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Abstract: Tropical high-altitude lakes are vital freshwater ecosystems for the functioning and dynam-
ics of tropical high-altitude wetlands called páramos, found at over 3300 m above sea level. They
play a major role in the hydrogeological cycle and provide important hydrological services such as
water storage, and yet they are understudied. Describing the patterns and processes of community
composition in these lakes is required to better understand the consequences of their degradation
by human activities. In this study we tested the geographical and environmental components of
distance–decay relationships in the phytoplankton structure across 24 tropical high-altitude lakes
from Southern Ecuador. Phytoplankton composition at the phyla level showed high among-lake
variation in the tropical high-altitude lakes from Tres Lagunas. We found no links, however, be-
tween the geographic distance and phytoplankton composition. On the contrary, we observed
some environmentally related patterns of community structure like redox potential, altitude, water
temperature, and total phosphorus. The absence of support for the distance–decay relationship
observed here can result from a conjunction of local niche-based effects and dispersal limitations.
Phytoplankton community composition in the Tres Lagunas system or any other ecosystem may
be jointly regulated by niche-based and neutral forces that still need to be explored. Despite not
proving a mechanistic explanation for the observed patterns of community structure, we hope our
findings provide understanding of these vulnerable and vital ecosystems. More studies in tropical
high-altitude lakes are urgently required.

Keywords: community composition; dissimilarity; distance–decay; páramos; phytoplankton; tropical
high-altitude lakes; wetlands

1. Introduction

Defining the processes that determine the patterns of community structure is a major
challenge in ecology [1]. For decades, community ecologists have generated numerous
hypotheses regarding the distribution and coexistence of species within and amongst
habitats [2,3]. In this context, the distance–decay relationship suggests that similarity
amongst ecological communities decreases with geographical distance, meaning that
geographically distant communities are expected to be more dissimilar in their structure
and composition than closer ones [4,5]. That pattern can be linked to at least two non-
exclusive mechanisms. First, communities become less similar with distance because the
environmental conditions become less similar. This assumes a strong correlation between
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geographic distance and environmental dissimilarity. In community ecology, this niche-
based process is also called “species sorting” [6]. Second, the dispersal capacity of living
organisms is limited. This means that even if the environment does not change over space,
the limited capacity of an organism to disperse does not allow it to succeed everywhere.
Thus, an organism is more likely to be found closer to its original localization [7]. Dispersal
limitation is a key factor explaining species distribution under a neutral view, which
considers that organisms perform equally in any environmental conditions. Both forces can
contribute to generate a distance–decay pattern in community composition [8]. Therefore,
a distance–decay pattern alone cannot be used as evidence of either one of the underlying
mechanisms. Indeed, actual changes in community structure over space and distance
may result from a balance between local niche-based processes and regional dispersal
capabilities [9].

For microorganisms, a niche-based perspective called the Baas-Becking hypothesis
dominated the literature for decades [10,11]. It suggests that given their small size, microor-
ganisms are ubiquitous, but the local environment determines where they can persist. This
means that only the capacity of a microorganism to cope with the different local environ-
mental conditions, not its dispersal capabilities, would determine its spatial distribution
patterns. Consequently, distance–decay relationships in microorganisms may result from a
strong correlation between geographic and environmental distance, where species sorting
would be the dominant underlying mechanism. However, evidence collected over the
last two decades suggests that microorganisms show biogeographical patterns, with both
local (e.g., species sorting) and regional (e.g., dispersal) processes being important [12–17].
As with macro-organisms, the distance–decay relationships in microorganisms are jointly
influenced by local environmental filters and dispersal [5,18,19].

In microalgae, the evidence for local and regional processes dominating community
structure is mixed [14,18–23]. A study with diatoms from Finnish streams found limited
support for species sorting. Additionally, spatial effects overcame environmental variables
as drivers of community structure [14]. On the contrary, algal communities in lakes and
reservoirs from Greece showed a strong correlation with environmental conditions [19].
Similarly, community structure had stronger control through niche-related rather than
spatial factors amongst diatom communities in another study in Finland [18]. Two other
studies showed that algal community structure was controlled simultaneously by both
spatial and environmental factors [20,21]. Regarding the relationship between geographical
distances and community similarity in microalgae, some studies found evidence of distance–
decay relationships [18,21,23], but some others did not [19]. Such discrepancies can be
explained because factors such as the spatial scale or the environmental context influence
the distance–decay relationship in microalgae [20,22].

The freshwater ecosystems of the tropical Andes are among the most high-altitude
and intensely irradiated environments in the world, and although it is one of the most
biodiverse regions on the planet, knowledge of its biodiversity is scarce and fragmented,
with the exception of fish, which is the most studied group. High-altitude lakes and
wetlands play important roles as flow regulators and reservoirs of water from glacier melt
and rainfall, which is ultimately used by communities for consumption, irrigation, and
energy production [24]. In addition, their importance lies in their function of regulating
the upper river basins due to their capacity to buffer increases in flow, avalanches, and
sediment transport [25].

Community ecology studies on microalgae from tropical lakes, especially at high
altitudes, are rare. We know little about the patterns of distribution of microalgae in such
freshwater ecosystems. The extreme environmental conditions of tropical high-altitude
lakes suggest that particular algal communities well adapted to such harsh conditions
might be found [26]. Thus, studies on patterns and processes of community composition
in high altitude ecosystems are required to better understand the consequences of their
degradation by human activities, including climate change. In this study, we tested the
geographical and environmental components of the distance–decay relationships in the



Water 2021, 13, 1378 3 of 11

phytoplankton structure across 24 tropical high-altitude lakes from Southern Ecuador.
We hope our findings will help improve our comprehension of these vulnerable and
vital ecosystems.

2. Materials and Methods
2.1. Studied Lakes

The Tres Lagunas system is a group of shallow, tropical high-altitude lakes located
in Southern Ecuador at an average altitude of 3323 m above sea level (Figure 1). For this
study, we included 24 lakes with wide ranges of physicochemical and biotic characteristics
(Table 1, Table S1 in supplementary material) separated by around one hundred meters to
up to six kilometers from each other [27].
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2.2. Sampling and Physicochemical Analyses

We collected data on chlorophyll-a concentration (mg L−1) using a bbe Moldaenke
fluoroprobe. Dissolved oxygen (mg L−1), redox potential (mv), conductivity (µS/cm), pH,
and water temperature (◦C) were measured using a portable multiparameter probe HQ40D
Hach. All variables were measured once at 0.5 m below the surface as close as possible to
the center of each lake. For nutrient analysis we used acid washed 10 mL plastic tubes to
collect water samples (~9.5 mL) at 0.50 m below surface and as far from shore to avoid
shallow waters. We preserved the water samples with 98% sulfuric acid. All samples were
immediately stored in the dark and cold conditions, brought to Loja (Ecuador), and then
to Geneva (Switzerland) by plane. Sampling was performed from 8 to 11 November 2016.
Total phosphorus (µg L−1) and nitrites/nitrates (µg L−1) measurements were performed on
an AQ2 discrete analyzer based on EPA (Environmental Protection Agency) 365.1 method
version 2 (based on reactions specific for the orthophosphate ion and semi-automated
colorimetry) and EPA 353.2 version 2 method (based on reactions specific for nitrates and
automated colorimetry), respectively.
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Table 1. Overview of the geographic, physicochemical, and biological variables measured along the
24 lakes included in the study.

Variable Minimum Maximum Mean

Area (ha) 0.51 12.41 2.01

Altitude (m.a.s.l.) 3288 3362 3323

Maximum depth (m) 1.4 8.7 2.9

Temperature (◦C) 10.7 15.29 13.21

pH 3.45 5.45 4.36

Oxygen (mg L−1) 6.7 7.48 7.07

Redox (mv) 189 321 248

Conductivity
(µS cm−1) 23.6 51.4 36.4

Total phosphorus
(µg L−1) 0.01 0.15 0.058

Nitrates/nitrites
(mg L−1) 0.0015 0.0194 0.0080

Chlorophyll-a (µg L−1) 1.49 5.05 3.01

Phytoplankton biovolume (µm3 mL−1 106) 3.63 241.67 32.39

2.3. Phytoplankton Composition

For phytoplankton analysis, we collected around 90 mL of water in 100 mL acid-
washed plastic bottles at 0.5 m below surface, as far from the shore as possible, and
preserved the samples with glutaraldehyde. All samples were immediately stored in
dark and cold conditions, brought to Loja (Ecuador), and then to Geneva (Switzerland)
by plane. We used an inverted microscope with 400×x magnification for cell counting.
Phytoplankton samples were previously concentrated by letting them settle in plastic tubes
for 24 h. For cell counting, we used a Sedgwick-Rafter chamber cell counter. Five transects
of 20 fields of view (at 400×x magnification) were defined in each one, and in total there
were 100 fields of vision for each sample/lake. A field of vision measures 0.38 mm2. We
took pictures of each field of vision, which were used later for phytoplankton identification.
Microalgae biovolume analysis (mL per mL of water) was calculated using geometric forms
of microalgae and mathematical equations to get accurate cell volume [28]. Cell density
readings (in cells per mL) were determined as well. We established the composition of
the phytoplankton community of each lake based on the prevalence of six major phyla:
Chlorophyta, Cyanophyta, Bacillariophyta, Pyrrophyta, Euglenophyta, and Cryptophyta.
Unidentified organisms were reported as unknown and represented less than 2% of the
total abundance in every lake. The unknown algae were not included in further analyses.

2.4. Community Dissimilarity

We used two methods for measuring the phytoplankton community dissimilarity
among lakes in terms of their algal phyla composition based on their relative contribution
to total biovolume. First, we calculated the inverse Bray-Curtis community similarity
index between each pair of lakes. The inverse index allowed interpreting higher values
of the index as an indicator of higher dissimilarity amongst lakes in their phytoplankton
community structure at the phylum level. Second, we performed a cluster analysis based on
the phyla composition of lakes and then calculated the Euclidean distances separating each
pair. A higher Euclidean community distance represents a higher community dissimilarity.
We used JMP (SAS) software version 14.0 to perform the clustering and to estimate the
community structure distances. The two measures of community similarity were highly
correlated (ρ = 0.886, p < 0.0001, n = 276). For simplicity, only results based on Euclidean
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community distances are presented. Results with Bray-Curtis similarity provided almost
identical results.

2.5. Geographical Distances

We calculated the geographical distances in meters amongst lakes using satellite
images and data on latitude, longitude, and altitude from the center of each lake.

2.6. Environmental Distances

We included seven variables to estimate environmental distances amongst lakes:
conductivity, nitrates/nitrites concentration, oxygen concentration, pH, redox potential,
water temperature, and total phosphates concentration. For this, we first performed a
cluster analysis based on the physical and chemical variables and then calculated the
Euclidean distances separating each pair. A higher Euclidean distance represents a higher
environmental dissimilarity. We used JMP (SAS) software version 14.0 to perform the
clustering and to estimate the Euclidean-based environmental distances.

2.7. Data Analysis

We first performed a correlation-based principal component analysis (PCA) to reveal
potential links among the variables and to determine which variables explained most of the
differences among lakes. The PCA included seventeen variables: two morpho-geographic
(surface area of the lake and altitude), seven physical and chemical (conductivity, ni-
trates/nitrites, oxygen concentration, pH, redox potential, water temperature, and total
phosphorus) and eight biological variables related to phytoplankton (Chlorophyll-a, total
biovolume, %Chlorophyta, %Bacillariophyta, %Cyanophyta, %Chrysophyta, %Eugleno-
phyta, and %Pyrrophyta). To test the relationships between environmental, geographic,
and community structure distances (dissimilarity), we fitted linear and binomial models to
the data using JMP version 14.0 (SAS).

3. Results
3.1. Links amongst Variables

The principal component analysis (PCA) reported a first component positively related
to chlorophyll-a that explained 23.9% of the variation in the data and a second component
positively related to altitude and pH that explained 14.8% of the variation in the data
(Figure 2). As shown by the PCA, some community structure variables (i.e., percentages of
each phyla) were strongly correlated to environmental variables (Table 2). The contribution
of diatoms to total biovolume (%Bacillariophyta) decreased with the redox potential and
with altitude above sea level. This means that, relatively speaking, less diatoms were
observed at higher altitudes. The contribution of cyanobacteria (%Cyanophyta) to total
biovolume decreased with an increase in temperature, meaning they were more present
in colder waters. Finally, the contribution of Euglenophytes (%Euglenophyta) to total
biovolume increased with total phosphorus. A strong negative correlation between the
percentage of diatoms and the percentage of dinoflagellates (%Pyrrophyta) was observed
(ρ = −0.608, p < 0.001), which means that an increase in the relative biovolume of diatoms
was at the detriment of the biovolume of dinoflagellates. No other strong correlations were
observed amongst the relative contribution of each phyla to total biovolume.
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Figure 2. Principal component analysis (PCA) including seventeen variables in total: two geographic (altitude and
surface), seven physical and chemical (conductivity, nitrates/nitrites, oxygen concentration, pH, redox potential, water
temperature, and total phosphorus), and eight biological variables related to phytoplankton (Chlorophyll-a, total biovolume,
%Chlorophyta, %Bacillariophyta, %Cyanophyta, %Chrysophyta, %Euglenophyta, and %Pyrrophyta). Dots represent lakes.

Table 2. Coefficients of correlations amongst composition variables (contribution of each phyla
to total biovolume) and environmental variables. Only correlation coefficients over 0.45 and with
p < 0.05 are shown.

Structure Variable Environmental Variable Coefficient of Correlation

% Bacillariophyta Redox potential −0.592

% Bacillariophyta Altitude −0.466

% Cyanophyta Temperature −0.466

% Euglenophyta Total phosphorus 0.452

3.2. Phyla Community Structure

We found high variability in the phyla composition of the high-altitude tropical lakes
from Southern Ecuador (Figure 3). The number of phyla (from 4 to 6) and their relative
contributions to total biovolume in each lake determined their structure similarities. Some
lakes were dominated by only one phylum, while others were more equally structured in
terms of the contribution of the different phyla to total biovolume. This analysis revealed
clusters of lakes with similarities in their phyla composition. Lake 31 was isolated in the
clustering due to the higher contribution of Euglenophyta to total biovolume and almost a
total absence of Cyanophyta and Chlorophyta. A cluster of four lakes (10, 12, 29, and 32)
was strongly dominated by diatoms. The PCA (Figure 2) shows those lakes were located at
lower altitude and had lower redox potential values. Another cluster of four lakes (2, 4, 7,
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and 9) was dominated by cyanobacteria and associated with colder water temperatures. A
large cluster of seven lakes (8, 19, 18, 16, 21, 23, 14) dominated by Pyrrophyta was revealed.
Finally, a group of six lakes (1, 6, 27, 28, 17, 30) with no clear-cut dominance of one phylum
was also depicted.
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3.3. Geographic Distance, Environmental Distance, and Community Similarity

We found no evidence of a relationship between geographic distance and the compo-
sition dissimilarity (Figure 4a, R2 = 0.0048, p = 0.246, n = 276). On the other hand, we found
weak but positive linear and binomial relationships between environmental distances and
composition similarity (Figure 4b, linear: R2 = 0.0162, p = 0.034; binomial: R2 = 0.033,
p = 0.001, n = 276). The binomial model explained twice the variance in community similar-
ity compared to the linear model. The geographic and environmental distances from our
dataset were not linearly related (R2 = 0.0002, p = 0.81), but a binomial model provided a
fit (R2 = 0.034, p = 0.008). A model with environmental and geographic distance together
did not provide a better fit to the data than environmental distances alone (R2 = 0.021,
p = 0.0523).
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4. Discussion

The aim of the current study was to characterize the spatial structure of phytoplankton
communities in tropical high-altitude lakes and to explore its relationships with geographi-
cal and environmental distances in the Tres Lagunas system. We found large among-lake
variation in the structure of phytoplankton assemblages at the highest taxonomic level.
The number of phyla and their relative contributions to total biovolume were spatially
highly variable. Our results show that the phytoplankton composition of the lakes was
more related to environmental than geographic distances. Community dissimilarity at the
phyla level was greatest at intermediate environmental distances. In other words, the com-
position dissimilarity of phytoplankton increases from low to intermediate environmental
distances but drops when the environments become more dissimilar. Previous studies with
freshwater phytoplankton also found relationships between environmental distance and
community dissimilarity [18–20,22]. However, these studies focused on community varia-
tion at much lower taxonomic levels (e.g., species) and reported either linear or logarithmic
patterns. At the large scale of our research, a higher taxonomic level of differentiation
was justified. Differences in the taxonomic resolution used may impede our results to be
comparable to previous studies.

Our analyses of the influence of individual environmental variables on community
composition (i.e., PCA) revealed that redox potential, altitude, water temperature, and
total phosphorus were the variables that contributed most to the variability in phytoplank-
ton structure. An increase in the redox potential and altitude above sea level (the two
environmental variables were positively correlated) were detrimental for the contribu-
tion of diatoms. Phytoplankton composition can be strongly related to redox potential
in freshwater ecosystems [29]. More specifically, diatom community composition and
taxa distribution has been shown to be very sensitive to variations in redox potential in
a peatland ecosystem [30]. It is possible that the diatoms present in the Tres Lagunas
system prefer less humified conditions. The increase in temperature was unfavorable for
cyanobacteria contribution whereas increasing total phosphate benefited the contribution
of euglenophytes. Previous studies also reported effects of environmental variables such
as pH, conductivity, total phosphorus, and temperature on phytoplankton community
composition [18,21]. Any generalization across different ecosystems and environmental
conditions is unwarranted, especially when comparing studies performed in very different
conditions and different taxonomic levels. The environmental conditions of tropical high-
altitude lakes are unique and differ much from the ones reported elsewhere in temperate
and low-altitude freshwater ecosystems. It can be expected that the environmental vari-



Water 2021, 13, 1378 9 of 11

ables that matter for phytoplankton in tropical high-altitude conditions differ from those at
other altitudes and latitudes.

We found no evidence of any relationship between geographic distance and commu-
nity similarity. It is possible that the spatial structure of communities in Tres Lagunas is
different at large spatial scales, where dispersal limitation may act more strongly. Perhaps
at relatively small spatial scales like in this study (<10 km) high dispersal between local
communities homogenizes the spatial structure of the communities and a higher impact of
environmental conditions is observed. Microorganisms’ biogeographical patterns prob-
ably emerge stronger at much larger spatial scales [31]. In line with our results, other
previous studies with freshwater phytoplankton found no support for the distance–decay
relationship in freshwater phytoplankton [19,20,22]. Importantly, this lack of support of the
distance–decay relationship cannot be interpreted as unequivocal evidence for considering
microorganisms having a global distribution. In this study, we estimated geographical
distances as overland GPS (Global Positioning System)-based distances between lakes
with different levels of water connectivity, belonging to two different drainage basins.
It is possible that a higher spatial signal in community structure would be found if we
had included water course distances or other determinants of dispersal capabilities in
phytoplankton. However, connectivity patterns in Tres Lagunas would be hard to establish
because páramos are wetlands where the soil is permanently soaked with water. The
lack of a distance-related spatial structure in our study may also result from the sampling
methods used. We sampled each lake only once at one depth. Thus, our dataset included
only a snapshot of the transient community structure of phytoplankton in these lakes,
without including within-lake or temporal variability. Single sampling may only represent
a very small proportion of the real diversity of a lake [32]. We also acknowledge a possible
methodological limitation of this study related to the use of relative abundances. An
analysis based on total abundances of the different phyla could have been very informative
in terms of the direction and magnitude in change in community composition among lakes.

Despite the observed relationships between environmental variables and community
composition, a major proportion of among-lake community variation remained unex-
plained. Some possible explanations are that other important environmental variables
were not included, that the spatial scale we used does not embrace the regional processes
that matter for phytoplankton, that trophic effects such as grazing by zooplankton were
not considered, and that the taxonomic resolution (i.e., phyla level) was too coarse. Phy-
toplankton includes a huge variety of life forms and it is possible that the environmental
and spatial forces driving distribution patterns differ across the major phyla. Moreover,
recent studies in similar tropical high-altitude lakes show that phytoplankton communities
in these lakes are quite sensitive to human-driven alterations, such as eutrophication, tem-
perature increase, and the introduction of fish [33–35]. Whereas tropical high-altitude lakes
can also show some temporal variations in community composition the relatively stable
environmental conditions of tropical páramos should result in limited seasonal variation
in phytoplankton composition [26]. All the above-mentioned factors might contribute
and interact with each other to determine the phytoplankton community composition in
high-altitude tropical lakes.

5. Conclusions

Phytoplankton composition at the phyla level showed high among-lake variation
in the tropical high-altitude lakes from Tres Lagunas. We found no links between the
geographic distance and phytoplankton composition. On the contrary, we observed some
environmentally related patterns of community structure, with highest dissimilarity among
community structure at intermediate environmental distances. Spatial composition pat-
terns based on field data alone like the ones reported here cannot be used to reveal the
underlying mechanistic determinants of community assembly. Controlled experiments
are required to depict the processes that generate those patterns. The absence of support
for the distance–decay relationship observed here can result from a conjunction of local
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niche-based effects and dispersal limitations. Community composition in the Tres Lagunas
system or any other ecosystem may be jointly regulated by niche-based and neutral forces
that still need to be explored. More studies are required to determine their relative impor-
tance as drivers of community composition in unexplored systems such as the high-altitude
tropical lakes.
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