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Abstract: The flow regime conditions of the Danube River are continually changing. These changes
are the result of natural processes and anthropogenic activities. The territory of the Danube River
Basin is one of the most flood-endangered regions in Europe and assessing the design discharges
along the Danube channel is complicated by the different estimation methods that are applied in
particular countries. For this reason, it is necessary to harmonize flood design value assessment
methods. The long-term maximum annual discharge series of the Danube River and other rivers in the
Danube basin were analyzed and used to estimate the flood design values. We used the Log-Pearson
type III distribution, which is one of the most widely used theoretical probability distributions to
estimate extremes. This distribution can be flexibly applied to extreme values depending on the skew
coefficient. We also analyzed the effect of the inclusion and exclusion of the historical extremes in the
processed dataset. The results show that the inclusion of historical floods and the regionalization of
the Log-Pearson type III distribution skew parameter can change the design discharges.

Keywords: Danube river; log-Pearson type III distribution; design discharges; historic floods;
regionalization

1. Introduction

Flood frequency analysis plays a major role in the design of hydraulic structures and
flood control management. One of the fundamental problems of flood hydrology was
(and still is) establishing the relationship between peak discharges of flood waves and the
probability of their return period. Extrapolation from these variables (a so-called frequency
curve) is especially necessary for water management and flood control plans. Directive
2007/60/EC of the European Parliament of 23 October 2007 concerning the assessment
and management of flood risks requires member states to draw up flood hazard maps of
floods with long return periods (from 100 to 1000 years). On the basis of the statistics, it
is clear that the extrapolation of the data is very sensitive to both the length of the data
series and the inclusion of historic extremes in the data series. Investigation of the history
of extreme flood event frequency, severity and duration provides a greater understanding
of the region’s extreme event characteristics and the probability of occurrence at various
levels of severity. This type of information is beneficial in the development of extreme
response and mitigation strategies and preparedness plans. Many hydrologists consider
mathematician E.J. Gumbel to be one of the pioneers in the development of extreme value
theory [1]. In [2], the theory of extremes was applied to different areas, with a main focus on
hydrology, the definition of floods and a practical method for estimating flood frequencies.
The correct estimation of potential culminations of floods requires the inclusion of long-
term observational data series and historic preinstrumental data to statistically analyze data
series [3–10]. An extensive overview of scientific papers dealing with the historical floods
and individual disastrous flood events in the past millennium for the rivers in various
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European countries can be found in [11]. Moreover, historic floods that occurred in the
Danube River Basin are summarized in the book of Pekárová et al. [12].

Another important factor in the correct estimation of extremes is the uncertainty of the
applied statistical method. For example, the estimation of uncertainty for design discharges
was investigated in [13–16]. In [17], four models were compared in terms of goodness
of fit, their uncertainties, parameter estimation methods and implications for estimating
flood quantiles. Regional flood frequency analyses (RFFA) using L-moments and annual
maximum series (AMS) methods for Pannonia basins were conducted in [18]. The following
conditions are among the basic assumptions for the application of the frequency analyses
of maximum annual discharge:

- Maximum annual discharges must be independent and stochastic;
- Processes influencing the runoff process are stationary with respect to time (homo-

geneity of the series);
- Statistical characteristics of the measured data series (series of maximum annual

discharge) represent the past, presence, and future.

A second problem regarding hydrology is hydrological regionalization concerns the
manner in which the transfer of data to the ungauged basins, or to deficient data sites,
is carried out. There are two main procedures used for this transfer. The first consists of
discovering certain relationships for the spatial interpolation of the principal statistics of
the probability curves; the second tries to eliminate the shortcomings of the first. This
consists of determining several statistical distribution curves of the standardized annual
maximum discharge. Standardization is achieved by dividing the maximum annual
discharges by their average magnitude. These standardized (or dimensionless) curves
are often called growth curves [19]. All methods of estimating floods with a very long
return period are associated with great uncertainties. Determining the specific values
of a 500 or 1000-year flood for engineering purposes is extremely complex. Nowadays,
hydrologists are required to determine both the specific design values of the extremes
and to specify confidence intervals in which the discharge of a given, for example, 100,
500 or 1000-year flood may occur, with a probability of 90%. Globally, there are a huge
number of scientific papers that deal with the selection and testing of theoretical probability
distributions for estimating the maximum values of hydrological characteristics. The
application and selection of a particular probability distribution function, the method of
parameter estimation and the analyzed period depend on the calculation method generally
used in a given country [20–24]. For example, since 1967 in the United States, Log-Pearson
type III (LPIII) distribution has often been chosen by experts as “The distribution of choice
for floods” [25]. The LPIII is used to estimate extremes in many natural processes and is one
of the most commonly used probability distributions in hydrology [26–29]. In [30], the use
of the Log-Person distribution to estimate maximum annual precipitation and discharge
was investigated. They concluded that this distribution is more suitable for discharges
with higher return periods, whereas for annual floods, the existence of an upper bound for
the distribution may cause uncertainty in some cases. The use of historical information to
improve flood quantile estimates was investigated in [31]. The authors showed that much
of the information contained in historical flood records is connected with knowing the
number of exceedances of the threshold rather than the magnitudes of the “historic” floods.
Various authors, e.g., see [32–34], prefer the generalized extreme value (GEV) distribution
for estimating hydrological extremes. In [35], the authors examined the suitability of
several types of probability distribution (GEV, LPIII and Gumbel) for estimating T-year
discharges. The results of [35] showed that the GEV distribution was applicable to the
Upper Thames River Watershed data, but they recommend further research. Excepting the
aforementioned factors, the estimation of T-year discharges is finally influenced by the type
of theoretical probability distribution function used. The choice of theoretical probability
distribution function should accurately represent the uncertainty and variability of the
hydrological problem. For large international basins, such as the Danube River Basin,
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it is necessary to synchronize the methodology and to prepare common procedures for
determining flood hazards.

Therefore, the aim of the paper is to propose a uniform methodology for the harmo-
nization and generalization of design value assessments of flood discharges in stations
along the Danube River. We used LPIII distribution as a mathematical tool. The skew
coefficient is a measure of the asymmetry of that distribution and is sensitive to extreme
events. In the first part of this paper, we analyze the effect of the inclusion or exclusion of
historical extremes in the processed dataset on design value estimation. The second part of
the paper is focused on the estimation of the relationship between the skew coefficient of
the Log-Pearson type III distribution function and runoff depth, basin area, and elevation,
for the purpose of regionalization. The last section offers the results, conclusions and a
short discussion.

2. Materials and Methods
2.1. Materials

The Danube River is the second greatest river in Europe, after the Volga. The basin
covers an area of 817,000 km2 (Figure 1). The river originates in the Black Forest in Germany
at the confluence of the Briga and the Breg streams. The Danube then discharges southeast
for 2872 km (1785 mi), passing through four Central European capitals before emptying
into the Black Sea via the Danube Delta in Romania and Ukraine. The Danube River Basin
landscape geomorphology is characterized by a diversity of morphological patterns, and
the river channel itself can be divided into six sections (Figure 1). The territory of the
Danube River Basin is also one of the most flood-endangered regions in Europe. Therefore,
it is vital to have complete data of the flood regime to be able to generalize such information
on the basis of long-term observations from the whole Danube territory. The occurrence of
large floods on the Danube River is described in detail in many publications [8,11,36–42].

Figure 1. Diagram of the Danube River Basin, water gauging stations along the Danube River, and
the six sections of the Danube Basin based on the landscape geomorphology.

In this study, the long-term data of annual maximum discharges from 20 stations
(Table 1) along the Danube River from Germany to Ukraine were used to determine
the T-year maximum discharges. The basic statistical characteristics of the stations are
presented in Table 1. In Figure 2, examples of the maximum annual discharges in the upper
(Hofkirchen gauge), central (Bratislava gauge), and lower Danube (Orsova/Turnu Severin
gauge) from 142 to 193 years are shown.
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Table 1. List of the gauging stations along the Danube River. LAT: latitude; LONG: longitude; Qamax: long-term average of
the maximum annual discharge.

Gauge River km Period Country Area [km2] LAT LONG Elevation
[m a.s.l]

Qamax
[m3s−1]

Berg 2613 1930–2007 GE 4047 48.27 9.73 489.48 204
Ingolstadt 2458.3 1940–2007 GE 20,001 48.75 11.42 359.97 1110

Regensburg-
Schwabelweis 2376.1 1924–2007 GE 35,399 49.02 12.14 324.06 1532

Pfelling 2300 1926–2007 GE 37,757 48.88 12.75 307.73 1516
Hofkirchen 2256.9 1826–2013 GE 47,496 48.68 13.12 299.17 1896
Achleiten 2150 1901–2007 GE 76,653 48.58 13.5 287.27 4146

Linz 2135.2 1821–2013 AT 79,490 48.31 14.3 247.06 3670
Stein-Krems
(Kienstock) 2002.7 1828–2006 AT 96,045 48.38 15.46 193.32 5372

Wien-Nussdorf 1934.1 1828–2006 AT 101,731 48.25 16.3 157 5301
Devin/Bratislava 1868.8 1876–2013 SK 131,338 48.14 17.1 132.86 5884

Nagymaros 1694.6 1893–2007 HU 183,534 47.78 18.95 99.37 5598
Mohács 1446.8 1930–2007 HU 209,064 46 18.67 79.19 5063
Bezdan 1425.5 1940–2006 SR 210,250 45.85 18.87 79.29 4974

Bogojevo 1367.4 1940–2006 SR 251,593 45.53 19.08 76.11 5675
Pancevo 1153.3 1940–2006 SR 525,009 44.87 20.46 65.98 10,147

Veliko Gradiste 1060 1931–2007 SR 570,375 44.8 21.4 60.83 10,529
Orsova-Turnu

Severin 955 1840–2006 RO 576,232 44.7 22.42 44.76 10,295

Zimnicea 554 1931–2010 RO 658,400 43.63 25.36 16.06 11,087
Reni 132 1921–2010 UKR 805,700 45.45 28.27 4 11,217

Ceatal Izmail 72 1931–2010 RO 807,000 45.22 28.73 0.2 11,173

Figure 2. The maximum annual discharge series for selected gauging stations located in the upper,
middle and lower Danube (with long data series).
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Floods on the upper (from the source to Bratislava), central, and lower Danube (from
Orsova to the Black Sea) do not generally occur simultaneously. For example, the floods
that occurred in 1899, 1954 and August 2002 can be characterized as especially extreme
for the upper Danube. On the other hand, the floods that occurred in 1895, 1940, 1942,
1970, 1980 and 1981 can be characterized as especially extreme for the lower Danube. The
floods that occurred in 1897, 1965, 2006 and 2013 can be characterized as extreme for the
entire length of the Danube River. Figure 3a illustrates the course of the extreme floods
that occurred in 1942, 1954, 1981 and August 2002, and Figure 3b illustrates the course of
the extreme floods that occurred in 1965, 2006 and 2013.

Figure 3. Course of various extreme floods along the Danube River: (a) floods in 1954, August 2002
on the upper Danube and floods in 1942, 1981 on the lower Danube; (b) floods in 1965, 2006 and 2013
along the entire length of the Danube River.

According to [3], the largest peak discharge on the upper Danube at Vienna was
estimated to have a value of 14,000 m3s−1 (the year 1501). During the period of 1900–2013,
the largest peak discharge was measured on the upper Danube at Kienstock (11,450 m3s−1

in 2013) and on the lower Danube at Ceatal Izmail (15,900 m3s−1 in 2006).

2.2. Methods
2.2.1. Log-Pearson III Probability Distribution

For the estimation of the Qmax discharge series distribution function, we used Log-
Pearson Type III distribution. The LPIII distribution is used to estimate the extremes in
many natural processes and is the most commonly used frequency distribution, especially
in hydrology. The Log-likelihood function of LPIII with estimation of its parameters was
developed in [27]. In [43], a frequency factor-based method for hydrological frequency
analysis for the random generation of five distributions (normal, lognormal, extreme value
type 1, Pearson Type III and Log-Pearson Type III) is presented. The LPIII distribution
was also used in flood frequency analysis in [28,33,34]. Use of one type of distribution also
allows the value of the T-year maximum discharges to be estimated for parts of the river
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without observations on the basis of the long-term average of maximum annual discharge
and distribution parameters from the neighboring gauging stations.

To estimate the distribution parameters, the method described in the Interagency Com-
mittee on Water Data Bulletin 17B [44] was used. Bulletin 17B provided revised procedures
for weighting station skew values with results from a generalized skew study, detecting
and treating outliers, making two station comparisons and computing the confidence limits
of the frequency curve. Flood estimation procedures in the United States traditionally use
two primary methods: frequency analysis of peak discharges for floodplain management
and levee design, and deterministic Probable Maximum Flood estimates for the design of
dams and nuclear facilities, [45].

The Log-Pearson Type III distribution is a three-parameter gamma distribution with a
logarithmic transformation of the variable. It is widely used for flood analyses because the
data quite frequently fit the assumed annual maximum discharge series. The probability
density function of the Pearson Type III distribution is of the following form:

f(x|τ ,α,β) =

(
x−τ
β

)α−1
exp

(
− x−τ

β

)
|β|Γ(α) (1)

with
x− τ

β
≥ 0 (2)

where τ is the location parameter, α is the shape parameter, β is the scale parameter and
Γ(α) is the Gamma function given by Equation (2).

Γ(α) =
∫ ∞

0
tα−1 exp(−t)dt (3)

The moment method uses the logarithms of variables to estimate the distribution
parameters log X = µ̂ + Kσ̂, where X is a random variable, µ̂ is the mean, σ̂ is the standard
deviation and K is a factor of the skew coefficient at a selected exceedance probability.

2.2.2. Conditions of Qmax Series

The distribution is fit by computing the base 10 logarithms of the discharge, Q, at a
selected exceedance probability, P, using the following Equation (3):

log Q = X + Kσ (4)

where X is the mean, σ is the standard deviation and K is a factor of the skew coefficient
at selected exceedance probability.

The formulas for these parameters are provided below.
Mean:

X =
1
n ∑n

i=1 Xi (5)

Standard Deviation:

σ =

√
1

n− 1 ∑n
i=1

(
Xi − X

)2 (6)

Skew Coefficient:

G =
n

(n− 1)(n− 2)σ3 ∑n
i=1

(
Xi − X

)3 (7)

The Kolmogorov–Smirnov test was performed to test the assumption that the dis-
charge magnitudes followed the theoretical distributions. The p-value (p ≥ 0.05) was used
as a criterion for rejection of the proposed distribution hypothesis. Probability estimates
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were calculated for the chosen plotting positions. A basic plotting position formula for
symmetrical distributions is given by [32]:

pi =
i− α

n + 1− 2α
(8)

where pi is the exceedance probability of variable observations Xi ranked from largest
(i = 1) to smallest (i = n), and α is a plotting position parameter (0≤ α ≥ 0.5).

2.2.3. Parameter Estimation: Simple Case

The method of moments uses the logarithms of flood discharges to estimate the
distribution parameters. The first three sample moments are used to estimate the LPIII
parameters. These include the mean ( µ̂ ), standard deviation ( σ̂ ), and skew coefficient
( γ̂ ). In the case where only systematic data are available, with no historical information,
the mean, standard deviation, and skew coefficient of the station data may be computed
using the following equations:

µ̂ =
1
n ∑n

i=1 Xi, σ̂ =

√
1

n− 1 ∑n
i=1(Xi − µ̂ )2 (9)

γ̂ =
n

(n− 1)(n− 2) σ̂ 3 ∑n
i=1(Xi − µ̂ )3 (10)

where n is the number of flood observations and (ˆ) represents a sample estimate. The
sample standard deviation and skew coefficient include bias correction factors (n−1) and
(n−1). (n−2) for small samples, respectively.

2.2.4. Historical Floods

Historical flood peaks reflect the frequency of large floods and thus should be incor-
porated into the flood frequency analysis. They can also be used to judge the adequacy
of estimated flood frequency relationships. For the latter purpose, appropriate plotting
positions or estimates of the average exceedance probabilities associated with the historical
peaks and the remainder of the data are desired. An algorithm for assigning plotting
positions to censored data, such as historical floods, is provided in [46,47].

2.2.5. Skew Coefficients in Log-Pearson III Distribution—Regionalization

The skew coefficient is a measure of the asymmetry of the distribution. There is
relatively large uncertainty for the station sample coefficient of skewness (third moment)
because it is sensitive to extreme events in records of limited length [48,49]. The station skew
coefficient (Gs) and regional skew coefficient can be combined to form a better estimate
of skew for a given watershed. Under the assumption that the regional skew coefficient
is unbiased and independent of the station skew, the mean-square errors (MSEs) of the
station skew and the regional skew can be used to estimate a weighted skew coefficient. If
the regional and station skews differ by more than 0.5, a careful examination of the data
and the flood-producing characteristics of the watershed should be made. Greater weight
may be given to the station skew depending on record length, the largest floods within the
gauging record and watershed, and watershed characteristics. Large deviations between
the regional skew and station skew may indicate that the flood frequency characteristics
of the watershed of interest are different from those used to develop the regional skew
estimate. It is thought that station skew is a function of rainfall skew, channel storage and
basin storage [50]. There is considerable variability of responses among different basins
with similar observable characteristics, in addition to the random sampling variability in
estimating skew from a short record. It is considered reasonable to give greater weight to
the station skew, after due consideration of the data and flood-producing characteristics of
the basin [49].
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The estimation of the design discharge values by Log-Pearson III-type probability
distribution according to the method described in [44] is presented hereafter. The frequency
curve spreadsheet version 3.06 of [44] was used to estimate the parameters of distribution
function with exclusion and inclusion of the historical floods data in the calculation. The
design discharge values for 20 gauge stations from Germany to Romania along the Danube
River were calculated.

3. Results
3.1. Estimation of the T-Year Design Discharges along the Danube River

As the first step, we estimated the LPIII distribution function parameters (mean Q,
standard deviation S, and station skew coefficient Gs) for each of the stations separately and
computed the QT design values. The design values of selected T-year annual maximum
discharges along the Danube River with station skew coefficients Gs are listed in Table 2.

Table 2. Design values of selected T-year annual maximum discharges in [m3s−1] along the Danube River (R: runoff depth,
Gs: station skew coefficient).

Without Estimated
Historical Maxima

R
[mm] Gs 10

[Year]
50

[Year]
100

[Year]
200

[Year]
500

[Year]
1000

[Year]

Berg 296 −0.30 324 432 476 518 573 613
Ingolstadt 494 0.15 1514 1891 2050 2209 2421 2583

Regensburg-
Schwabelweis 396 −0.46 2125 2530 2675 2809 2969 3081

Pfelling 392 −0.23 2144 2649 2846 3034 3273 3447
Hofkirchen 425 0.09 2356 3547 3897 4250 4724 5091
Achleiten 587 0.39 5486 6835 7422 8020 8835 9473

Linz 581 0.26 4641 7352 8205 9092 10,323 11,304
Stein-Krems (Kienstock) 621 0.39 7397 9605 10,592 11,613 13,028 14,154

Wien-Nussdorf 596 0.27 7187 9046 9847 10,658 11,756 12,610
Devin/Bratislava 492 0.18 8116 10,273 11,192 12,119 13,365 14,328

Nagymaros 401 −0.05 7325 8712 9257 9783 10,457 10,955
Mohács 355 −0.08 6548 7708 8157 8589 9138 9541
Bezdan 354 0.30 6452 7847 8437 9029 9823 10,435

Bogojevo 363 0.19 7334 8810 9418 10,020 10,815 11,418
Pancevo 320 0.15 12,611 14,661 15,483 16,285 17,326 18,105

Veliko Gradiste 307 0.02 13,128 15,167 15,962 16,728 17,708 18,430
Orsova-Turnu Severin 307 −0.19 12,901 14,754 15,445 16,094 16,901 17,481

Zimnicea 288 −0.09 13,776 15,769 16,528 17,248 18,155 18,815
Reni 262 −0.40 13,918 15,596 16,183 16,715 17,352 17,793

Ceatal Izmail 251 −0.21 13,677 15,492 16,161 16,785 17,557 18,108

In the case of gauges for which some historical maxima were known, we added the
historical data in the calculation. Next, the parameters of the LPIII distribution curves were
recalculated for individual stations. The design values of selected T-year annual maximum
discharges along the Danube River with historical skew coefficients Gh are presented in Table 3.

Table 3. Design values of selected T-year annual maximum discharges in [m3s−1] along the Danube River (R: runoff depth,
Gh: historical skew coefficient).

With Estimated
Historical Maxima Gh 10

[Year]
50

[Year]
100

[Year]
200

[Year]
500

[Year]
1000

[Year]
Year of

Historical Max.

Regensburg-
Schwabelweis 0.40 2306 3140 3525 3931 4505 4970 1845, 1850, 1862,

1882, 2013

Pfelling 0.45 2320 3224 3651 4105 4756 5290 1845, 1862, 1850,
1882, 2013
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Table 3. Cont.

With Estimated
Historical Maxima Gh 10

[Year]
50

[Year]
100

[Year]
200

[Year]
500

[Year]
1000

[Year]
Year of

Historical Max.

Achleiten 1.17 5778 7754 8710 9743 11,244 12,495 1862, 1899, 2013
Linz 0.76 4621 7880 9027 10,276 12,104 13,639 1501

Stein-Krems (Kienstock) 0.71 7545 10,255 11,554 12,952 14,974 16,650 1501, 1787, 2013
Wien-Nussdorf 0.64 7328 9620 10,678 11,792 13,366 14,642 1501, 1787, 2013

Devin/Bratislava 0.24 8194 10,485 11,477 12,487 13,860 14,931 1501, 1787
Nagymaros 0.06 7421 8955 9574 10,182 10,975 11,570 2013

Mohács 0.04 6658 7966 8491 9004 9669 10,167 2013
Reni 0.05 14,156 16,485 17,403 18,291 19,434 20,281 1897

Ceatal Izmail −0.03 13,816 15,905 16,712 17,484 18,466 19,186 1876

The inclusion of the historic flood data in the calculation increased the skew coefficient
by an average of 0.22. The highest difference between skew coefficients with and without
historical data was 0.87 for the Regensburg-Schwabelweis station. An example of the com-
putation of theoretical LPIII exceedance probability curves of the Danube maximum annual
discharges, without historical data and with historical data for Regensburg-Schwabelweis,
Stein-Krems, Devin/Bratislava, and Ceatal Izmail, are illustrated in Figure 4.

Figure 4. Examples of the theoretical LPIII exceedance probability curves of the Danube maximum annual discharges
without historical data (left) and with historical data (red points, right).
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Differences in the estimation of the maximum discharges with a return period of
100 and 1000 years along the Danube River, estimated according to LPIII distribution
with historical data and without historical data for each of the stations, are illustrated
in Figure 5a,b. The average difference between the estimated maximum discharges in
gauging stations, with or without the inclusion of the historical data for a return period
of T = 100, was 751 m3s−1 and for a return period of T = 1000 years was 1730 m3s−1. Our
investigation showed that the inclusion of historical floods changed the curvature of the
LPIII distribution curves and changed the design discharge.

Figure 5. Differences in the estimated maximum discharges with return periods of (a) 100 years and
(b) 1000 years along the Danube River, estimated according to LPIII distribution with historical data
(11 red points) and without historical data (20 blue points).

3.2. Regionalization of the Skew Coefficients of the LPIII Probability Curves for the Danube River

The previous part of the analyzed annual maximum discharges shows how the QT
design values change along the Danube River. The ratio k of QT/Qa (Qa: long-term mean
discharges) for selected stations are presented in Figure 6a. The 1000-year discharge is
15 times higher than the mean annual discharge at the Berg station, seven times higher at the
Bratislava station, and only three times at the Reni station. Subsequently, we individually
plotted the course of the skew parameter Gs for each station (Figure 6b).
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Figure 6. The course of the (a) ratio k of QT/Qa at gauge stations along the Danube River, and
(b) station skew coefficient G with and without historical floods along the Danube River.

Within the regionalization, we investigated various dependences of the skew coeffi-
cient Gs, individual physical–geographical characteristics (river basin area, altitude of the
station), and runoff depth at stations along the Danube River. The equations computed
from the regression analyses could then be used to calculate flood-discharge estimates at
sites where the basin characteristics were known, but for which no discharge data were
available. The course of the long-term runoff depth R (mm per year) along the Danube
River is illustrated in Figure 7. Figure 6b or Figure 7 show that both skew coefficients
Gs and Gh have a similar course as related to long-term runoff depth R at the analyzed
stations. Therefore, we primarily analyzed the relationships between the skew coefficient
and the runoff depth R (Figure 8a,b).

Figure 7. Course of the long-term runoff depth R (mm per year) along the Danube River.
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Figure 8. Dependence of the skew coefficient G on the runoff depth at Danube River gauges: (a) Gs:
without historical floods; (b) Gh: with historical floods in some gauging stations.

After estimating the best fitted relationship for the Danube River stations, we propose
using the generalized (regional) skew coefficient Ghr calculated according to the following
relation (11):

Ghr = 0.0025R − 0.7756 (11)

where Ghr denotes the regional (generalized) skew coefficient with some historical data,
and R denotes the long-term runoff depth (from ca. 260 to ca. 600 mm per year).

An example of the regression Equation (11) being applied to calculate the regionalized
skew parameters Ghr for the Danube River at Hofkirchen is presented herein. The station
skew coefficient Gs of the selected station was relatively low. Such skew parameter values
meant that the upper curvature of the LPIII exceedance probability curves did not capture
extreme values. An example of the computation of theoretical LPIII exceedance probability
curves of the Danube at Hofkirchen with station skew parameter Gs, and regionalized
parameter Ghr, is shown in Figure 9.
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Figure 9. Examples of the theoretical LPIII exceedance probability curves of the Danube maximum
annual discharges with (a) station skew parameter Gs and (b) regionalized skew parameter Ghr for
the Danube at Hofkirchen.

4. Discussion

The flow regime conditions of the Danube River are continually changing. Urbaniza-
tion, channel regulation, flood protection measures and many other factors can change the
maximum discharges, the water level and/or the travel time of floods. The travel time of
the big flood waves between Hofkirchen (2257 rkm) and Passau (2226.7 rkm) is 25 h, with
an average celerity of 30 km/day. The travel time of the wave between Passau (2226 rkm)
and Bratislava (1869 rkm) was 96 h in 2002 (with a wave celerity of 89 km/day), and 130 h
in 1954 (with a wave celerity of 66 km/day). Examples of the travel times of the important
floods between Passau and Nagymaros are presented in Figure 10a. The travel time of the
largest floods between Bratislava (1869 rkm) and Orsova (955 rkm) is around 16 days, with
an average celerity of 57 km/day. According to [51], the time difference between the large
floods at Orsova and the mouth of the Black Sea is 15–20 days, when the flood wave travels
along the Danube River with an average celerity of about 53 km/day.

The volume of transported suspended load and bed load has gradually decreased in
the middle reach of the Danube due to the construction of the reservoirs on the German
and Austrian reach. The new Danube dam near Čuňovo increased the Danube water level
at Bratislava after November 1992, and the cessation of gravel excavation below Bratislava
in 1980 caused an increase in water levels corresponding to the same flood flow observed
in the past (Figure 10b) [52].

Monitoring and evaluation of extreme hydrological phenomena using various meth-
ods and models is very important, as anthropogenic activities can negatively affect the
application of frequency analyses. It is vital to have complete flood regime data to be able
to generalize such information on the basis of long-term observations from basins. We
consider the plotting of flood risk maps for these extreme hydrological situations to be
necessary regardless of the Directive 2007/60/EC of the European Parliament. Determin-
ing design values for extreme floods with a long return period (once every 100, 500 or
1000 years) is a complex process with great levels of uncertainty.
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Figure 10. (a) Travel times of selected floods, and (b) comparison of rating curves of the Danube
River at Bratislava (red point: maximum hydrological values of the flood in June 2013).

Assessing the design discharges along the Danube channel is also complicated by the
different estimation methods in various countries. Therefore, it is necessary to harmonize
flood design value assessment methods. The authors in [53] summarized the regionaliza-
tion of distribution functions estimated for annual peak discharges in the Danube basin
based on regional empirical relationships from sufficiently long and reliable series of annual
peak discharges available for 176 water gauging stations in the Danube catchment. The
aim was to facilitate the estimation of the quantile of annual peak discharge and the related
specific flood discharges in the ungauged river sections of that catchment.

Our paper presents another possible approach for determining the design values
of the T-year floods with very long return periods along the Danube River. We tested
and used a uniform methodology to estimate the design values of flood discharges in
20 stations along the Danube River to harmonize the methodology for design discharge
value estimation in stations along the Danube. The Log-Pearson type III distribution was
selected for its flexibility and because it can be used with extreme values according to the
coefficient of skewness (G). Using one type of distribution made it possible to generalize
its skewness coefficients. Thereafter, we were able to estimate T-year discharges at gauges
with short observation period, and at sites between gauges. The first results showed that
the station skew parameter Gs indicated high positive values at the Danube River stations
with low infiltrating areas, quick propagation of flood waves, and one or more extremely
high peak discharge. On the other hand, the station skew parameter Gs indicated negative
values at the Danube River stations with a higher share of infiltrating areas and runoff from
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catchment regulated by lakes and wetlands. Previous experiences with the occurrence of
extreme floods also showed that the historical flood events need to be included in the latest
calculations when estimating the threat of such events. For the Danube River, we can see
how the inclusion of historical floods in the measured data series can change the estimation
of the discharge values with return periods from 100 to 1000 years. The results showed that
the inclusion of historical floods can change and increase the design discharge. The authors
in [54] assessed the added value of using historical data for flood quantile estimation, and
their results showed that using historical flood information improved both the reliability
and stability of the design flood estimates.

5. Conclusions

The Log-Pearson III distribution fits well with the observed data, and it is an appro-
priate mathematical tool for estimating the design values with long return periods.

The skew parameter and its optimal setting for the gauging station is sufficient in
many cases; however, in practice, this may not be sufficient when considering a short data
series or a data series from a period without historical data or a recent significant extreme.

An alternative method for estimating the design values in basins without extremes is
to use the generalized skew parameter derived from a data series from basins with similar
runoff regimes where the extremes are known or captured.

Our investigation showed that the regional skew parameter curved the LPIII distribu-
tion curves to capture all discharges with low probability of occurrence with confidence
intervals Q5%–Q95%.

For cases in which the extreme value was included in the analyzed period and the
long-term runoff depth was lower, the station’s historical skew parameter achieved a better
curvature for the LPIII distribution curve.

An important conclusion of this study relates to how local conditions and datasets
at gauging stations can determine the magnitude of discharge uncertainty and how the
discharge uncertainty changes according to time and magnitude. The results of this study
can be applied to investigate and improve the estimation of the design discharges of
ungauged or poorly gauged rivers within the Danube River Basin. In frequency analyses,
it is again important to note that the process is never-ending and, if anything, will change
according to catchment. Thus, it is necessary to recalculate distribution curves and define
new design discharges for recent periods for particular stations.
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and Bratislava; Veda: Bratislava, Slovakia, 2014; 102p, ISBN 978-80-224-1408-1.
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