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Abstract: Estimating the main hydrodynamic features of real vegetated water bodies is crucial to
assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation
stands have a high impact on vegetated channels. The present work has the aim to integrate riparian
vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact
of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned
vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant
reed) stands, starting from flow average velocities measurements at 30 cross-sections identified
along the channel. A map of riparian vegetation cover was obtained through digital processing of
Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe
riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions.
In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of
ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized
Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI
and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk
drag predictions along the vegetated drainage channel.

Keywords: ecohydraulics; bulk drag coefficients; vegetated flows; Arundo donax stands; multispectral
images; UAV

1. Introduction

The presence of aquatic vegetation inside vegetated open channels has a strong
impact on flood hazards in urban areas [1–3]. The identification of the riparian vegetation
traits affecting flow resistance is one of the most relevant topics of both modeling and
experimental analyses in ecohydraulics [4,5]. Riparian plants behave differently depending
on their bio-mechanical and morphometric traits, and on their submergence. According
to Västilä and Järvelä [4], when flexural rigidity of riparian plant’s stems is very far
from negligible, flow resistance associated with weed riparian vegetation species can
be computed by exploiting Leaf Area Index (LAI). to estimate the so-called bulk drag
coefficient CD [6,7]. The implications of the interaction between flow and vegetation in
vegetated water bodies on their main fluid dynamic features have been largely investigated
in many experimental and numerical analyses by schematizing riparian plants as natural-
like elements [8–11].

Among other methods associated with remote sensing data, digital processing of
images acquired through Unmanned Aerial Vehicles (UAV) represents a promising tool

Water 2021, 13, 1333. https://doi.org/10.3390/w13101333 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7693-4107
https://orcid.org/0000-0002-4579-5682
https://orcid.org/0000-0003-4881-4495
https://orcid.org/0000-0002-9536-4741
https://doi.org/10.3390/w13101333
https://doi.org/10.3390/w13101333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13101333
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13101333?type=check_update&version=1


Water 2021, 13, 1333 2 of 19

for mapping the most relevant riparian vegetation parameters within vegetated water bod-
ies. UAV-based multi and hyperspectral images have been largely applied in many forestry
and precision agriculture studies [12–16]. However, a methodology for predicting the main
hydrodynamic features of real vegetated water bodies based on these approaches is still an
open research window. Indeed, most previous studies in real-scale riparian vegetation and
hydrodynamic conditions have analyzed riparian plants by directly collecting them from
the field, as reported by Tinoco et al. [3] and Västilä and Järvelä [4].

The present study represents one of the first efforts in estimating and validating bulk
drag coefficients CD [4] induced by 9–10 m high Arundo donax stands, a very common
riparian species [17], covering an abandoned drainage channel, based on vegetative flow
resistance model proposed by Västilä and Järvelä for rigid plants [4] through the digital
processing of UAV-acquired multispectral images. As shown by Tinoco et al. [3] and
Etminan et al. [18], when dealing with real vegetated water bodies, vortices and mixing
production associated with riparian vegetation stands depends on the only bulk drag coef-
ficients CD, which consequently affects the environmental quality of both terrestrial and
aquatic ecosystems within. Thus, to predict the effects of riparian vegetation stands mor-
phometry on the hydrodynamic behavior of real vegetated streams, the knowledge of
real-scale bulk drag coefficients CD is essential.

First, the study case is presented in terms of ecohydraulic and phenological conditions
of the examined riparian vegetation species. Streamwise velocity components and ground-
based Leaf Area Index (LAI) measurements were carried out at 30 cross-sections uniformly
spaced along the examined vegetated drainage channel by means of a propeller-type
OTT® C31 Universal Current Meter (OTT HydroMet, Kempten, Germany) and LI-COR®

LAI2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, Nebraska, USA) device, respectively.
The ground-based LAI measurements of the portion of Arundo donax stands effectively
interacting with water flow (hereinafter indicated as LAI*) were then correlated to UAV-
based Normalized Difference Vegetation Index (NDVIUAV) maps of the examined riparian
stands to obtain LAI* maps of the whole channel, whose values are hereinafter indicated as
LAI*UAV. In detail, 10 ground-based LAI* measurements were randomly taken across each
of the 30 examined cross-sections, and the NDVIUAV values corresponding to the pixel
located at the same measuring points were then compared to them.

It was demonstrated that the uncertainties associated with LAI*UAV of the examined
9–10 m high Arundo donax stands based on digital processing of multispectral images do
not heavily affect the distribution of CD predictions along the examined vegetated drainage
channel, being NDVI a very robust predictor of LAI*.

2. Materials and Methods
2.1. Study Area

The study area examined in the present study (40◦55′55′′ N–14◦30′32′′ E) is a 115.5 m
long and 5.50 m wide abandoned vegetated drainage channel, with a slope approximately
equal to 0.5%, colonized by 9–10 m high Arundo donax stands, most known as giant reed,
located in Nola (Campania, Southern Italy), as displayed in Figure 1.

Three experimental field campaigns were carried out in the study area, two of them
devoted respectively to flow velocity measurements and ground-based Leaf Area In-
dex measurements of Arundo donax stands’ portion effectively interacting with flow (LAI*)
at 30 channel’s cross-sections, whilst the third was devoted to Normalized Difference
Vegetation Index (NDVI) mapping derived by UAV-acquired multispectral images of the
examined riparian plants.

The examined channel serves a densely urbanized area, representing both a key
infrastructure for mitigating pluvial and flash floods and offers important ecosystem
services [1,2]. It is uniformly 2 m deep and thus the 9–10 m high Arundo donax stands were
emergent. Figure 2a gives a view of the examined drainage channel, while Figure 2b,c
show respectively its upstream and downstream cross-sections.
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Figure 1. Study area overview (40◦55′55” N–14◦30′32” E, Nola—Southern Italy). The yellow ellipse
indicates the vegetated drainage channel fully covered by 9–10 m high Arundo donax stands. The
yellow arrow indicates the flow direction.

Figure 2. (a) Aerial view of the vegetated drainage channel fully covered by 9–10 m high Arundo
donax stands, indicated by the yellow ellipse, and drainage channel’s retaining wall. (b) Upstream
and (c) Downstream cross-sections of the vegetated drainage channel, respectively indicated by
dashed and continuous white ellipses. The yellow arrow indicates the flow direction.

As depicted in Figure 3, LAI* and flow velocity measurements were carried out at
30 cross-sections, uniformly distributed along the vegetated drainage channel examined in
the present study, located 3.85 m apart. In detail, 10 LAI* measurements were randomly
carried out at each cross-section for a total of 300 data, while the streamwise velocity mea-
surements were performed at 27 measuring points belonging to an experimental measuring
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grid arranged to calculate the flow average velocity U. It was then possible to estimate a
discharge of 0.15 m3 s−1.

Figure 3. Aerial view of the 30 cross-sections of the vegetated drainage channel fully covered by
9–10 m high Arundo donax stands, located 3.85 m apart. The yellow arrow indicates the flow direction.

The three experimental set-ups adopted here to perform streamwise velocity compo-
nents u, LAI*, and NDVI measurements are described in the next sections.

2.2. Experimental Hydrodynamic and Riparian Vegetation Measurements
2.2.1. Hydrodynamic Response of Arundo donax Stands

Hydrodynamics of vegetated streams is highly affected by the different responses
of the natural elements involved in the real-scale interaction between water flow and
riparian plants to water flow [4,6]. As shown in Figure 4, rigid and emergent reed—or giant
reed—stands covering vegetated open channels are subjected to two forces [6,7] according
to the well-known cantilever beam theory [19]: weight force W, proportional to gravity
acceleration g and drag force FD, proportional to flow average velocity U.

Under these physical assumptions, flow average velocity U can be expressed as
follows [7,20]:

U =

√
2g

CDLAI∗
RJ, (1)

where CD is the so-defined bulk drag coefficient [4], to which corresponds the flow average
velocity U of each Arundo donax stand analyzed here, LAI* is the Leaf Area Index of
the portion of Arundo donax stands effectively interacting with flow, R is the hydraulic
radius defined by the ratio between flow area wetted perimeter at each cross-section, and
J is the slope of the energy line, equal to the channel’s bed longitudinal slope under the
hypothesis of uniform flow conditions. Thus, by applying the model proposed by Västilä
and Järvelä [4], it is possible to compute the corresponding values of bulk drag coefficients
CD as follows:

CD=
2g

U2LAI∗
RJ. (2)
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Figure 4. Hydrodynamic scheme of rigid emergent Arundo donax stands interacting with water flow
in vegetated streams: h and hv are the water level and the height of the stand, respectively. The
yellow arrow indicates the flow direction. Adapted from Lama and Chirico [7] and Lama [20].

2.2.2. Experimental Flow Average Velocity U Measurements

Streamwise velocity components u (m s−1) were measured at each of the 30 channel’s
cross-sections through a propeller-type OTT® C31 Universal Current Meter, as depicted in
Figure 5a. The experimental measuring grid was composed of 27 points spaced 0.50 m in
both vertical and spanwise (or horizontal) directions, as shown in Figure 5b.

Figure 5. (a) Scheme of the measuring grid composed of 27 points at each cross-section (violet mea-
suring points) employed for the experimental velocity measurements. (b) Propeller-type OTT® C31
Universal Current Meter device, sliding on a vertical round wading rod (red bidirectional dashed
arrows). The yellow arrow indicates the flow direction.
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Flow area and wetted perimeter of each cross-sections were assessed by considering
the real channel’s bed topography. Flow average velocities U were then computed once
the experimental cross-sectional u distribution at each examined channel’s cross-section
was known.

2.3. Experimental Measurements of Riparian Vegetation Indices
2.3.1. Arundo donax Stands’ LAI* Measurements

LAI analysis is representative of riparian vegetation growth and health, widely em-
ployed in the analysis of climate change effects on flooding hazards, as reported in many
works on the protection and improvement of ecological services in both natural and man-
made environments [21–25]. In the present study, a total of 300 LAI* measurements were
performed at 30 cross-sections, spaced 3.85 m along the vegetated drainage channel under
diffusive sky conditions to reduce the effect of sunlight fluctuations. As displayed in
Figure 6a, ten LAI* measurements were randomly retrieved at each cross-section and then
used for further statistical analyses, according to an experimental methodology introduced
by Lama et al. [26]. In their research, the Authors analytically quantified the uncertainty
in indirect LAI measurements and its impact on the accuracy of flow velocity estimations
based on the vegetative flow resistance model proposed by Västilä and Järvelä [4].

Figure 6. (a) Experimental scheme of LAI* measurements: G1 and G2 are respectively the measuring
positions located above the channel’s retaining wall and above water level (purple circles), while ∆* is
the portion of Arundo donax effectively interacting with flow (purple line), to which corresponds LAI*.
(b) Sunlight calibration of LI-COR® LAI2000 Plant Canopy Analyzer device and (c) ground-based
LAI measurements at position G1 associated with the channel’s upstream cross-section.

After a preliminary phase of signal calibration indicated by Figure 6b, the 150◦ wide
optical sensor of LI-COR® LAI2000 Plant Canopy Analyzer device measured the rate of
sunlight transmitted through the Arundo donax canopy corresponding to the portion of
vegetation going from the top of the channel’s retaining wall (position G1 in Figure 6a) to
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water table (position G2 in Figure 6a), indicated as ∆*. It was computed as the difference
between the ground-based LAI measurements carried out at position G1 and those per-
formed at position G2. An example of ground-based LAI measurements carried out at
position G1 is reported in Figure 6c.

2.3.2. UAV-Acquired Multispectral Images

In the present work, UAV-based images of the examined vegetated drainage channel
were acquired through a MicaSense® RedEdge-M (AgEagle Sensor Systems Inc., MicaSense,
Seattle, WA, USA) multispectral camera [24,25] mounted on a Fimi® Xiaomi MiDrone
4k multirotor (Fimi Robot Technology Co., Ltd., Shenzen, China) device and supported by
GPS + compass and downwelling sun sensors, as shown in Figure 7a.

Figure 7. (a) View of the UAV employed in this study. Multispectral camera, downwelling sun
sensor, and GPS + compass sensor are here indicated by yellow, pink, and blue arrows, respectively.
(b) MicaSense® RedEdge-M multispectral camera, fixed as payload on the selected UAV. (c) Reference
calibration panel employed for calibrating the multispectral camera to the field sunlight conditions
and (d) Ground control point overview (orange arrow).

A total of 1640 multispectral images were taken on average for each experimental
UAV flight. After data collection in the field, the acquired images were then digitally
post-processed.

The radiometric calibration of the MicaSense® RedEdge-M multispectral camera’s
sensors (Figure 7b) was carried out by taking a single multispectral photograph to a
reference calibration panel (Figure 7c) before and after each UAV flight. In detail, the
radiometric calibration was performed by considering the experimental sunlight conditions
in the field, based on the known panel wavelength value, as described by Mamaghani
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and Salvaggio [27] and Hakala et al. [28], among others. As shown in Figure 7d, since the
experimental field is in a highly urbanized area, Ground Control Points (GCP) were taken
either by taking coordinates of known fixed points (building corners, street corners, and so
on) or by using GCPs placed in the experimental area. All GCPs have known coordinates
recorded by a differential real-time kinematics (RTK) GPS [29].

In the present study, digital image and orthorectification processing were performed
according to the following workflow:

1. Import photos and manually remove image outliers: photos taken before and during
UAV take-off, during UAV landing, photos outside the boundaries of the experimental
vegetated drainage channel;

2. Conversion of geotagged images (WGS84) GPS coordinates to match GCPs coordi-
nate system;

3. Photo alignment and import GCPs list (also include the accuracy of 3D coordinates
X/Y/Z);

4. Verify and link markers to images. It was feasible to mark each GCP in 3–6 images
since the acquired images and markers have the same coordinate reference system;

5. Sparse point cloud cleaning, removing all points with reprojection error [30] higher
than 1, camera alignment optimization, and dense cloud building;

6. Digital Elevation Model (DEM) building from dense cloud and orthomosaic based
on DEM.

MicaSense® RedEdge-M multispectral camera’s most relevant parameters and their
ranges are summarized in the next Table 1.

Table 1. Main parameters of the MicaSense® RedEdge-M multispectral camera employed in the
present study, and ranges.

Parameters Ranges

Weight 170 g (Including DLS)
Dimensions 9.4 cm × 6.3 cm × 4.6 cm
Power 4.2 V–15.8 V, 4 W nominal, 8 W peak
Spectral Bands Narrowband: Blue, Green, Red, Red Edge, Near IR
Ground Sample Distance 8.2 cm pixel−1 (per band) at 120 m–400 ft AGL
Max Capture Speed 1 capture per second (all bands), 12-bit RAW

The UAV device employed here to acquire and then digitally process the multispectral
images of the 9–10 m high Arundo donax stands covering the examined vegetated drainage
channel is shown in Figure 8a. Each experimental UAV flight plan was set to obtain the
highest quality of image acquisition in terms of the camera sensors’ coverage, as displayed
in Figure 8b.

In the present study, the UAV flight plan was set to an altitude and a flight speed
equal respectively to 20 m and 3 m s−1, this way it was possible to obtain an average
overlap between two consecutive multispectral photos of 75% both vertically (along the
flight direction) and horizontally (orthogonal to the flight direction) as well as minimize
the influence of wind turbulence generated by UAV rotors on the examined Arundo donax
stands. All the multispectral images acquired here were then processed via a structure-
from-motion algorithm to rectify, stitch, and assemble the orthomosaic of the vegetated
drainage channel [31,32].

2.3.3. Arundo donax Stands’ NDVI Map

UAVs are considered as a fast way to assess riparian vegetation indicators such as
riparian stands LAI in hardly accessible areas like abandoned vegetated streams. The
digital processing of multispectral images acquired through UAV devices represents a
useful tool to remotely observe the growth in riparian vegetation cover and, therefore, the
hydrodynamic behavior of vegetated open channels colonized by riparian stands in natural
phenological conditions.
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Figure 8. (a) UAV (yellow ellipse) and (b) experimental flight plan overviews. The yellow arrow
indicates the flow direction.

The first outcome of this research is represented by the direct correlation between
NDVI derived by UAV-acquired multispectral images (NDVIUAV) and LAI* measurements
of the examined riparian vegetation cover, obtained by adopting the same methodology
reported in previous precision agriculture studies on UAV-based crop production indi-
cators [33–35]. Riparian vegetation NDVIUAV maps are extremely useful for flooding
risk management in natural and urban vegetated areas. In detail, NDVIUAV estimations
of the 9–10 m high Arundo donax stands were easily derived by digitally processing UAV-
acquired multispectral images by applying the following equation obtained on the basis of
the spectral reflectance wavelengths ranging between 680 and 785 nm [36,37]:

NDVIUAV = (ρNIR − ρRED)/(ρNIR + ρRED), (3)

where ρNIR and ρRED are the experimental spectral reflectance measurements of the exam-
ined Arundo donax stands acquired by the multispectral camera’s sensors in the Red Edge
and Near-Infrared regions, respectively. The typical values of the five spectral bands and
center wavelength acquired by the multispectral camera’s sensors are shown in Table 2,
where the Band Number and corresponding names, the center of each spectral band
in terms of Wavelength (nm), and the Bandwidth (nm) in terms of Full Width at Half
Maximum (FWHM) are summarized [38,39].
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Table 2. Spectral bands acquired by the multispectral camera’s sensors and features: Band Num-
ber, Band Name, Center Wavelength (nm), and Bandwidth (nm) in terms of Full Width at Half
Maximum (FWHM).

Band Number Band Name Center Wavelength
(nm)

Bandwidth FWHM
(nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Red Edge 717 10
5 Near IR 840 40

2.3.4. Arundo donax Stands’ LAI* Map

In the present work, the LAI* map associated with the 9–10 m high Arundo donax stands
covering the examined vegetated drainage channel was obtained based on a comparison
performed between NDVIUAV map and LAI* measurements, both corresponding to the
same 10 measuring pixels randomly distributed across each of the 30 channel’s cross-
sections, for a total of 300 pairs of data.

NDVIUAV values were computed from a multispectral orthomosaic created in Agisoft®

Metashape Pro v1.6 software via raster algebra operations to stitch together all UAV-
acquired multispectral images were aiming at creating a single digital image of the exam-
ined vegetated drainage channel. The 300 pairs of data were randomly split into a training
dataset composed of 200 pairs of data, employed to calibrate the linear regression and a test
dataset composed of 100 pairs of data, to validate it, as suggested by Arsenault et al. [40],
among others.

2.4. Bulk Drag Coefficients CD Predictions

Following Equation (2), the average LAI* referred to each of the 30 examined channel’s
cross-sections and those estimated by applying the linear regression law obtained between
NDVIUAV and LAI* were employed to calculate the cross-sectional bulk drag coefficients
CD, respectively indicated as CD ob. and as CD es.. By directly comparing them, it was
possible to analyze the impact of the uncertainty in UAV-based LAI* (LAI*UAV) values on
the real-scale bulk drag coefficients CD predictions associated with the vegetated drainage
channel examined in this study, to assess the reliability in employing them in more complex
ecohydraulic numerical models of real vegetated streams fully covered by riparian weed
species as Arundo donax stands at field scale.

3. Results
3.1. Flow Velocity Measurements

For the sake of brevity, Figures 9a and 9b show the experimental cross-sectional distri-
butions of streamwise velocity components u (m s−1) at respectively the only upstream
and downstream cross-sections of the vegetated drainage channel fully covered by 9–10 m
high Arundo donax stands.

In Table 3 are summarized the experimental values of flow area A (m2), wetted
perimeter χ (m), hydraulic radius R (m), and flow average velocity U (m s−1) computed at
the same 30 channel’s cross-sections selected for comparing LAI* and NDVIUAV.

It is important to highlight here that UAV-acquired multispectral images refer to the
reflectance properties of the upper portions of Arundo donax stands’ canopy and stems,
which are necessarily correlated to the lower stands ’ portion effectively interacting with
water flow dynamics, due to phenological and morphological processes, inevitably affected
by the whole Arundo donax growth [42].
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Figure 9. Experimental cross-sectional distributions of streamwise velocity components u (m s−1) at
the vegetated drainage channel’s (a) upstream and (b) downstream cross-sections.

Table 3. Values of the hydraulic parameters of the 30 measuring channels’ cross-sections: flow area A
(m2), wetted perimeter χ (m), hydraulic radius R (m), and flow average velocity U (m s−1).

Cross-Section A (m2) χ (m) R (m) U (m s−1)

1 8.695 8.120 1.071 0.01725
2 8.720 8.060 1.082 0.01720
3 8.705 8.115 1.073 0.01723
4 8.730 8.240 1.059 0.01718
5 8.656 8.145 1.063 0.01733
6 8.673 8.116 1.069 0.01730
7 8.689 8.148 1.066 0.01726
8 8.711 8.161 1.067 0.01722
9 8.654 8.162 1.060 0.01733
10 8.667 8.116 1.068 0.01731
11 8.734 8.129 1.074 0.01717
12 8.697 8.123 1.071 0.01725
13 8.710 8.144 1.069 0.01722
14 8.630 8.112 1.064 0.01738
15 8.724 8.130 1.073 0.01719
16 8.686 8.126 1.069 0.01727
17 8.724 8.115 1.075 0.01719
18 8.710 8.120 1.073 0.01722
19 8.700 8.112 1.072 0.01724
20 8.600 8.134 1.057 0.01744
21 8.670 8.171 1.061 0.01730
22 8.768 8.152 1.076 0.01711
23 8.713 8.114 1.074 0.01721
24 8.555 8.105 1.056 0.01753
25 8.668 8.130 1.066 0.01731
26 8.668 8.160 1.062 0.01731
27 8.665 8.117 1.068 0.01731
28 8.760 8.120 1.079 0.01712
29 8.631 8.128 1.062 0.01738
30 8.650 8.130 1.064 0.01734
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Figure 10. UAV-based (a) Canopy Height Model (CHM) and (b) Normalized Difference Vegetation
Index (NDVIUAV) maps of the 9–10 m high Arundo donax stands. The yellow arrow indicates the
flow direction.

A complete analysis of the interplay between all the biological components of green
volumes involved in these processes is out from the purposes of this study and will
be examined more in detail in further works on riparian Arundo donax and Phragmites
australis stands’ growth. Consequently, the further comparative analysis can be considered
as properly representative of the real phenological evolution of the examined riparian
vegetation species.

3.2. NDVIUAV and LAI* Correlation: Calibration and Validation

As reported in Figure 11, in order to detect the degree of dependence between LAI* and
NDVIUAV and to establish a possible correlation between the two experimental vegetation
indices corresponding to the examined 9–10 m high Arundo donax stands, a linear regression
analysis was performed on 300 pairs of data recorded at 30 channel’s cross-sections, based
on split sampling validation method [41]. In detail, 200 data were analyzed for the training
set to calibrate the regression linear law, and the remaining 100 data were employed for
validating it.
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Figure 11. Linear law between NDVIUAV and LAI* referred to the 30 channel’s cross-sections, for a
total of 300 pairs of data. The Training (200 pairs of data) and Test datasets (100 pairs of data) are
indicated here by yellow unfilled circles and purple unfilled diamonds, respectively.

A high correlation existing between NDVIUAV values and LAI*Gm ones was observed
in Figure 11, testified by a coefficient of determination R2 equal to 0.77. This demonstrates
that NDVIUAV represents a good predictor for LAI* measurements in vegetated flows fully
covered by senescent Arundo donax stands. The regression model obtained here is a linear
function with an angular coefficient equal to 0.94 and a low intercept equal to 0.37. Based
on a test set composed of 100 pairs of data, the validation of the linear regression confirmed
the high level of correlation existing between the two riparian vegetation indices analyzed
here (R2 = 0.75).

The LAI* values obtained by applying the linear law displayed in Figure 11 to all the
NDVIUAV map pixels are indicated as LAI*UAV, and the corresponding map is presented in
Figure 12 to visualize LAI*UAV distribution along the whole vegetated drainage channel
fully covered by 9–10 m high Arundo donax stands.

3.3. Comparison of Bulk Drag Coefficients CD Predictions

Figure 13 reports a comparative analysis performed between bulk drag coefficients CD
predictions obtained by employing respectively ground-based LAI* (CDob.) and LAI*UAV
estimations (CDes.) of the examined Arundo donax stands. A linear regression analysis was
carried out to easily evaluate the impact of the performance of UAV-based multispectral im-
agery on CD predictions accuracy, based on the vegetative flow resistance model proposed
by Västilä and Järvelä for rigid and emergent riparian stands [4].
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Figure 12. LAI*UAV map of the vegetated drainage channel fully covered by 9–10 m high Arundo
donax stands. The yellow arrow indicates the flow direction.

Figure 13. Comparison of bulk drag coefficients obtained through average LAI* and LAI*UAV

estimations at the 30 channel’s cross-sections, respectively indicated as CDob. and CDes..

It emerges from the comparative analysis shown in Figure 13 that CDob. and CDes. as-
sume values extremely comparable, almost identical, as indicated by a very high coefficient
of determination R2 = 0.98.
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4. Discussion

UAV-based remote sensing allows recording riparian vegetation dimensional traits in
areas whose access is difficult. UAVs are widely used in precision agriculture and forestry
studies and applications [43,44] to calculate and then mapping riparian vegetation indexes.
Their use can be extended to the prediction LAI in areas where it is not possible to easily
harvest riparian vegetation samples, such as abandoned vegetated open channels. The
outcomes of this study showed a good correlation between ground-based LAI measure-
ments and NDVI derived by digital processing of UAV-acquired multispectral images. The
outcomes in terms of LAI distributions agree with the main findings of the study carried
out by Fagnano et al. [45] who experimentally recorded LAI of Arundo donax stands during
their whole phenological evolution for one year.

The accuracy of LAI estimations of the portion of 9–10 m high Arundo donax stands
effectively interacting with water flow, derived from the NDVIUAV map obtained from
UAV-acquired multispectral image is highly comparable with the outcomes of the study
proposed by Tan et al. [46], which analyzed different types of wheat plants at distinct
growth and foliation stages. Indeed, they obtained values of coefficients of determination
R2 equal to 0.78, 0.77, and 0.76 for respectively erectophile, middle, and planophile samples,
equal to that observed here (R2 = 0.77), corresponding to a phenological condition of
Arundo donax senescence. The main assumption made here in terms of ground-based LAI
estimations leads to the morphological and phenological correlations existing between the
upper riparian canopy and lower stems. This issue can be overcome in future studies by
accurately monitoring the 3D morphometry of Arundo donax stands’ covers at field scale
in many different vegetated streams in natural conditions.

It was observed that bulk drag coefficients predictions are independent, or very little
dependent, on the uncertainty in LAI* derived by digital processing of UAV-acquired multi-
spectral images of Arundo donax stands covering the examined vegetated drainage channel,
indicating that UAV-based NDVI is a suitable parameter to be employed in the prediction
of bulk drag coefficients of senescent riparian Arundo donax stands. It is extremely inter-
esting since, as reported in the studies performed by Luhar and Nepf [47] and Zhang and
Nepf [48], an accurate prediction of the actual bulk drag coefficients is crucial for analyzing
the effects of the combination of stems reconfiguration and plants canopy sheltering on
the mean and turbulent hydrodynamic behavior of real vegetated water bodies. Differently
from the present study case characterized by the massive presence of invasive and senes-
cent Arundo donax stands, Zhang and Nepf [48] have examined experimental data retrieved
under a condition of patchy riparian vegetation, which inevitably limited the reduction of
bulk drag coefficients CD compared to the experimental field condition of total riparian
vegetation abandonment observed in our real-scale analysis.

5. Conclusions

Bulk drag coefficients CD associated with a real vegetated drainage channel fully
covered by 9–10 m high Arundo donax stands were predicted and validated here, based
on the LAI map derived by NDVI assessments obtained through digital processing of
UAV-acquired multispectral images of the riparian vegetation cover. NDVIUAV map values
were correlated to ground-based LAI measurements of Arundo donax portion effectively in-
teracting with flow to obtain LAI* maps to estimate the bulk drag coefficients CD associated
with 30 cross-sections identified along the examined vegetated drainage channel. It was
possible applying the predictive model of vegetative flow resistance proposed by Västilä
and Järvelä [4] once the experimental values of the main hydraulic and hydrodynamic
features measured at the same channel’s cross-sections [49–52] were known. The strong
capability of UAV-acquired multispectral imagery in estimating the bulk drag coefficients
CD of the examined vegetated drainage channel fully covered by 9–10 m high Arundo donax
stands was then demonstrated by a comparative analysis performed between CD prediction
assessed by considering the average observed and UAV-based LAI measurements at the
same 30 channel’s cross-sections, respectively.
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Also, it was demonstrated here that NDVI data recordings based on UAV-acquired mul-
tispectral images can be exploited to develop further methods for predicting actual LAI*
or other riparian and aquatic vegetation indices, such as those based on deep learn-
ing/machine learning algorithms, already widely validated in many precision agriculture
and rainfall prediction studies [53–56]. Further studies are certainly undergoing to develop
these algorithms [57,58] and making even faster the assessment of the most relevant changes
in water flow dynamic features of vegetated open channels associated with different ripar-
ian vegetation species, under many distinct ecohydraulic conditions, by also analyzing the
key bio-mechanical and morphometric properties of riparian stands at micro-scale [59–61].

The results of this study represent a satisfactory advance in the monitoring of riparian
vegetation dimensional properties in the field, particularly in real-scale models and simula-
tions of vegetated flows to be employed as supporting tool for the proposal of the most
appropriate mitigating scenarios of flooding events in natural and urban areas surrounding
vegetated water bodies [62–67].
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