 2.6 km or around 150 stations
per 1000 km2). Such thresholds have also been reported in the literature, where no better
performances after crossing specific station densities are seen [5,22,25,27]. For example,
Lopez et al. [22] mentioned a threshold of 24 gauges per 1000 km2 for the Thur basin (area
1700 km2), and Xu et al. [27] of around 1 rain gauge per 1000 km2 for the Xiangjiang River
catchment (area 94,660 km2). Evidently these studies focused on large catchments and
larger scales. By comparing the results of the primary network with the results obtained
from the complementary networks (i.e., irregularly distributed stations), we found that
collecting data from a regularly distributed network requires the use of fewer stations to
properly simulate runoff.

In contrast to these “sufficiency thresholds”, the individually fairly small subcatch-
ments do not always show such a sufficient density in our high-resolution case, where
the results are both catchment- and event-dependent (Figure 7). Compared to the Ref-158-
Stations cases, a sufficient density can only be reached in the Giemerbach and Kornbach
subcatchments using a high density with the 109-Stations. In the Auersbach and Saazerbach
subcatchments, this is not possible even with 109-Stations. In the Haselbach subcatchment,
using the 75 stations of the primary subnetwork are sufficient, but not using the 75 comple-
mentary stations. For this, a much denser and well-targeted network is needed to obtain
peak flow deviations that are lower than 10% as compared to the Ref-158-Stations case in
small subcatchments.

5.2. Influence of Station Location

Adding four WEGN stations to the operational subnetworks (5- and 8-Stations cases),
we noticed that including data from the first four WEGN stations in the primary subnetwork
(12-Stations cases) consistently resulted in much lower peak flow deviations from the
Ref-158-Stations case, but including data from the first four complementary stations (12-
comp-Stations) led to much higher peak flow deviations. Therefore, in catchments where
station numbers are still sparse, the location of the stations is very important for mitigating
the under-sampling problem. Watson et al. [62] pointed out that not only the density of
precipitation measurements has a significant impact, but also that the stations needed to be
positioned in critical areas.

The effect of the station location is clear within the operational setup when comparing
the 5- and 8-Stations cases. In the Auersbach and Kornbach subcatchments, the peak flow
under all interpolation schemes in these cases is the same for subcatchments on the northern
side of the Raab river. These two catchments are not influenced by the AHYD stations
located to the west, south, and farther east of the Raab river. However, the precipitation
input of the Saazerbach subcatchment is often strongly influenced by AHYD stations to the
west of the river that supply meteorological information. This information is especially
important, since many storms come into the area from the west or north-west.

In some cases, the simulated runoff did not change, even when more stations were
included. Using TP interpolation in Giemerbach, Kornbach, and Auerbach subcatchments,
it did not matter whether we used 5-, 8-, or 12-Stations or the 17- and 25-Stations case.
The peak flow deviation always stayed the same for the primary subnetwork, because
the supporting stations are too far away to be included when using the TP interpolation.
These effects were not as pronounced when IDW interpolation schemes were used, since
the influence radius here also included information from weather stations that are within
the larger surrounding area.

Due to the “right” location change, the simulated runoff differed strongly from one
subnetwork to the other in some cases. In the Haselbach subcatchment in the 17- to the
25-Stations case (IDW2), a change of around −30 to +40% peak flow deviation occurred.
This is because one WEGN station of the 25-Stations case is very close to the subcatchment.
In the Giemerbach subcatchment, changes from −50 to +30% were observed (25- to 36-
Stations case), because two WEGN stations were added, and these are located directly in
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the catchment. Therefore, we observed that the location of the gauging stations is highly
crucial in areas where the sampling densities are basically still insufficient.

By placing our focus on small catchments, we can clearly point out that the station
density has a larger influence on small subcatchments than on the total Raab catchment. The
specific spatial location of precipitation stations is much more important when analyzing
data for small catchments. It has already been noted in other studies that the location of
precipitation measurements is important on all scales [22,24,68]. Using the highly dense
WEGN, we could show new empirical evidence that again underlines the importance of
these locations in small catchments, i.e., in the 10 to 30 km2 area class.

5.3. Effect of Timing of Peak Flow

By analyzing the timing of peak flow (Table 5), we see that the differences are mostly
quite small as compared to the model time resolution of 30 min. Nevertheless, a difference
of three hours can make substantial difference regarding (flash) flood prevention, especially
in small catchments. This difference is most profound when the time difference arises
only from the station network density in combination with the station locations. In the
special case of the long-3 event with a precipitation event duration of 54 h, the absolute
peak runoff occurs even on different days. The total rainfall of 60 mm fell over a long
time period, and depending on the station density and location, different amounts were
simulated in the area. This result is especially important with respect to small catchments,
where the influence of specific stations is even more pronounced. As seen before, the total
Raab catchment at station Neumarkt/Raab is also influenced by this effect, and a time
difference up to 9 h can occur.

5.4. Comparison of Interpolation Schemes IDW and TP

Turning specifically to examine the characteristic influences of the interpolation
scheme, several aspects are salient, including the special properties of TP interpolation.
Precipitation maps of interpolated gridded rainfall are generally very different when dif-
ferent IDW and TP interpolations are used with stiff borders between the TP polygons
(Figure 5). These lead to sharp differences in simulated precipitation amounts between
two adjacent polygons, especially in cases of high spatial rainfall variability. Therefore, the
greatly pronounced peak flow deviation is also due to this reason (Figure 7).

Compared to using the different IDW interpolation schemes, the effect of using the
TP interpolation is much stronger. However, by comparing the three IDW interpolation
schemes, we see that the differences among them are not negligible. Peak flow deviations
of up to 50% from the IDW2 to the IDW1 case are possible (e.g., short-3 event, 5-Stations,
Saazerbach). The influence of the interpolation scheme is highly event-dependent and
especially pronounced in small catchments with a low subnetwork number. For the total
catchment area of Neumarkt/Raab and Feldbach/Raab, the differences are below a 5%
deviation. In this case, it does not make a difference which IDW scheme is used, but the
choice between IDW and TP is distinct.

Among the IDW interpolation schemes, the peak flow deviations of IDW3 tend to be
the closest ones yielded by using the TP interpolation. This result is expected, since the
higher IDW3 weighting power gives less weight to the surrounding stations than IDW2 or
IDW1. Dirks et al. [40] suggested using the power values of 2 for daily and monthly, 3 for
hourly, and 1 for yearly precipitation interpolations to minimize the interpolation error.
Kurtzman et al. [39] mentioned that the influence of weighting power depended on spatial
pattern, specifically referring to the location of the catchment in their Mediterranean study
area. Large power values of 3 are more effective closer to the coast line, whereas smaller
power values such as 1 are more effective closer to the mountains. Our study area is close to
the mountains, which seems to support the observations of Kurtzman et al. [39] regarding
the IDW1 interpolation, but we use half-hourly time steps, which is more similar to the use
of the IDW3 method in Dirks et al. [40]. Our results do not suggest that there is a certain
IDW weighting power value for performing optimal hydrological modelling in the Rabb
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catchment. We used the IDW2 as reference, as it is also the most widely used [37]. In other
studies in the WEGN region, the weighting power of 2 was also set for the precipitation
interpolation [69,70] based on performance tests such as leave-one-station-out verifications
on small-scale rainfall events. Nevertheless, if we use many stations, we see no relevant
difference between the different weighting power of the IDW interpolations from about
from the 52-Stations case onward (mean distance of around 2.5 km).

Overall, if only a few stations are available, the IDW interpolations, and in particular
IDW2, are preferable for analyzing data from regions with moderate topography. The TP
interpolation is not recommended for areas with complex topography and low station
densities, as also stated by Kobold and Brilly [32]. Dirks et al. [40] also do not recommend
the TP interpolation, because of its unrealistic discontinuous rain fields, although the
interpolation errors between TP and IDW are comparable. Only when the network is
highly dense, as in our cases with at least 350 station per 1000 km2 or more, the TP
method might be an option, since it is computationally the least expensive. Nevertheless,
precipitation maps with sharp differences that are still unrealistic will exist that could
adversely impact runoff results in very small catchments.

In summary, our results clearly show the influence of the interpolation scheme on
modelling, especially for few-station networks. Nonetheless, the impact of station network
density is clearly much more significant for runoff simulations than the impact of the
interpolation scheme.

6. Conclusions

We used the highly dense WEGN station network in the southeastern Alpine foreland
of Styria, Austria, to analyze the influence of rain gauge network density and interpolation
schemes on simulated runoff, placing a focus on small subcatchments (10 to 30 km2).

Our first key question was “How many precipitation stations do we need to reliably
model runoff during heavy rainfall events?” This question cannot be answered in general
due to the complex spatiotemporal characteristics of the events, and especially of the
short-duration convective events. Although our results show that the influence of the
station network density is specifically catchment-, (station) location-, and event-dependent,
we were able to derive average, guideline results.

For long-duration stratiform-type events (lasting typically longer than a day) and
averaging over all catchments, a station density with a mean nearest neighbor distance of
around 6 km (17-Stations) is found to be sufficiently dense to perform robust runoff mod-
eling, including reliable peak runoff estimations. To obtain an average for all catchments
from the short-duration heavy convective rainfall events (lasting typically a few hours
only), at least a mean nearest neighbor distance of around 2.6 km (52-Stations, regularly
distributed subnetwork) is needed for runoff modeling. Our simulations with data from
the complementary subnetworks show that not only the density of stations but also their
spatial configuration is crucial.

The second research question “Are there specific features of small subcatchments to
reliably model runoff under heavy rainfall events?” can be answered with a clear “Yes”. By
focusing on subcatchments in the 10 km2 size class, our results show that sufficient station
density is mostly higher with 109-Stations (mean distance 1.7 km) or not even reached at
numbers lower than the reference case. Therefore, especially in small subcatchments, both
the station density and the actual station locations are crucial. Here, the influence of station
location also depends on typical storm tracks across the catchment.

Furthermore, the radius of influence of each station plays an important role for
precipitation interpolations. The third key research question “How strongly does the
interpolation scheme influence runoff results when the precipitation station density is the
same?” is related to this. The answer to this question depends on the station density. For
very dense station networks (in our case 109 to 158 stations, mean distance of 1.7 km to
1.4 km), the specific interpolation scheme is not relevant. The simpler TP interpolation is
already sufficient in these cases, although it can provide unrealistic rainfall fields. Overall,
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the interpolation scheme is found to be clearly less influential than the gauge network
density on simulated runoff. Hence, when analyzing and interpreting modeled runoff
based on rainfall input data, station network density will most importantly influence the
results as long as a reasonable interpolation is chosen.

We emphasize that it is important to carry out an explicit study of the hydrological
response to different precipitation events. Many earlier studies have evaluated the “accu-
racy” of (remote-sensing) gridded rainfall event data by making direct comparison with
ground gauge measurements [18,19,71]. Our study findings highlight the fact that it is also
important to evaluate the performance of precipitation datasets at various resolutions to
measure hydrological runoff response. Such evaluations will provide broader practical
guidance both to rainfall data providers as well as to hydrological model users.

The dependence on specific rainfall event characteristics and station network density
is mitigated in the main river runoff. However, regarding local-scale hazards that can occur,
such as severe overland flooding, flashfloods, and hillslope landslides that are triggered
by short-duration convective events, it is necessary to obtain more dense observations
to perform reliable hydrological modeling and estimate the risks of these hazards and
suggest protective action. While the WEGN is a unique, long-term research facility with
sufficiently high station density, it is quite limited in terms of area. The densification
and expansion of runoff and rainfall gauge networks in this and many other risk-prone
areas, therefore, would be a great and much needed improvement on top of existing
observations. An alternative would be to tap other data sources, enabling suitable data
products to be obtained at high spatiotemporal resolutions, such as well-calibrated, high-
quality precipitation radar data.

In deploying new stations, selected station locations have a strong effect on gridded
precipitation fields and, therefore, also on runoff results, especially in small catchments. In
this study, we selected two subnetwork ensembles, the primary and the complementary
subnetwork with gauges from the WEGN. The primary subnetwork contained stations
with a quite regular distribution, and the complementary subnetwork contained different
WEGN stations. Performing a more detailed analysis, whereby the influences of irregular
distributions are examined by randomly picking and evaluating stations more closely on
the basis of catchment characteristics, may be a useful design step for determining new
station placements in other areas. This would help us to arrive at an optimal rain gauge
network design for hydrological purposes in the specific catchment.

Since such dense networks are available in virtually no other place worldwide, the
runoff impact results derived here for the Raab catchment and its subcatchments in south-
eastern Austria need to be “transferred” to other regions with due care, examining the
comparability of weather, hydrology, and landscape characteristics [36,41,72]. With such
due care, we consider the essential results and conclusions to be transferable to many other
mid-latitude land regions. For the majority of ungauged or extremely sparsely observed
small catchments, the awareness of both the level of skill and limitations of rainfall–runoff
modeling, as reported here, will be particularly crucial.
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station for the calibration period of May to September 2009 (top) and the validation period of May 
to September 2010 (middle) and 2011 (bottom). From the top of each panel, the interpolated pre-
cipitation (grey line) is co-visualized over the same extended summer periods. 
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2009–2014. 

Figure A2. Simulated (blue line) and observed runoff (red line) at the Neumarkt/Raab gauging station for the calibration
period of May to September 2009 (top) and the validation period of May to September 2010 (middle) and 2011 (bottom). From
the top of each panel, the interpolated precipitation (grey line) is co-visualized over the same extended summer periods.

Water 2021, 13, 1381 23 of 27 
 

 

 
Figure A2. Simulated (blue line) and observed runoff (red line) at the Neumarkt/Raab gauging 
station for the calibration period of May to September 2009 (top) and the validation period of May 
to September 2010 (middle) and 2011 (bottom). From the top of each panel, the interpolated pre-
cipitation (grey line) is co-visualized over the same extended summer periods. 

 
Figure A3. Classification of the selected most extreme three short-duration and three long-dura-
tion events within our study time frame over the extended summer months (May to September) in 
2009–2014. 

Figure A3. Classification of the selected most extreme three short-duration and three long-duration
events within our study time frame over the extended summer months (May to September) in
2009–2014.



Water 2021, 13, 1381 24 of 27
Water 2021, 13, 1381 24 of 27 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure A4. Complementary to Figure 7. Peak flow deviation to Ref-158-Stations case as a grid-cell plot with each cell 
indicating the magnitude of the deviation on a color-scale, for the cases of all six events (one event per panel), all 
(sub)catchments (columns per panel), the four interpolation schemes inverse distance weighting with power of 2 (IDW2), 
power of 3 (IDW3), power of 1 (IDW1), and Thiessen polygons (TP)) (stacked subpanels per panel), and all subnetwork 
cases (rows per subpanel). (a) depicts the results of the complementary subnetwork of IDW2 and TP interpolation; (b) the 
results for the primary subnetworks for IDW3 and IDW1; (c) the ones of the complementary subnetworks (IDW3 and 
IDW1) analyzed in this study. 

Figure A4. Complementary to Figure 7. Peak flow deviation to Ref-158-Stations case as a grid-cell plot with each
cell indicating the magnitude of the deviation on a color-scale, for the cases of all six events (one event per panel), all
(sub)catchments (columns per panel), the four interpolation schemes inverse distance weighting with power of 2 (IDW2),
power of 3 (IDW3), power of 1 (IDW1), and Thiessen polygons (TP)) (stacked subpanels per panel), and all subnetwork
cases (rows per subpanel). (a) depicts the results of the complementary subnetwork of IDW2 and TP interpolation; (b) the
results for the primary subnetworks for IDW3 and IDW1; (c) the ones of the complementary subnetworks (IDW3 and IDW1)
analyzed in this study.
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