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Abstract: The numerical simulation of the optimal design of gravity dams is computationally expen-
sive. Therefore, a new optimization procedure is presented in this study to reduce the computational
cost for determining the optimal shape of a gravity dam. Optimization was performed using a
combination of the genetic algorithm (GA) and an updated Kriging surrogate model (UKSM). First, a
Kriging surrogate model (KSM) was constructed with a small sample set. Second, the minimizing
the predictor strategy was used to add samples in the region of interest to update the KSM in each
updating cycle until the optimization process converged. Third, an existing gravity dam was used
to demonstrate the effectiveness of the GA–UKSM. The solution obtained with the GA–UKSM was
compared with that obtained using the GA–KSM. The results revealed that the GA–UKSM required
only 7.53% of the total number of numerical simulations required by the GA–KSM to achieve similar
optimization results. Thus, the GA–UKSM can significantly improve the computational efficiency.
The method adopted in this study can be used as a reference for the optimization of the design of
gravity dams.

Keywords: updated Kriging surrogate model; genetic algorithm; gravity dam

1. Introduction

The shape of a dam is a major factor that influences its safety and economy. Therefore,
designing a dam with a suitable shape is a significant problem in dam engineering [1].
Currently, the finite-element method is widely used in the optimization of gravity dam
design [2–4]. However, a large number of numerical simulations are usually required when
using optimization algorithms in finite-element software to optimize the shape of a gravity
dam. To reduce the computational cost, some scholars have attempted to use surrogate
models as alternatives to the finite-element analysis technique [5–9]

Among the numerous existing surrogate models, the Kriging surrogate model
(KSM) [10] has been widely used because of its suitable performance. In the early stage
of its development, the KSM served as an approximate alternative model to the time-
consuming numerical analysis model for design optimization. Putra et al. [11] used the
Kriging-based optimization method to optimize stent geometry design. Gaspar et al. [12]
presented Kriging interpolation models as surrogate models for solving structural reliability
problems involving nonlinear finite-element analysis. The suitability of the aforementioned
optimization results depended largely on the accuracy of the KSM in the entire design
space. In general, many training samples are required to increase the accuracy of a KSM.

A high sampling cost results in a limited number of samples being used for engi-
neering optimization. A KSM constructed on the basis of a small number of samples
may provide low-accuracy optimization results. In the updated KSM (UKSM), sampling
is conducted only in the domain of interest. This strategy can considerably reduce the
sampling cost while ensuring high prediction accuracy [13]. The UKSM has been suc-
cessfully applied in many fields. Mohammadi-Amin et al. [14] used the KSM to estimate
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the aerodynamic coefficient trend for different spatial variables and effectively improved
the accuracy of Kriging interpolation by adding accurate samples multiple times to the
model. Augspurger et al. [15] constructed a UKSM response surface to develop practical
thermal storage devices. Song et al. [16] presented an efficient optimization procedure
for aerodynamic design. The selection of multiple samples according to infill criteria in
each updating cycle resulted in the optimization procedure having suitable exploration
ability. An efficient sequential surrogate-based optimization procedure was introduced in a
previous study to optimize the design of Microridge Deep Drawing Punch [17]. However,
the UKSM has been rarely used in the optimization of the shape of gravity dams.

In the present study, we adopted a structural optimization algorithm framework that
couples GA and UKSM to optimize the shape of a gravity dam. Our main objective is
to illustrate the efficient performance of GA-UKSM in the optimization of the gravity
dam compared with GA-KSM. First, an optimization problem of a gravity dam was
established. Second, the optimization problem was solved using a combination of GA
and KSM (GA–KSM) and the GA–UKSM. The adopted structural optimization algorithm
framework is expected to be a reference for the shape optimization of other dams.

2. Methodology
2.1. Formulaiton of the Optimization Problem

The cross-sectional geometry of the non-overflow section of a gravity dam is presented
in Figure 1.
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Figure 1. The cross-sectional geometry of the non-overflow section of a concrete gravity dam. (Re-
produced with permission from [Fengcheng Yang], [ Introduction to the design of the roller com-
pacted concrete dam of Taolinkou Reservoir]; publish by [Hebei Water Conservancy and Hydro-
power Technology], [1995]) 

In Figure 1, A and H represent the dam crest width, dam bottom width, and dam 
height, respectively. Note that H1 and H2 are the heights of the upstream and downstream 
slope points of the dam, respectively. The parameters p (=H1/H) and q (=H2/H) represent 
the ratios of the heights of the upstream and downstream slope point vertices to the dam 
height, respectively. α1 and α2 are angels of upstream and downstream slope. The varia-
bles m1 (=ctg(α1)) and m2 (=ctg(α2)) represent the upstream and downstream slope coeffi-
cients, respectively. The objective of the gravity dam optimization problem is to minimize 
the cross-section area of the dam. The cross-section area can be express as follows: 

Figure 1. The cross-sectional geometry of the non-overflow section of a concrete gravity dam. (Repro-
duced with permission from [Fengcheng Yang], [ Introduction to the design of the roller compacted
concrete dam of Taolinkou Reservoir]; publish by [Hebei Water Conservancy and Hydropower
Technology], [1995]).

In Figure 1, A and H represent the dam crest width, dam bottom width, and dam
height, respectively. Note that H1 and H2 are the heights of the upstream and downstream
slope points of the dam, respectively. The parameters p (=H1/H) and q (=H2/H) represent
the ratios of the heights of the upstream and downstream slope point vertices to the dam
height, respectively. α1 and α2 are angels of upstream and downstream slope. The variables
m1 (=ctg(α1)) and m2 (=ctg(α2)) represent the upstream and downstream slope coefficients,
respectively. The objective of the gravity dam optimization problem is to minimize the
cross-section area of the dam. The cross-section area can be express as follows:

S =
(pH)2m1 + (qH)2m2

2
+ AH, (1)

where S is the cross-sectional area of the dam body; P, q, m1, and m2 are design variables
that must be optimized; and the other symbols have the same meanings as previously
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mentioned. In this study, A and H are constants, so the objective function can be expressed
as follows:

min
(pH)2m1 + (qH)2m2

2
, (2)

In the gravity dam optimization problem, behavior and stability constraints must be
considered. These constraints are defined as follows:

σ1,a ≤ σ+, (3)

σ3,a ≤ σ− , (4)

ka ≥ K, (5)

where σ1,a and σ3,a are the maximum and minimum principle stresses in the actual opti-
mization process, respectively. For the entire earthquake process, the maximum value of
σ1,a and the minimum value of σ3,a are considered. The parameters σ− and σ+ represent
the allowable compressive stress and allowable tensile stress, respectively; ka is the actual
safety factor against sliding; and K is the minimum required safety factor against sliding.

2.2. Solution of the Optimizaiton Problem

The GA–KSM and GA–UKSM were used to solve the optimization problem described
in Section 2.1. The GA served as the optimization algorithm for solving the model. In the
GA, individuals are evaluated by their fitness function values, and the fitness function val-
ues are obtained through numerical simulation. This process is computationally intensive;
therefore, the KSM and UKSM were used to reduce the number of numerical simulations.

2.2.1. Genetic Algorithm (GA)

The GA is a heuristic algorithm that searches for optimal solutions by simulating
natural evolutionary processes. It does not rely on gradients and has high robustness and
global searching ability [18]. Therefore, the GA was employed to solve the constructed
optimization problem. The design variables to be optimized were p, q, m1, and m2, which
were encoded in binary in the GA. In this study, the penalty function [2] was used to
satisfy the constraints involved in the optimization problem (Equations (3)–(5)). The fitness
function containing the penalty term is expressed as follows:

Ff it = S + 104 × [|min{k− K, 0}|+ max
{

σ1 − σ+, 0
}
+ max

{
σ3 − σ−, 0

}
], (6)

where Ffit is the fitness function; k, σ1, and σ3 represent the safety factor against sliding,
maximum principle stress, and minimum principle stress of each individual, respectively;
and the other symbols have the same meanings as previously mentioned.

Multiple numerical simulations are usually required when the GA is executed using
the ANSYS (Pittsburgh, Commonwealth of Pennsylvania, USA) software program for
calculating the σ1, σ3, and k values of a gravity dam subjected to earthquake loading.
To reduce the computational cost, the KSM was used in this study instead of numerical
simulations.

2.2.2. Kriging Surrogate Model (KSM)

The KSM is a mathematical model for fitting discrete data. The essence of the KSM is
to use the response information of known points to predict the response value of unknown
points. The general steps for constructing the KSM are described in the following text.
First, a sampling method (e.g., center composite design, orthogonal experimental design,
uniform design, or Latin hypercube sampling (LHS)) is used to generate samples of design
variables. Second, the samples are analyzed with a high-precision analysis model to obtain
a set of input or output data. A fitting method is then used to fit the input or output
relationship of these sample data to construct a surrogate model. Third, the fitting precision
of the surrogate model is evaluated, and the output of the new design point is predicted.
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1. Sampling methods

Commonly used sampling methods include central composite design, orthogonal
experimental design, uniform design, LHS, and inherited LHS (ILHS). LHS is the most
widely used sampling method because this method is easy to implement and has satisfac-
tory uniformity. The ILHS method [19] has the same uniformity as the LHS method but a
higher sampling efficiency. Therefore, ILHS was used in the GA–KSM in this study. A total
of 80% of the samples were used as training samples, and 20% of the samples were used as
evaluation samples.

2. Constructing the KSM

The general mathematical expression of the KSM is as follows:

ŷ(X) = F(β, X) + z(X), (7)

where ŷ(X) expresses the deterministic response y(X) ∈ IRq for an n dimensional input
X ∈ D ⊆ IRn, F is the regression model which is a linear combination of p chosen functions
fj, and z(X) is a stochastic process.

F(β, X) = β1 f1(X) + . . . βp fp(X)
= [ f1(X) . . . fp(X)]β:

= f (X)T β:

(8)

The coefficients {β:} are regression parameters, and the random process z(X) is assumed
to have mean zero, variance σ2 and covariance between z(Xi) and z(Xj):

E[z(X)] = 0, (9)

Var[z(X)] = σ2, (10)

Cov[z(Xi), z(Xj)] = σ2R(θ, Xi, Xj), (11)

where R(θ, Xi, Xj) is a correlation function with parameters θ. The Gaussian function in
Equation (12) is commonly used as a correlation function.

R(θ, Xi, Xj) =
N

∏
k=1

e−θk |Xk
i −Xk

j |
2

, (12)

where Xi
k and Xj

k are the kth components of the training samples Xi and Xj, respectively,
and θk is the constant of the correlation function in the kth direction of the sample. The
linear weighted superposition interpolation of the response values of each sample is used
to calculate the response value of the unknown sample as follows:

ŷ(X) = w(X)Y, (13)

where w(X) = (w1, w2, . . . , wN)T is the weighting factor to be determined and Y = (y1, y2,
. . . , yN)T. According to the unbiased estimation condition, the following expression is
obtained for the KSM through collation:

ŷ(X) = f (X)T β∗ + r(X)γ∗, (14)

where β* = (FTR−1F)−1FTR−1Y and γ* = R−1(Y − Fβ*). The parameters β* and γ* are fixed.
The parameter r is expressed as follows: r = (R(θ, X, X1), . . . , R(θ, X, XN))T. For more
detailed derivation and application of the KSM, please refer to the reference [20].

3. Accuracy evaluation

Accuracy evaluation is performed to judge whether a surrogate model is credible. If
the accuracy meets the requirements, the surrogate model can replace the analysis model
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in the optimization process; otherwise, the surrogate model must be reconstructed. In this
study, 20% of the samples were used to evaluate the KSM. The maximum absolute relative
error (MARE) was used to assess the performance of the KSM. The MARE is defined as
follows:

MARE = max
{

100×
∣∣∣∣yl − ŷl

yl

∣∣∣∣}l = 1, 2, · · · N (15)

where y and ŷ are the actual value and predicted value, respectively, and N is the number
of evaluation samples.

2.2.3. Updated Kriging Surrogate Model (UKSM)

The optimization results of the KSM largely depend on its approximation accuracy in
the entire sampling space. To achieve the required approximation accuracy, a large number
of samples must usually be collected; however, a large number of samples increases the
calculation cost, which limits the application of the KSM in engineering optimization
problems. By contrast, in the UKSM, in which a reasonable infill sampling criterion (e.g.,
minimizing the predictor (MP)) is constructed, a high approximation accuracy is only
required near the optimal solution rather than in the entire design space. Thus, the UKSM
can achieve a higher computational efficiency than the KSM.

In this study, MP [21] was used as the infill sampling criterion. The principle of the MP
criterion is to find the minimum value of the objective function directly with a KSM and
then take the point that minimizes the values of the objective as a new sample to update
the KSM. Mathematically, the MP criterion can be expressed as follows:

min f̂ (X), (16)

s.t.
{

ĥn(X) ≤ 0 n = 1, 2, . . . Nc
XL ≤ X ≤ XU

, (17)

where X is a vector that contains the design variables p, q, m1, and m2; XL and XU are
the lower and upper bounds of the design variables, respectively; f̂ (X) and ĥ(X) are a
surrogate model of the objective function and a constraint function, respectively; and Nc is
the number of constrained functions.

2.2.4. Optimization Procedure

1. GA–KSM optimization procedure

To improve the sampling efficiency, samples were collected in the design space by
using ILHS. Of the collected samples, 80% were used to obtain the σ̂1, σ̂3, and k̂ values
of the KSM and 20% were used to evaluate the accuracy of the KSM. Subsequently, this
study determined whether any of the MARE values between σ1 and σ̂1, σ3 and σ̂3, and
k and k̂ were <1%. If none of the MARE values were <1%, 50 samples collected through
ILHS were added to the sample set until the KSMs satisfied the accuracy requirements.
The mathematical optimization model of the gravity dam was then solved using the GA.
When convergence criterion (CC) ≤ 1‰ [Equation (18)], the optimization was terminated.
A flowchart of the GA–KSM is illustrated in Figure 2a.

CC =

∣∣∣∣∣∣∣∣∣
1
5

m+4
∑

gen=m
Sgen − 1

5

m+9
∑

gen′=m+5
Sgen′

1
5

m+4
∑

gen=m
Sgen

∣∣∣∣∣∣∣∣∣× 100% (m = 1, 2 . . .), (18)

where gen and gen’ are the numbers of GA generations and Sgen and Sgen’ are the best
objective values for gen and gen’, respectively.
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and updated Kriging surrogate model (GA–UKSM) (b).

2. GA–UKSM optimization procedure

By using the MP criterion, new samples were added to the initial sample set to update
the KSM [22–24]. First, the σ̂1, σ̂3, and k̂ values of the KSM were determined using 50
samples before optimization. Then, the GA was used to find the point minimizing the
value of the objective function (when CC ≤ 1‰, the GA is considered to converge to the
optimal solution), and the corresponding σ̂1, σ̂3, and k̂ values were obtained. Subsequently,
the σ1, σ3, and k values corresponding to the optimal solution were calculated using ANSYS.
If any relative error between σ1 and σ̂1, σ3 and σ̂3, or k and k̂ was >1%, the sample obtained
through numerical simulation was added to the existing sample set to update the KSM
until the entire optimization process converged. The schematic flowchart of the GA–UKSM
is displayed in Figure 2b.

3. Case Study
3.1. Basic Information of the Gravity Dam

To investigate the computational efficiency of the GA–KSM and GA–UKSM for the
shape optimization of a gravity dam, the Taolinkou Reservoir gravity dam was used as
a test example. The basic section of the dam is displayed in Figure 1. The reservoir is
located in the Qinglong River in the middle of the Yanshan settlement in Hebei, China. The
maximum dam height is 89.24 m, the dam crest width is 8 m, the upstream water level is
84.74 m, and the downstream water level is 5 m.

In this study, four variables, namely p, q, m1, and m2, were defined for optimizing the
gravity dam geometry. Table 1 presents the design variables of the optimization process
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that comply with China’s “Code for Design of Concrete Gravity Dams” and the engineering
requirements.

Table 1. Lower and upper bounds of the design variables.

Design Variable Lower Bound Upper Bound

P 0.32 0.66
Q 0.86 0.93
m1 0.10 0.20
m2 0.60 0.80

In this study, we used the ground motion obtained from the record of an aftershock of
magnitude 5.7 during the Tangshan earthquake that occurred in China on August 9, 1976.
The seismic load included horizontal (Figure 3a and vertical Figure 3b) ground motions.
The earthquake lasted for 5 s, and the seismic time step used in this study was 0.1 s. We
ignored the quality of the foundation. To eliminate seismic wave propagation effects, we
enter the seismic records on the surface of the dam foundation.
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Under seismic loading, the allowable dynamic compressive strength of concrete was
30% higher than the allowable static compressive strength of concrete. The allowable
dynamic tensile strength was 8% of the allowable dynamic compressive strength [25].
Moreover, the dynamic modulus of the dam body and dam foundation was 30% higher
than the static elastic modulus. In line with China’s “Code for Seismic Design of Hydraulic
Structures,” the minimum required safety factor against sliding (K) is 1.0. The mechanical
properties of the dam body and foundation materials are presented in Table 2.
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Table 2. Material properties of the dam body and foundation.

Corresponding Area Dam Body Dam Foundation

Allowable value of static
compressive strength (MPa) 11.17 14.91

Allowable value of dynamic
compressive strength

(σ−/MPa)
14.52 19.38

Allowable value of dynamic
tensile strength (σ+/MPa) 1.16 1.55

Static modulus (GPa) 22.30 29.10
Dynamic elastic modulus

(GPa) 29.00 37.83

Density (kg/m3) 2400 2500

3.2. Finite-Element Model of the Gravity Dam

In this study, finite elements were used to discretize the concrete and bedrock of
the dam. Moreover, a two-dimensional finite-element model of the gravity dam (Figure
4) was established in ANSYS to calculate the maximum principle stress, the minimum
principle stress, and the safety factor against sliding. The upstream and downstream of
the dam foundation were expanded by 1.5 times the dam height, and the dam foundation
was expanded downward by two times the dam height. In addition, normal constraints
were applied upstream and downstream of the foundation, whereas fixed constraints were
applied to the bottom of the foundation. The established model is based on the following
assumptions: (1) the dam body and foundation are continuous, (2) the dam body and
foundation materials are uniform, and (3) the concrete and bedrock of the dam body are
isotropic elastic materials.

Water 2021, 13, x FOR PEER REVIEW 9 of 13 
 

 

 

dam foundation were expanded by 1.5 times the dam height, and the dam foundation was 
expanded downward by two times the dam height. In addition, normal constraints were 
applied upstream and downstream of the foundation, whereas fixed constraints were ap-
plied to the bottom of the foundation. The established model is based on the following 
assumptions: (1) the dam body and foundation are continuous, (2) the dam body and 
foundation materials are uniform, and (3) the concrete and bedrock of the dam body are 
isotropic elastic materials. 

 
Figure 4. Finite-element model of a two-dimensional section of the gravity dam. 

The loads acting on the dam are the gravity load, hydrostatic pressure, uplift pres-
sure, and seismic load. The Westergaard additional mass method [26] was used to simu-
late the hydrodynamic pressure. The dynamic load effect was analyzed using the time-
history analysis method [27–29]. Westergaard used the separation variable method and 
assumed that the dam surface facing the water is vertical, the dam body is rigid, and the 
reservoir water is a nonviscous liquid with small disturbances. He neglected the absorp-
tion of silt at the bottom of the reservoir, the surface microgravity wave of the reservoir 
water, and the compressibility of the reservoir water. Westergaard also assumed that the 
maximum hydrodynamic pressure on the dam surface has a parabolic relationship with 
the dam height. He obtained the hydrodynamic pressure of the calculation point using 
the following formula: 

(7 /8) xp a hz , (19)

where ax is the horizontal acceleration, ρ is the water density, h is the designed water 
depth, and z is the distance from the calculation point to the water surface. 

In the 1980s, Professor Clough [30] expanded the application scope of Westergaard’s 
additional mass method as follows: 

(7 / 8) T
i i iI IM A hz , (20)

where Ai is the subordinate area of the calculation point i on the dam surface, Ii is the 
normal vector of the calculation point, and the other symbols have the same meanings as 
previously mentioned. 

3.3. Parameter Setting 
In this study, the population size of the GA was set as 100 and the maximum gener-

ation as 500, and stochastic universal sampling was used as the selection operator. The 
single-point crossover probability was set as 0.7, and the mutation probability was set as 
0.01. All the experiments were conducted on a computer equipped with an Intel Core i5-
8250U 3.4 GHz CPU with 8 GB RAM (City of Santa Clara, Stage of California, USA). 

Figure 4. Finite-element model of a two-dimensional section of the gravity dam.

The loads acting on the dam are the gravity load, hydrostatic pressure, uplift pressure,
and seismic load. The Westergaard additional mass method [26] was used to simulate the
hydrodynamic pressure. The dynamic load effect was analyzed using the time-history
analysis method [27–29]. Westergaard used the separation variable method and assumed
that the dam surface facing the water is vertical, the dam body is rigid, and the reservoir
water is a nonviscous liquid with small disturbances. He neglected the absorption of silt at
the bottom of the reservoir, the surface microgravity wave of the reservoir water, and the
compressibility of the reservoir water. Westergaard also assumed that the maximum hydro-
dynamic pressure on the dam surface has a parabolic relationship with the dam height. He
obtained the hydrodynamic pressure of the calculation point using the following formula:

p = (7/8)axρ
√

hz, (19)
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where ax is the horizontal acceleration, ρ is the water density, h is the designed water depth,
and z is the distance from the calculation point to the water surface.

In the 1980s, Professor Clough [30] expanded the application scope of Westergaard’s
additional mass method as follows:

M = (7/8)ρAi
√

hzIT
i Ii, (20)

where Ai is the subordinate area of the calculation point i on the dam surface, Ii is the
normal vector of the calculation point, and the other symbols have the same meanings as
previously mentioned.

3.3. Parameter Setting

In this study, the population size of the GA was set as 100 and the maximum generation
as 500, and stochastic universal sampling was used as the selection operator. The single-
point crossover probability was set as 0.7, and the mutation probability was set as 0.01. All
the experiments were conducted on a computer equipped with an Intel Core i5-8250U 3.4
GHz CPU with 8 GB RAM (City of Santa Clara, Stage of California, USA).

3.4. Results and Discussion

When using the GA–KSM for optimizing the design of a gravity dam, the optimization
results depend largely on the approximation accuracy of the KSM, which is directly related
to the quantity of training samples. In this study, to meet the accuracy requirements of
the KSM, the MARE threshold was set as 1%. As displayed in Figure 5, the MARE values
between σ1 and σ̂1, σ3 and σ̂3, and k and k̂ decreased with an increase in the number of
samples. When the MARE values were set to be ≤1%, the number of training samples was
≥1700. Such a high sampling cost is unacceptable in engineering optimization problems.
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Therefore, we used the GA–UKSM to optimize the shape of the gravity dam. The
relative errors between σ1 and σ̂1, σ3 and σ̂3, and k and k̂ varied with the number of
iterations, as displayed in Figure 6.
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As the number of iterations increased (i.e., as the number of new samples in the sample
set increased), the relative errors between σ1 and σ̂1, σ3 and σ̂3, and k and k̂ decreased
overall; however, volatility occurred. This volatility may have occurred because new
optimal solutions were constantly being discovered during the process of adding samples
to the sample set. When the optimal solution tended to be stable, the relative errors
gradually decreased. This result indicates that the application of the MP criterion causes
the UKSM to not have a high approximation accuracy in the entire design space. The model
has a high approximation accuracy only near the optimal solution. Finally, only 78 sample
points must be added to the KSM to meet the convergence condition. Table 3 presents a
summary of the optimization results obtained for gravity dam design with the GA–KSM
and GA–UKSM.

Table 3. Comparison of the optimization results obtained with the GA–KSM and GA–UKSM.

Optimization Methods
Design Variable

H1(m) H2(m) S(m2) Number of Simulations
p q m1 m2

GA–KSM 0.395 0.872 0.195 0.682 35.25 77.82 2899.4 1700
GA–UKSM 0.396 0.872 0.186 0.680 35.34 77.82 2888.9 128

As presented in Table 3, the difference in the cross-sectional area of the dam body
obtained with the two algorithms was approximately 0.36%. In theory, both the compared
algorithms can be used for the optimization of gravity dam design. However, when using
the GA–KSM to optimize the gravity dam shape, at least 1700 samples are required in the
KSM sample set to make the MARE values between σ1 and σ̂1, σ3 and σ̂3, and k and k̂ of
<1%. Thus, at least 1700 numerical simulations are required in the GA–KSM (Figure 5).
Such a high sampling cost is unfavorable in gravity dam optimization design. By con-
trast, the number of numerical simulations required for the GA–UKSM (128 numerical
simulations, i.e., 128 samples, including 50 samples required to construct the initial KSM
and 78 samples obtained using the GA to improve the accuracy of the KSM according to
the MP criterion) was only 7.53% that required for the GA–KSM. Thus, the GA–UKSM
considerably outperformed the GA–KSM in terms of the optimization efficiency.

Moreover, the differences in the design variables corresponding to the optimal solu-
tions of the two algorithms were not obvious, which indicates that the UKSM can guarantee
higher precision with fewer samples than the KSM can. The aforementioned finding also
indicated that the optimization process of the GA–UKSM converged to a stable solution
(Table 3).
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In this study, only one sample that did not satisfy the convergence condition was
added to the sample set to update the KSM in an updating cycle. In future research,
an algorithm that simultaneously adds N (N > 1) samples to the sample set should be
considered to improve the probability of obtaining an optimal solution. In addition, three-
dimensional problems where spanwise dam shape and curvature and changes of dam
foundation elevations in both axial and spanwise directions can be taken into account.

4. Conclusions

A combination of the GA–UKSM was adopted to optimize the shape of a gravity dam
subjected to earthquake loading. To improve the optimization efficiency and prediction
accuracy of the KSM, the MP criterion was used to update the KSM in each updating
cycle. The optimization efficiency of the GA–UKSM was approximately one order of
magnitude higher than that of the GA–KSM. As the samples in the sample set increased, the
prediction accuracy of the UKSM increased. Consequently, the GA–UKSM outperformed
the GA–KSM in terms of the computational efficiency and number of numerical simulations.
The optimization design method for gravity dam adopted in this research can provide
indirect guidance for engineering designers in hydraulic structure design, improving their
optimization design efficiency.
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