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Abstract: Significant wave height (SWH) forecasting is a key process for offshore and costal engi-
neering. However, accurate prediction of the SWH is quite challenging due to the randomness and
fluctuation features of waves. This paper employs a novel deep learning method, the gated recurrent
unit network (GRU), to forecast SWH with lead times of 3, 6, 12 and 24 h. The data sets used in this
study include the wind speed of the past 3 h and the current SWH as inputs, which were obtained
from six buoy stations in the Taiwan Strait and its adjacent waters. The GRU results are compared
with those of back propagation neural network (BP), extreme learning machine (ELM), support
vector machine (SVM), and random forest (RF). Although the error indices of the six stations are
different, the general performance of GRU is satisfactory, with a faster forecasting speed, smaller
volatility and better adaptability. Using buoy station 46714D as an example, the root mean square
error (RMSE) predicted by GRU reaches 0.234, 0.299, 0.371, and 0.479 with lead times of 3, 6, 12, and
24 h, respectively.

Keywords: gated recurrent unit network; machine learning; significant wave height; wind speed

1. Introduction

Marine disasters pose a severe threat to many countries in the world, leading to
tremendous casualties and economic losses. To this end, investigating the characteristics
of ocean waves, especially the significant wave height (SWH), is of pivotal importance
to maritime activities and coastal engineering. An accurate and reliable prediction of
SWH contributes to the smooth progress of activities such as fisheries, marine resources
exploitation, safe navigation, and construction and maintenance of coastal structures [1,2].
However, the irregularity of ocean waves presents great challenges in predicting SWH.

In general, there are three mainstream approaches to predict SWH, including empirical,
numerical and machine learning methods. The classical empirical-based models such as
auto regressive moving average (ARMA) have been long established, but they have a
limited ability to capture the non-stationarities and non-linearity in data series [3]. In the
past decades, a number of researchers have sought to predict SWH using physics-based
models, which rely primarily on a form of the spectral energy or action balance equation.
Although numerical models have proven to be effective in wave height prediction over a
large spatial and temporal range, their drawbacks have also been noted, and the cost of
computational resources and time is extremely high, especially for the calculations of a
higher resolution grid in the nearshore zones where the seabed topography is intricate [4,5].

The increasingly rapid advances in machine learning have triggered a huge amount
of innovative inquiries in SWH prediction. Machine learning methods use statistics to gain
a deeper insight into the spatial and temporal link hidden in the historical time series.

Zamani et al. [6] conducted a detailed study of several data-driven models based on
artificial neural networks (ANNs) and instance-based learning (IBL). Experiments showed
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that the ANNs have a slight superiority over IBL, and ANNs also exhibit competitive
advantages in predicting extreme wave conditions. The predictive capability of several
machine learning approaches including support vector machine (SVM), Bayesian network
(BN), ANN and adaptive neuro-fuzzy inference system has been inspected by Malekmo-
hamadi et al. [7]. The results manifested that the behavior of these models are acceptable
except the results of BN. By incorporating a genetic algorithm with Kalman filtering, Al-
tunkaynak and Wang [8] developed a new technique to predict SWH. The superiority
of this method over ANN was shown by its lower mean relative error and mean square
error. Nitsure et al. [9] applied genetic programming to predict wave heights using wind
information as an input. The prediction results with lead times up to 12 h and 24 h were
satisfactory, where the coefficients of correlation between the predicted and measured
values were higher than 0.87. Prahlada and Deka [10] strived to present a hybrid model of
wavelet and an artificial neural network for SWH prediction across multistep lead time
by combining the beneficial qualities of both. The presented method has been proven to
be effective and feasible. Cornejo-Bueno et al. [11] proposed a hybrid grouping genetic
algorithm–extreme learning machine approach for marine energy applications in SWH and
flux prediction and obtained desirable results. Nikoo et al. [12] conducted SWH prediction
based on a fuzzy K-nearest neighbor (FKNN) model where the variation of wind direction
will affect the fetch length. The prediction results of FKNN outperformed those obtained by
BN, regression tree induction and support vector regression, especially in the prediction of
wave heights larger than 2 m. Wei and Hsieh [13] adopted ANN in two distinct situations
to assess the practicability of predicting waves using the data gathered from the adjacent
buoy. The study showed that the model involving information from the adjacent buoy
outperforms the one without extra data. Considering the edges of back propagation neural
networks (BP) and cuckoo search algorithms (CS), Yang et al. [14] creatively attempted to
predict SWH based on a CS–BP model, and the proposed model offers promising potential
for wave height prediction. A recent study carried out by Zhang and Dai [15] involved the
conditional restricted Boltzmann machine in the classical deep belief network to predict
SWH. The measurement criterion revealed that the newly proposed method has a strong
ability for short-term and extreme events prediction.

More recently, the long short-term memory network (LSTM) [16], which is an im-
proved form of a recurrent neural network (RNN), has been attracting considerable interests.
Son et al. [17] found a novel perspective to predict real-valued SWH from a series of sequen-
tial ocean images using the bi-directional convolutional LSTM model, and low error indices
were obtained. Fan et al. [18] employed LSTM to predict SWH for various forecasting
time horizons with higher accuracy, and proposed a simulating waves nearshore-LSTM
to make a single-point prediction. A great deal of previous research into SWH prediction
has focused on using all kinds of shallow machine learning models such as BP, SVM and
so on, but they have failed to completely exploit the inner correlations between historical
information over the long term. LSTM has been successfully utilized to predict SWH.
However, a conspicuous shortcoming with LSTM is that it entails a large number of pa-
rameters for training. Consequently, the training process is time consuming and it easily
becomes overfitted.

The gated recurrent unit network (GRU) is optimized and condensed on the basis
of LSTM, which has two gates named reset gate and update gate to control the flow of
information. Benefiting from the structure, the forecasting speed of GRU is effectively
improved and maintain the strength of LSTM at the same time [19]. GRU has emerged as a
powerful tool in various applications encompassing time series prediction, such as machine
health monitoring [20,21], wind speed prediction [22–24], and traffic flow prediction [25,26].

Nevertheless, to the authors’ cognition, there has been very little research that seeks
to predict SWH using the novel deep learning method GRU over a large range and long
prediction interval. Therefore, the prospective study sets out to predict SWH based on
GRU at six buoy stations in the Taiwan Strait and its adjacent waters, and compare the
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prediction results of GRU with those obtained by BP, extreme learning machine (ELM),
SVM, and random forest (RF).

The overall structure of this essay takes the form of five parts. The second part
describes the study materials used in this study. The third part gives an explanation of the
gated recurrent unit network and the evaluation indicator. The following part presents the
obtained results, along with discussions. The final part gives a summary of the work.

2. Materials

The Taiwan Strait is China’s largest strait connecting the East China Sea and the South
China Sea, which is not only an important maritime area for historical trade routes, but
also a strategic point of modern geopolitics. Therefore, it enjoys a high reputation as the
“sea corridor”. The topography of the Taiwan Strait is violently undulant; it is wide in
the south, narrow in the north and shaped like a horn, and brings about the prominent
narrow tube effect. As the frequency of production activities and shipping in this area is
constantly increasing, there is an urgent need to make timely and accurate wave forecasting
in this strait.

To test the performance of GRU, six buoy stations distributed at different sites in
the Taiwan Strait and its adjacent waters were selected. The hourly data used for SWH
prediction is owned and maintained by the National Marine Data Center (http://mds.
nmdis.org.cn/) and the European Marine Observation and Data Network (http://www.
emodnet-physics.eu/map/). Table 1 gives details of the selected stations, including the
exact locations, water depth, the period of data, the maximum SWH and wind speed
during the corresponding period of each buoy station and the total number of available
data. Figure 1 displays the distributions and water depth of the selected stations.

Table 1. Details of the selected stations.

Buoy ID Latitude
(◦N)

Longitude
(◦E)

Water Depth
(m) Period of Data Max SWH

(m)
Max Wind

Speed (m/s)
The Number

of Data

46714D 22.31 120.35 110 14 Septmber 2012–10
August 2015 8.4 30.2 22,149

46735A 23.72 119.55 14 14 Septmber 2012–3
February 2017 5.9 21.6 31,699

46787A 24.38 118.41 16 14 Septmber 2012–31
December 2015, 5.2 17.5 26,091

C6V27 21.02 118.86 2623 12 Septmber 2012–2
December 2016 13.4 27.7 26,415

C6W08 26.38 120.54 55 14 Septmber 2012–13
December 2015, 12.8 24.4 26,601

NanJi 27.5 121.1 23 1 January 2015–30
November 2016, 6.5 27.5 16,677

The key part of wind–wave forecasting is to predict SWH with lead times of a few
hours or days using the historical information. According to [27], wind speed has been
identified as a major contributing factor to the generation of waves. Furthermore, the
previous SWH also exerts a dominant effect due to the continuity of waves. Therefore, the
available previous observations of wind speed and SWH are fed into the model as inputs.

In this study, 80% of the available data were utilized for training the model, and the
remaining 20% were used for testing.

http://mds.nmdis.org.cn/
http://mds.nmdis.org.cn/
http://www.emodnet-physics.eu/map/
http://www.emodnet-physics.eu/map/
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3. Methodology
3.1. Wave Forecast Model

Since traditional neural networks are transmitted through full connection and each
node in the same layer is not connected, they may fail when dealing with the temporal
problems.

In this context, RNN has been proven to be more powerful in extracting temporal
patterns than traditional neural networks by building self-loop connections from a node to
itself and sharing parameters across different time steps.

The standard RNN take their input from the current input xt along with what they
have picked up previously.

Firstly, the hidden state ht carrying the network memory can be computed by

ht = f (Wht−1 + Uxt + b) (1)

where ht−1 is the previous hidden state; xt is the new input; W and U are the weight
matrices; b is the bias vector and f is a nonlinear activation function. Then the current state
ot is calculated as

ot = Woht + bo (2)

where Wo is the weight matrix, and bo is the bias vector.
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Although RNN exhibits a robust capability of modeling nonlinear time series in an
effective fashion, it cannot escape the vanishing gradient and exploding gradient problems,
and its accuracy decreases when the time span becomes longer.

A long short-term memory network (LSTM) was proposed to mitigate the aforemen-
tioned problems, but the time consuming training process may hinder a wide-spread
adoption of LSTM in real-time and fast SWH forecasting. In our paper, we employ another
notable RNN variant, a gated recurrent unit network (GRU). Figure 2 shows the inner
structure of the GRU.
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Figure 2. Inner structure of the gated recurrent unit network (GRU).

Both RNN and GRU have chain-like modules, but the repeating modules of GRU are
more complicated. Each repeating module of GRU contains two gates, named update gate
and reset gate, which gives GRU the ability to control the flow of information. The two
gates are sigmoid units that map the variables in [0, 1], where the value between 0 and 1 is
the ratio of memory. Thus, GRU can tackle the correlation with the time series over long
and short terms.

Firstly, the reset gate rt controls how much information from the previous hidden
state will be carried over to the current hidden state, where

rt = σ(Wr · [ht−1, xt] + br) (3)

The new memory candidate h̃t is produced by rt with a tanh layer, which derives from
the following:

h̃t = tanh(W · [rt · ht−1, xt]) (4)

The update gate zt determines whether the hidden state will be updated with a new
hidden state, where

zt = σ(Wz[ht−1, xt] + bz) (5)
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In the end, the hidden state ht is renewed by

ht = (1− zt) · ht−1 + zt · h̃t (6)

In Equation (3) to Equation (6), Wr, Wz are the weight matrices, br, bz are the corre-
sponding bias vectors.

3.2. Data Preprocessing and Evaluation Criteria

In order to keep all the variables on the same scale and guarantee a stable convergence
in the model developed in the present study, the following standardization formula is used

x′ =
x− µ

δ2 (7)

where µ represents the mean, and δ represents the variance of data.
For the quantitative evaluation of the model’s performance, three statistical metrics,

the root mean square error (RMSE), coefficient of correlation (R) and index of agreement
(IA), are considered:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (8)

R =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(9)

IA = 1−

n
∑

i=1
(yi − xi)

2

n
∑

i=1
(|yi − y|+ |xi − x|)2

(10)

where xi is the observed value at the ith time, yi is the predicted value at the same moment,
n is the number of time steps, x is the mean of observed data, and y is the mean value of
predicted values.

4. Results and Discussions

According to the theory that a wave is generated by wind interacting with the ocean
surface, the current SWH together with wind speed over the past three hours are imposed
as input variables to predict SWH using GRU for various forecasting time horizons. The
experiments of four widely used machine learning algorithms, BP, ELM, SVM and RF, were
conducted for comparison.

The parameters of GRU were set by means of trial and error, while the parameters of
the other four methods were selected according to the previous study. The experiments
showed that excessive model parameters may bring about a time consuming training
process without significant improvements on the prediction effectiveness. Therefore, the
parameter setting should be balanced against the prediction performance and the time
consumption. Table 2 lists the key model parameters of the five algorithms, where m is the
number of hidden layers, S is the number of neurons in each hidden layer, g represents the
learning rate, k stands for the number of training epochs, C is the penalty parameter, ε is
the error tolerance, N is the number of trees in RF, and maxDeep is the maximum depth of
each tree. In the following paper, the best results are highlighted with bold font.
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Table 2. Parameter settings of the five algorithms.

Algorithm Settings

GRU m = 2, S = 64, g = 0.001, activation function is tanh, k = 200
BP S = 5, g = 0.1, k = 100
RF N = 100, maxdeep = 3

ELM S = 30, activation function is sigmoid.
SVM C = 1, ε = 0.1, the kernel function is Radial Basis Function.

4.1. SWH Prediction with Lead Times of 3 h

In this section, the current SWH and wind speed 3 h ago are fed as inputs to forecast
SWH with lead times of 3 h.

The error indices of the five algorithms at six different stations selected from the
Taiwan Strait and its adjacent waters are presented in Table 3. It is apparent that all
the indicators of GRU are better than those of the other four algorithms. The ability of
GRU in predicting SWH far outpaces the others, which may be due to the fact that GRU
can take full advantage of the useful information from the previous states without the
vanishing gradient and exploding gradient problems. What stands out in this table is that
the performances of SVM and ELM are strikingly poorer than the others, which indicates
that SVM and ELM are not good choices to predict SWH. At station C6W08, the RMSE
of GRU is 46.3% lower than that of ELM, and the R and IA of GRU reach up to 0.950 and
0.972, whereas the same indices of ELM are only 0.844 and 0.914. With regard to BP, RF,
and SVM, the performances of all of the six stations are inferior to those of GRU to a greater
or lesser degree.

Table 3. Error indices of predicted SWH with lead times of 3 h.

Station Algorithm RMSE R IA

46714D GRU 0.234 0.938 0.967
SVM 0.411 0.929 0.886
BP 0.254 0.931 0.965

ELM 0.509 0.735 0.862
RF 0.268 0.921 0.959

46735A GRU 0.262 0.943 0.968
SVM 0.443 0.934 0.888
BP 0.274 0.936 0.966

ELM 0.413 0.862 0.926
RF 0.271 0.938 0.966

46787A GRU 0.239 0.875 0.932
SVM 0.361 0.860 0.789
BP 0.244 0.870 0.928

ELM 0.468 0.681 0.796
RF 0.248 0.865 0.925

C6V27 GRU 0.349 0.947 0.972
SVM 0.534 0.943 0.924
BP 0.360 0.944 0.971

ELM 0.601 0.862 0.924
RF 0.370 0.940 0.969

C6W08 GRU 0.324 0.950 0.972
SVM 0.549 0.945 0.902
BP 0.363 0.936 0.964

ELM 0.603 0.844 0.914
RF 0.367 0.936 0.962

NanJi GRU 0.193 0.950 0.973
SVM 0.381 0.942 0.878
BP 0.226 0.934 0.960

ELM 0.389 0.809 0.899
RF 0.197 0.947 0.972
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Figure 3 exhibits the scatter diagrams of the observed values and predicted SWH
obtained by GRU with lead times of 3 h for the six stations.
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As can be seen from Figure 3, the observed and predicted values produced by GRU
have a considerable accordance for 3 hourly prediction. Especially at Station C6V27, the
predicted SWH correlated very well with the observed values. Even so, what cannot be
ignored is that there are some outliers that are not concentrated near the bisector. The most
likely cause is that the vast majority of SWH observed at these stations are less than 4 m,
whereas a few extreme events still exist.

To reveal the difference in prediction performance between GRU and the other four
methods clearly, we randomly choose a piece of the predictive results for each station to
show in Figure 4, in which the number of data points is 100.
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Given a closer inspection of Figure 4, it can be found that the test results of SVM and
ELM tend to have larger volatility than GRU. One of the known reasons that bring out
volatility is that ELM and SVM are more susceptible to parameter selection. In practical
application, both of them are more likely to plunge into local minimum, so the stability is
relatively poorer. By contrast, based on the gate mechanism, the reset gate throws away the
unwanted information and the update gate propagates useful context from the previous
hidden states, which endows GRU with a strong ability to exploit the future and previous
information without sophisticated parameter tuning. Hence, the prediction made by GRU
at all the selected stations with lead times of 3 h are of high accuracy and stability.

4.2. SWH Prediction with Lead Times of 6 h

The experiments with lead times up to 6 h are described in this section. A vertical
comparison of Tables 3–5 reveals that the prediction accuracy drops as the forecasting time
horizon increases, with the RMSE increasing while the R and IA decrease.

Table 4. Error indices of predicted SWH with lead times of 6 h.

Station Algorithm RMSE R IA

46714D GRU 0.299 0.899 0.943
SVM 0.585 0.889 0.742
BP 0.317 0.887 0.940

ELM 0.655 0.597 0.780
RF 0.329 0.880 0.936

46735A GRU 0.340 0.901 0.943
SVM 0.485 0.887 0.853
BP 0.347 0.897 0.940

ELM 0.467 0.811 0.897
RF 0.349 0.895 0.940

46787A GRU 0.301 0.792 0.875
SVM 0.395 0.773 0.727
BP 0.312 0.776 0.868

ELM 0.567 0.484 0.665
RF 0.314 0.773 0.866
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Table 4. Cont.

Station Algorithm RMSE R IA

C6V27 GRU 0.486 0.894 0.943
SVM 0.656 0.889 0.873
BP 0.497 0.889 0.937

ELM 0.752 0.771 0.873
RF 0.507 0.885 0.937

C6W08 GRU 0.453 0.899 0.941
SVM 0.618 0.897 0.863
BP 0.463 0.895 0.936

ELM 0.726 0.764 0.867
RF 0.498 0.876 0.924

NanJi GRU 0.265 0.902 0.946
SVM 0.430 0.886 0.824
BP 0.273 0.896 0.944

ELM 0.459 0.786 0.873
RF 0.274 0.895 0.942

Table 5. Error indices of predicted SWH with lead times of 12 h.

Station Algorithm RMSE R IA

46714D GRU 0.371 0.848 0.905
SVM 0.663 0.846 0.628
BP 0.393 0.820 0.897

ELM 0.840 0.622 0.722
RF 0.418 0.805 0.892

46735A GRU 0.451 0.815 0.888
SVM 0.550 0.805 0.791
BP 0.464 0.803 0.880

ELM 0.596 0.683 0.818
RF 0.464 0.803 0.881

46787A GRU 0.349 0.705 0.812
SVM 0.511 0.689 0.450
BP 0.354 0.695 0.804

ELM 0.694 0.372 0.533
RF 0.357 0.692 0.806

C6V27 GRU 0.665 0.791 0.896
SVM 0.776 0.784 0.796
BP 0.686 0.779 0.872

ELM 0.841 0.692 0.822
RF 0.686 0.777 0.877

C6W08 GRU 0.615 0.813 0.862
SVM 0.725 0.797 0.777
BP 0.630 0.797 0.856

ELM 0.816 0.663 0.800
RF 0.644 0.781 0.853

NanJi GRU 0.364 0.808 0.879
SVM 0.515 0.780 0.717
BP 0.369 0.800 0.883

ELM 0.628 0.616 0.753
RF 0.372 0.796 0.876

Given a horizontal analysis to Table 4, the GRU model still outperformed the other
4 models with respect to all the assessment criteria, as the intrinsic structure enables GRU
to preserve memories over the long term. The RMSE of GRU is 54.4% lower than that of
ELM at station 46714D. The prediction performance at station NanJi is the best among the
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six stations (RMSE = 0.265, R = 0.902, IA = 0.946), which may be due to the smallest data
number and average SWH at this station.

The scatter diagrams of observed and forecasted SWH for the lead times of 6 h are
illustrated in Figure 5. Although the increased forecasting horizons will result in a higher
level of dispersion, these points are still distributed relatively close to the diagonal line. The
predicted results obtained by GRU at station 46714D, C6V27, and NanJi are still satisfactory,
which may be attributed to less missing data in these area.Water 2020, 12, x FOR PEER REVIEW 13 of 21 
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Figure 6 provides the comparison of the five different algorithms for the 6 h prediction.
Although the forecasting accuracy decreased for all models, the deep learning method
GRU yielded better prediction results and captured the trend of data relatively well. The
superiority of using GRU in comparisons to the other four methods is because GRU
is proficient at identifying previous essential information to estimate the current state.
On the contrary, SVM, BP, RF and ELM belong to the shallow machine learning models.
The insufficiency of shallow machine learning models has restricted their application in
long-term time series prediction.
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What cannot be ignored is that a great difference in SVM with respect to the others
exists in the first panel of Figures 4 and 6. There may be two possible reasons to explain
this phenomenon. On the one hand, the parameter setting of SVM is considered according
to the previous study and in balance with the computational time. Therefore, the param-
eter setting of SVM may not be optimal for every buoy station. On the other hand, the
average SWH of 46714D is less than 1 m in the period selected, which is relatively small in
comparison with others.

4.3. Long-Term Span SWH Prediction

The prediction results with lead times of 12 h and 24 h are listed in Tables 5 and 6. The
longer the prediction horizon is, the weaker the link in the data series is. Therefore, there is
no doubt that RMSE increases, whereas R and IA decrease at the same time. However, the
performance of GRU is still the best among these five algorithms and its prediction error
was within an acceptable range with lead times up to 12 h and 24 h. It can be seen that
the results obtained by ELM and SVM are invalid. At station 46714D, the RMSE obtained
by GRU is only 0.371 for 12 hourly forecast, whereas the same indices of ELM and SVM
are high, up to 0.840 and 0.663, which indicates that GRU has a stronger adaptability and
reliability for long-term horizon prediction.

Table 6. Error indices of predicted SWH with lead times of 24 h.

Station Algorithm RMSE R IA

46714D GRU 0.479 0.735 0.808
SVM 0.707 0.729 0.478
BP 0.498 0.694 0.794

ELM 0.950 0.475 0.613
RF 0.509 0.682 0.803

46735A GRU 0.612 0.619 0.726
SVM 0.657 0.613 0.608
BP 0.621 0.607 0.706

ELM 0.738 0.445 0.636
RF 0.624 0.597 0.717
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Table 6. Cont.

Station Algorithm RMSE R IA

46787A GRU 0.413 0.546 0.641
SVM 0.624 0.534 -0.1679
BP 0.418 0.536 0.623

ELM 0.892 0.172 0.297
RF 0.426 0.514 0.627

C6V27 GRU 0.862 0.607 0.731
SVM 0.918 0.603 0.632
BP 0.866 0.601 0.725

ELM 1.019 0.486 0.667
RF 0.882 0.587 0.729

C6W08 GRU 0.805 0.629 0.691
SVM 1.056 0.613 0.330
BP 0.807 0.621 0.687

ELM 1.330 0.259 0.452
RF 0.822 0.600 0.690

NanJi GRU 0.486 0.612 0.703
SVM 0.593 0.569 0.484
BP 0.496 0.587 0.702

ELM 0.867 0.298 0.478
RF 0.504 0.572 0.695

As shown in Figure 7, an obvious hysteresis in 24 h forecasting exists, but the general
trends of the predicted SWH are consistent with the observed values. This may be because
the dependence of the SWH on the previous wave characteristics decreases in a large
forecasting time horizon.

In addition, it is somewhat disappointing to find that GRU underestimated the SWH
for 12 h and 24 h forecasting, especially in extreme events at all stations. A possible
explanation for these results might be that slight sea and moderate sea accounted for an
overwhelming portion in the training process of GRU.
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The peak SWH of 7.4 m observed on 8 August 2015 at 13:00 is predicted as 5.744, 5.699,
5.373, 3.961 m by GRU for lead times of 3 h, 6 h, 12 h, and 24 h at station 46714D. Station
C6V27 suffered the Super Typhoon Haima on 20 October 2016, where the observed SWH
was 11.7 m at 18:00. The prediction of peak made by GRU is 9.818, 9.383, 8.211, 6.464 m
respectively for 3 h, 6 h, 12 h, and 24 h forecasts. The most likely cause of underestimation
for larger wave heights is that usually the training datasets do not contain sufficient similar
data for the peak wave height.

5. Conclusions

GRU is a novel deep learning method that is accomplished in retaining long-term
information with high efficiency, which can provide fresh insight into the time series
prediction. In this paper, the performance of GRU for SWH prediction with lead times of 3,
6, 12 and 24 h was investigated. To test the performance of GRU, current SWH and wind
speed of the past 3 h collected from six buoy stations distributed at various sites in the
Taiwan Strait and its adjacent waters were fed as inputs, and the error indicators RMSE, R,
and IA were utilized to evaluate the accuracy.

Overall, it can be concluded that GRU has the ability to produce better forecasting
values and capture the general data trend. By comparison, the predictions made by SVM
and ELM are rather inaccurate and tend to have larger fluctuations. For BP and RF, the
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forecasting skill is slightly inferior to that of GRU. Because GRU has a strong edge in long-
term time series prediction, the performance with lead times of 3 and 6 h are satisfactory
and trustworthy. As forecasting time increased, the root mean square error increased and
the coefficient of correlation decreased for all models. However, the error statistics of GRU
are still within an acceptable range. Although GRU does not completely achieve success
in predicting peak wave heights for extreme events, much of the underestimation can be
attributed to the lack of sufficient similar large wave heights in the training database.

Benefitting from the recurrent structure and special gate mechanism, it is believed
that GRU can provide SWH predictions with multistep lead times in a reliable and prompt
way, which is favorable for coastal disaster risk reduction and mitigation management. As
long as the forecasts exceed predefined threshold levels, hazard warnings with detailed
scale will be issued immediately, which may give assistance to the authorities and decision-
makers to create better preparedness for the sake of coastal residential communities and
safe offshore operation. A further improvement on the SWH prediction accuracy is possible
by provision of more input features such as wind direction and wave direction.
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