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Abstract: Following a previous research carried out on the same site, this paper presents the update
of the Mg2+ based method for the estimation of Pertuso Spring discharge, located in Central Italy.
New collected data confirmed the validity of the proposed model and the conservative behaviour of
Mg2+ for groundwater related to the Pertuso Spring aquifer. Further analysis allowed to obtain a
local linear relationship between magnesium concentration and total spring discharge (including
exploitation rate), regardless of the mixing model proposed with the Aniene River. As regards two
samples which fall out of the linear relationship and could have been detected as “outliers”, more
in-depth data processing and sensitivity analyses revealed that the lowering in magnesium, at equal
discharges, is determined by the appearance of the quick-flow component, less mineralized and
related to storm events. Results showed that under specific conditions, related to the absence or
presence of previous intense rainfall events, Mg2+ could be effectively a useful tracer for separating
spring conduit flow (overflow) from diffuse flow (baseflow) within the karst aquifer.

Keywords: karst spring; aquifer; magnesium; environmental tracer; discharge; baseflow; overflow;
mass balance model

1. Introduction

Many areas and cities all over the world are water-dependent on karst aquifers, due
to the usual exploitation of their springs for water supply [1–3]. About one quarter of the
global population is completely or partially dependent on drinking water stored in karst
aquifers, which are now affected by climate change effects [2,4–7].

Their hydraulic characteristics are quite different from other aquifer types. A karst
formation constitutes a three-dimensional hydrogeological basin, which involves both
subsurface and surface hydraulic mechanisms [8–11].

Due to the dissolution process involving carbonate rocks, they present a complex
conduit network within a low permeability fractured limestone volume. This process,
called karstification on a large scale, leads to the development and increasing of conduit
network size within the aquifer, where groundwater often drains very quickly to the karst
spring outlet [12–14]. The high heterogeneity of the rock matrix implies high flow velocities
(up to some m/s), and high discharge springs (up to some tens of m3/s) [15].

Hence, in karst aquifers, a Darcy law approach is usually not suitable [7] except for
restricted ranges in the latest part of the recession limb where groundwater flow velocity is
much lower due to the drainage from minor fissures and soil pores [2,12,16].

Karst springs shows duality of discharge conditions: low and continuous discharge
during dry periods when the drainage occurs through the matrix and high discharge
with high temporal variability during intense recharge events, when groundwater flows
prevalently through the conduit system. Nowadays, challenges faced by researchers
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generally deal with karst aquifer quantitative and qualitative issues: climate change impact
on karst water resource availability, pollution and vulnerability assessment, anthropogenic
pressures and sustainable water management [17–23].

Several approaches coupled hydrological and geochemical models to understand karst
processes and subsurface hydrology, especially for karst conduit-systems. Sometimes these
approaches are also useful to fill lack of data, correlating physical parameters (discharge)
to the chemical or isotopic characteristics of the spring water [24–28]. In fact, karst springs
discharge is not easily measurable by standard techniques or conventional instruments,
even due to the extremely high variability of the parameter. Moreover, in case of extreme
rainfall events, overflow springs are activated when the conduit carrying capacity is
exceeded and depending on the conduit system geometry [29,30]. In this case, total
discharge may be underestimated.

The difficulty in having karst spring discharge data and defining a single fixed cross-
section, related both to the activation of different circulation mechanism of groundwater
within the aquifer both to lack of in-depth monitoring, implied the increasing of arti-
ficial and environmental tracer application to assess karst spring discharges, different
water sources and pathways, groundwater residence times and other hydrogeological
processes [27,31–36].

For everything mentioned so far, differently from alluvial aquifers, karst aquifers have
characteristics usually studied at a single point, which is the spring outlet. This is due to
the different approach for assessing groundwater flowing. From a certain point of view,
in the case of karst aquifer, the high spatial heterogeneity is accepted, in exchange for
concentrating efforts on the continuous monitoring of karst spring, which is the only point
that focuses all the information of the aquifer, including its uncertainties [11,13,37].

In some cases, thanks to the use of multiparametric probes, it is possible to acquire
a huge number of data at any time scale. This allows recording any trend variation,
even instantaneous, resulting from short-term and high intensity rainfall inputs. Some
physical parameters, such as temperature (T) or electrical conductivity (EC), continuously
monitored as natural tracers, can provide information on karst aquifer behaviour. The
arrival of fresh rainwater at a karst spring is frequent after a storm and causes a changing
in water temperature and often a decreasing in EC [37–42], whereas in other cases piston
flow mechanisms or the expansion of the catchment feeding the spring may change this
behaviour [42,43].

Other environmental tracers, as major ions and isotopes, which differently from
the artificial ones do not require injection points, can be naturally detected sampling
spring water at different times during the hydrological year and carrying out subsequent
laboratory analyses [27,31,32,40–46]. For example, in karst setting with predominance of
limestone reservoirs, the Mg2+/Ca2+ ratio is usually used to assess groundwater residence
time, whereas in dolomitic geological settings the lower hydraulic conductivity of rocks,
compared with that of limestone, favours the Mg2+ concentration increasing, as the water–
rock interaction is longer.

Mass balance techniques are very frequent in hydrogeological applications, when
there is a high difference in concentration compared to precipitation water and the specific
component shows a nearly conservative behaviour in the process, implying that the tracer
chemical variation is due only by the simple physical dilution process. For example, the
mass balance approach is widely used to assess different water sources rates, separating
base flow and quick/storm flow [47–51], even if a recent study showed that water concen-
trations in rivers changes due to new contributions related to the expansion of hydrologic
connectivity during stormy events [52].

In some cases, hysteresis plots of Mg2+/Ca2+ ratios have been successfully used
to describe karst spring discharge characteristics and to better distinguish conduit dis-
charge (related to Ca) from diffuse one (related to Mg) [53]. Similar interesting plots have
been presented for other parameters such as EC, Dissolved Oxygen and temperature,
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showing different phases and flow dynamics in the response of karst spring during the
storm event [24].

The use of environmental tracer, as well as separating spring hydrographs, increased
also in setting-up mixing models whose aim is to identify end members and assess relative
contributions in wider and more complex systems, such as a stream water chemistry change
due to the mixing with spring water (groundwater-surface water interaction). In karst
settings, Magnesium and Calcium as tracers provided significant results in hydrogeological
analysis of springs, as well as lakes and doline basins [33]. In particular, Mg2+ has already
been used as a conservative tracer for spring discharge evaluation in several case studies,
where mass balance technique was applied at the confluence of two streams [54,55] or at
the confluence of spring and stream water [47].

Following a previous research carried out on the same site [47], this paper presents the
update of the Mg2+ based method for the estimation of Pertuso Spring discharge, located
in Central Italy. Indeed, this tracer is useful due to its nearly conservative behaviour in
karst, confirmed by the previous experiences and applications mentioned before. Mass
balance technique has been applied to Pertuso Spring discharges using Mg2+ contents. Two
different mixing models have been set up: the first one for the mixing system composed by
Pertuso Spring groundwater and Aniene River surface water, the second one to separate
spring conduit flow from diffuse flow within the aquifer. The novelty is represented by
the latter one, which allowed identifying and estimating the rate of spring overflow as a
deviation from the linear trend of baseflow.

2. Geological and Hydrogeological Framework

The study area is in the Latium Region (Central Italy), in the Upper Valley of the
Aniene River, which is the second most important river that crosses the city of Rome [56].
The Pertuso Spring, together with Radica, Fonte del Forno and Acqua Santa Springs, is
the main water feeding of the river, with high discharges (up to 4–5 m3/s). The spring
exploitation for drinking purpose is going to be enhanced by ACEA (the water supply
agency of Rome), with a new water pipeline towards the southern Rome area. The water
outlet is next to the boundary between the carbonate hydrogeological basin, mostly made
of limestone, and less permeable geological formations (Figure 1).

The entire area is characterized by a highly fractured Cretaceous rocks, with a karst set-
ting presenting karren, sinkholes, and other karst forms [57]. On the carbonate rocks, com-
posed by the alternation of granular limestone and dolomite layers, there are some rather
limited areas where Quaternary alluvial deposits, pudding stone, and clay outcrop [58,59].

Dissolution in karst conduits causes groundwater flowing very quickly towards
the spring. Conduits network is complex, not allowing to identify underground water
pathways throughout the limestone matrix. The rapid increasing of Pertuso Spring flow is
frequent and usually related to stormy rainfall events, doubling, or even tripling the spring
discharge within few tens of hours. Nevertheless, the aquifer shows a remarkable baseflow
component, with a spring depletion volume of about 25 Mm3/year [20].

The hydrogeological basin of the spring extends for approx. 50 km2 and is mostly
composed by limestone, whereas the hydrogeological basin of the upstream springs is
characterized by the presence of only dolomitic rocks (Figure 2).
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3. Materials and Methods
3.1. Instrumentation and Measurements

The activities, carried out during the first phase of the environmental monitoring plan
for the spring catchment work, provided data about one spring (Pertuso) and two cross-
sections of the Aniene River (SW_01 and SW_01), from July 2014 to June 2019. One-time
discharge measurements and water samples collection were carried out during winter and
late spring months, due to the environmental monitoring plan, which initially took into
account only two measurements per year for its first phase (spring and river minimum and
maximum flow periods). The second phase of the plan, during which first catchment works
are going to start, will consider monthly discharge measurements. This allows outlining a
qualitative and quantitative framework of groundwater and surface water in the entire area
during the ongoing project works. The cross sections, in which discharge measurements
have been performed, are placed upstream (SW_01) and downstream (SW_02) the Pertuso
Spring. Discharge assessment was coupled with geochemical analyses on water samples,
collected with the measurements, for a total of 40 water samples analyzed.

Water temperature, electrical conductivity, pH values and dissolved oxygen were
determined in field using HANNA HI9813-6 waterproof handheld meter together with
water samples collection. In laboratory, water samples were filtered through cellulose filters
(0.45 µm), and their major and minor constituents were determined by ion chromatography
(IC) by a 761 Professional IC Metrohm (reliability ± 2%). Bicarbonate (HCO3

−) was
determined by titration with 0.1 N HCl (reliability ± 2%).

In addition, from January 2015 to March 2016, a multiparametric probe was installed
in the spring containment tank, which directly interfaces with a data logger for real-time
recording of hourly data referred to water temperature and electrical conductivity. Data
recorded have been processed later, obtaining an average daily value for each parameter to
compare with daily precipitation data referred to the termo-pluviometric station of Trevi
nel Lazio, a small town located 2 km far from the spring (Table S1—see supplementary
materials).

Precipitation data at Trevi nel Lazio station are free available on the website of Lazio Re-
gion, in the monitoring network section (http://www.idrografico.regione.lazio.it/annali/
index.html).

Twelve (12) discharge measurements were carried out along the Aniene River, both in
SW_01 and SW_02 by the application of traditional current-meter, as well as in the spring
overflow cross section, in which now flows the difference between the total discharge and
the exploited rate (about 0.3 m3/s). According to U.S. Geological Survey (USGS) procedure
and ISO, stream discharge has been calculated as the product of the cross-section area by the
average stream flow velocity in that cross-section, obtained using a current-meter [60–62].

The main equipment needed to measure the stream flow velocity is a SEBA horizontal
axis current-meter F1, having a propeller diameter of 80 mm which, combined with SEBA
Z6 pulse counter, allows one to measure velocity between 0.025 m/s and 10 m/s.

3.2. Mass Balance Model

The geochemical mass balance approach is used to assess mixing between water
coming from different sources. In this paper, starting from Mg2+ contents (C) and measured
discharges of monitoring points (Q), two different mass balance have been used:

• the first one related to the mixing system involving the Pertuso Spring groundwater
(GW) and the Aniene River surface water (SW).

• the second related just to the groundwater of the aquifer feeding the spring, using
typical rainfall concentration values to set up a mixing model and trying to separate
conduit flow (overflow) from diffuse flow (baseflow).

As regards the first case, due to the absence of exchange between GW and SW in the
river upstream and downstream the spring, the SW_02 discharge (Q2), is equal to the sum

http://www.idrografico.regione.lazio.it/annali/index.html
http://www.idrografico.regione.lazio.it/annali/index.html
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of the Pertuso Spring discharge (QP) and the SW_01 discharge value (Q1), represented by
Equation (1):

Q2 = Q1 + QP (1)

The mass balance equation leads to the Equation (3):

Q2C2 = Q1C1 + QPCP (2)

Defining the parameter n as the percentage of Pertuso Spring referred to the total
discharge in the Aniene River at SW_02:

n =
QP
Q2

=
C2 − C1

CP − C1
(3)

Rearranging Equations (2) and (3), Pertuso Spring discharge can be obtained by
Equation (4):

QP = Q1 ×
n

1 − n
(4)

Thanks to the mass balance method, starting from the Mg2+ concentrations at mon-
itoring points and the upstream discharge, we can directly evaluate the Pertuso Spring
discharge calculating n.

With a similar approach, applied only to the total discharge of the spring, it is possible
to distinguish the overflow component (QOF) from the baseflow one (QBF):

QPCP = QOFCOF + QBFCBF (5)

Considering the spring system, Equation (5) is “activated” only when a storm event
occurs. For the rest of the cases, when baseflow is predominant CP is equal to CBF due to
the absence of the overflow component (QOF = 0).

4. Monitoring Results
4.1. Hydrogeochemical Results

Results of hydro-geochemical analyses carried out on GW and SW samples confirmed
the carbonate facies of groundwater, where Ca2+, Mg2+ and HCO3

− represent more than the
80% of the total constituents in water samples. They play a key-role in tracing groundwater
and identifying different dissolution processes and water-rock interactions.

Surface water chemical characteristics, coming from the SW_01 monitoring point, are
related to upstream springs (Ca-Mg-HCO3 facies), where dolomitic rocks outcrop and
show a Mg2+ content, which is more than double, compared to the Pertuso Spring one
(Ca-HCO3 facies).

Water samples, collected in SW_02, downstream of the confluence between Aniene
River and Pertuso Spring presented chemical characteristics which are the result of the
mixing (Table 1).
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Table 1. Mg2+ and Ca2+ ions concentration in monitoring point water samples.

Date

SW_01 Pertuso Spring SW_02

Mg2+

(mg/L)
Ca2+

(mg/L)
Mg2+

(mg/L)
Ca2+

(mg/L)
Mg2+

(mg/L)
Ca2+

(mg/L)

July-2014 23.6 53.4 9.77 48.9 12.8 51.3
November-2014 n.d. n.d. 8.32 51 n.d. n.d.

January-2015 25.2 57.8 9.9 53.3 13 55.6
February-2015 n.d. n.d. 9.2 53.3 n.d. n.d.

May-2015 24.6 53.9 9.3 49 12.2 51.4
December-2015 25.2 56 10.4 51.6 14.7 52.9

May-2016 25.2 56.6 9.53 53.2 12.5 54.6
November-2016 23.8 57.2 9.84 52.2 13.5 54.4

May-2017 24.2 54.7 10.4 49.6 13.9 52
June-2017 22.7 53.4 10.1 49.4 13.7 51.6

December-2017 25.2 56.2 10.7 52.1 15.9 54.9
May-2018 22.3 57.1 8.17 51.1 10.9 52.5

November-2018 25.1 58.6 7.43 58 10.8 59.1
June-2019 24.8 56.6 9.59 52 12.5 54.5

4.2. Pertuso Spring EC Real Time Monitoring Results

Real-time recording of hourly data has been processed to obtain daily values of
parameters as EC, T. Electrical conductivity is the most interesting, showing the spring
depletion mechanism and highlighting the fast response after an intense rainfall event.

In Figure 3, a nine-month time window is represented as an example: the Pertuso
Spring presents a double behavior in groundwater EC change during the hydrological year.
The trend on an annual scale shows a slight fluctuating decrease and increase of EC values
inversely proportional to the trend of spring flow. The minimum of EC is coincident with
the seasonal maximum of spring discharge usually occurring in May.
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water at the outlet point through the karst conduit system.
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4.3. Discharge Measurements and Estimations

For the Environmental Monitoring Plan goals, Aniene River and Pertuso Spring
discharges have been measured during the period July 2014–June 2019, to study the annual
ranging of the parameter before the start of the project works. Pertuso Spring discharges
have been measured in a cross section upstream the confluence with the river. The total
spring discharge (QT) is the sum of this inflowing contribution into the river (QM) with the
exploited rate (QEX) (Table 2).

Small differences between the measured value in SW_02 and the sum of SW_01 and
the spring contributes are due to the intrinsic error of the instrumentation and to the
error of the relief carried out by the operators, both increasing with discharge values
(Table 2). Using the mass balance technique with Mg2+ contents, as explained in Section 4,
the evaluation of the parameter n led to the estimation of spring inflowing discharges
QM (Table 3).

Discharge values of November 2014 and February 2015 were not obtained with
the estimation method due to difficulty in accessing to the sampling points of the river
(Tables 1 and 3). Results show the reliability of the estimation related to the mass balance
method with limited errors, except for May 2016. Nevertheless, the R2 of the dataset is
very high (0.899).

Table 2. Discharge values measured by traditional current-meter method at SW monitoring points
(Q), at Pertuso Spring cross section (QM) and exploited rates (QEX). The sum of QM and QEX is the
total spring discharge QT.

Date
SW_01 Pertuso Spring SW_02

Q (m3/s) QM (m3/s) QEX (m3/s) QT (m3/s) Q (m3/s)

July-2014 0.54 1.91 0.36 2.27 2.45
November-2014 0.35 1.13 0.36 1.49 1.48
February-2015 0.50 1.74 0.36 2.10 2.24

May-2015 0.50 2.25 0.36 2.61 2.75
December-2015 0.28 0.67 0.36 1.03 0.94

May-2016 0.57 1.60 0.36 1.96 2.20
November-2016 0.36 0.73 0.36 1.09 1.13

May-2017 0.27 0.83 0.36 1.19 1.11
June-2017 0.20 0.67 0.55 1.22 0.87

December-2017 0.20 0.20 0.55 0.75 0.41
May-2018 0.69 2.98 0.36 3.34 3.64

November-2018 0.48 2.16 0.36 2.52 2.64
June-2019 0.39 1.62 0.36 1.98 2.02

Table 3. Measured and estimated discharges of Pertuso Spring inflows to the Aniene River (QM).

Date n (-)
Pertuso Spring QM

Measured Estimated

July-2014 0.78 1.91 1.92
January-2015 0.80 1.51 1.61

May-2015 0.81 2.25 2.16
December-2015 0.71 0.67 0.68

May-2016 0.81 1.60 2.44
November-2016 0.74 0.73 1.00

May-2017 0.75 0.83 0.79
June-2017 0.71 0.67 0.53

December-2017 0.64 0.20 0.36
May-2018 0.81 2.98 2.88

November-2018 0.81 2.16 2.04
June-2019 0.81 1.62 1.65
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5. Discussion

Coupling results coming from geochemical analyses and spring discharge measure-
ments, a high correlation between the spring hydrodynamic characteristics and some
physical-chemical parameters, ranging during the hydrological year, is detected. Electrical
conductivity was helpful to clearly mark the difference between diffuse flow and conduit
flow regimes.

Starting from the previous experience in the same study area [47], Mg2+ has confirmed
its nearly conservative behavior.

New data coming from collected water samples confirmed the linear trend with
Pertuso Spring discharges in baseflow conditions, with no substantial lowering of the
correlation degree (R2 = 0.85) (Figure 4).

Dataset updating showed two water samples falling out of the trend line, related to
November 2014 and 2018. The rest of dataset clearly defines a cluster, which falls near
to the trend line. Deviation from the linear trend is comparable with errors related to
chemical analyses (±2%) and discharge measurements (±5%) except for November 2014
and November 2018, as mentioned (Figure 5).

At first considered as outliers, these data actually show a different hydrodynamics-
geochemical mechanism of the aquifer, tracing the fast spring response to storm events.

The hypothesis made is that fast storm water circulation through conduit network does
not allow the dissolution of dolomitic minerals in the intercalations within the limestone
matrix, due to the slower kinetics that would require longer water-rock contact times.

Continuous monitoring showed that the duration of the spring fast response to the
storm impulse ranges from 3 days to 5 days, depending on the magnitude of the event
(Figure 3). In addition, the magnitude of the response is related to the previous baseflow
conditions.

Hence, to verify this assumption, authors processed rainfall data daily recorded before
the date of measurements. The sum of previous 72 h cumulative rainfall data pointed
out that discharge measurements and water samplings in November 2014 and 2018 were
carried out during spring overflow conditions (Table 4).

Table 4. 3-days and 5-days cumulative precipitation recorded at Trevi nel Lazio Rainfall Station
before discharge measurements. The station is the nearest to the Pertuso Spring. Squared rows
highlight intense rainfall events.

Date
Trevi Nel Lazio Rainfall Station

P3-DAYS (mm) P5-DAYS (mm)

22-July-2014 17.6 17.6
20-November-2014 40.8 76.4

28-January-2015 0 7.8
28-February-2015 23.8 26.6

12-May-2015 0 0
03-December-2015 0 0

19-May-2016 24.8 68.6
24-November-2016 0.4 31.8

23-May-2017 0 24.8
24-June-2017 0.2 0.2

04-December-2017 5.4 5.4
28-May-2018 21 31.8

28-November-2018 91.2 110.2
06-June-2019 8.4 39.2
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Figure 4. Mg2+ vs. Pertuso Spring total monthly discharges scatter plot. The double red arrow highlights a very important
drought event occurring in 2017.
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Figure 5. Mg2+ vs. Pertuso Spring total monthly discharges scatter plot with errors related to chemical analyses (±2%) and
discharge measurements (±5%).

Implications are the following:

• Mg2+ content in Pertuso spring water is inversely proportional to total baseflow (BF)
discharges QT. Twelve samples clearly points out a data cluster around a linear trend
with a good correlation (R2 = 0.85).

• Maximum concentrations are detected in the same month (November/December), dur-
ing the minimum seasonal spring flow, except for 2017, when a strong drought event
occurs, forcing the water agency to increase the exploitation rate of the spring (Table 3).

• Large deviations from the trend line are related to the activation of discharge overflow
(OF) component and the consequent mixing between long residence times groundwa-
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ter and runoff water, quickly flowing through karst conduits. In fact, the marked drop
in magnesium content at equal discharges is the result of the mixing.

• Using the mass balance Equation (5) to separate Pertuso Spring BF and OF, it is possible
to set up a model which outlines overflow drifts from the baseflow line. Sensitivity
analysis starts using typical rainfall Mg2+ contents as COF and a couple of values
coming from the linear relationship CBF—QBF. Based on available literature data,
rainfall average Mg2+ content ranges from 0.1–0.3 mg/L in mountain areas [62–67].
The only free parameter (variable) is QOF, related to the rainfall event intensity, giving
different results of CP (Figure 6).

A simplified representation (inspired by Fiorillo et al. [12]) of the overall model is
shown in Figure 6A–C, where Pertuso Spring aquifer mechanism is outlined in different
phases of the hydrologic year, coupled with water Mg2+ concentrations, sketched with
different shades of blue.

Mg2+ concentration allows estimating Pertuso Spring discharges in baseflow condi-
tions and tracing the spring water source, separating baseflow from overflow components
in the total amount of discharge data. In particular, a strong rainfall event occurring during
the final phase of aquifer depletion immediately implies a drop in Mg2+ content, whose
value was enriching due to the longer residence time of groundwater in the carbonate rock.

This is confirmed also by previous studies [53], highlighting the role of antecedent
saturation conditions and the karst spring response to different precipitation events. Elec-
trical conductivity, alone, is often not sufficient to describe these kind of processes, whereas
water Mg2+ content, together with spring discharges, may be a powerful geochemical tool
to evaluate matrix flow (baseflow) rate and distinguish it from the conduit one.
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Figure 6. Schematic representation of Pertuso Spring Mg2+ concentrations and karst aquifer mechanism (modified from
Fiorillo et al., 2014 [12]): (A)—minimum seasonal base flow (B.F.) discharges correspond to higher Mg2+ contents (dark blue);
(B)—maximum seasonal base flow (B.F.) discharges correspond to lower Mg2+ contents (blue); (C)—an intense rainfall event,
occurring during seasonal minimum base flow discharges, activates fast overflow (O.F.) coming from conduits network.
Groundwater-runoff water mixing leads to an immediate sharp drop in Mg2+ contents (light blue).
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6. Conclusions

Chemical mass balance technique has been applied at the confluence of the Pertuso
karst spring with the Aniene River (Central Italy), sampling groundwater and surface
water from three monitoring points, together with discharge measurements. New collected
data confirmed the validity of the proposed model and the conservative behavior of
Mg2+ for groundwater related to the Pertuso Spring aquifer, as already exposed in a
previous research presented by the authors [47]. Further analysis allowed to obtain a local
linear relationship between magnesium concentration and total spring flowrate (including
exploitation rate), regardless of the mixing model proposed with the Aniene River. As
regards the two samples which fall out of the linear relationship and could have been
detected as “outliers”, more in-depth data processing and sensitivity analyses revealed
that the lowering in magnesium, at equal flowrates, is determined by the appearance of
the quick-flow component, less mineralized and related to storm events. Calcium did not
show a particular behavior related to the discharge and was not helpful to characterize the
hydrogeological dynamic of the Pertuso Spring. Results showed that Mg2+ concentration
allows estimating Pertuso Spring discharges in baseflow conditions and tracing the spring
water source, separating baseflow from overflow components in the total amount of
discharge data. In particular, a strong rainfall event occurring during the final phase of
aquifer depletion (winter months) immediately implies a drop in Mg2+ content, whose
value was enriching due to the longer residence time of groundwater in the carbonate rock.

Hopefully, future improvements of the research will involve other karst springs of
Central Italy with similar hydrodynamics, discharge magnitude, and water geochemistry
with the aim of understanding how much this model could be replicated outside the
study area.

Meanwhile, the Pertuso Spring will continue to be monitored during planned works
referred to the new catchment. In particular, the second phase of the monitoring plan,
during which first works are going to start, will consider monthly discharge measurements
in order to outline more precisely the complete seasonal recession of the spring aquifer and
rapidly detect possible negative impacts of works. This will lead to a further increase of data
available to strengthen the proposed model, also involving the recession coefficient in the
correlation between spring discharges and magnesium contents. Moreover, a more in-depth
study could involve geochemical and isotopic analyses on rainfall samples in the study
area and the use of specific probes able to continuously record magnesium concentrations
together with the tank water level or spring discharges at a fixed cross-section.
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