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Abstract: River ecosystems are one of the dynamic components of the terrestrial carbon cycle that
provide a crucial function in ecosystem processes and high value to ecosystem services. A large
amount of carbon is transported from terrestrial to the ocean through river flows. In order to evaluate
the contribution of Sile River ecosystem to the global carbon stock, the river ecosystem Organic
Carbon (OC) stock was quantified for sediments and dominant submerged aquatic macrophytes
(SAMs) during the two sampling periods at three different stations along the Sile River (North Eastern
Italy). The total mean ecosystem OC stock was 95.2 + 13.8 Mg C ha~! while those of SAMs ranged
from 7.0 to 10.9 Mg C ha~! which accounted for approx. 10% of the total OC stock. The total above-
ground biomass retains approx. 90% of the SAM carbon stock, with a mean of 8.9 + 1.6 Mg C ha~!.
The mean sediment OC stock was 86.6 + 14.5 Mg C ha~! with low seasonal variations among the sites.
Indeed, various environmental parameters and hydrodynamics appear to affect the accumulation
of OC within the river ecosystem. The results highlight the role that freshwater river ecosystems
play in the global carbon cycle, which consequently provide a baseline for future river ecosystem
monitoring programs. Furthermore, future studies with additional sites and seasonal surveys of the
river will enhance our understanding of the effects of global climate change on the river ecosystem
and improve the ecosystem services.
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1. Introduction

Rivers represent the most dynamic components of the terrestrial carbon cycle and
provide important functions in ecosystem processes. Significant amounts of organic and
inorganic carbon typically deliver rivers from the surrounding landscape or originate from
the photosynthesis of algae and plants in the water [1]. Despite their dynamic role in
the terrestrial carbon stock cycle, river systems and the potential mechanistic controls of
OC storage are among the least investigated [2], in comparison to other ecosystems. To
date, the limited conducted research suggests that river networks might store a significant
proportion of terrestrial carbon [3,4]. Research in ecosystem processing underlines the
importance of Organic Carbon (OC) in river systems. Indeed, the fluxes in OC in terrestrial
freshwater systems indicate that a marked portion of terrestrial carbon is stored within
river networks [2]. River OC fluxes exert an important control of freshwater ecosystems
and their ecosystem services. Therefore, understanding physical and biological processes
in rivers is crucial for determining the potential impacts of global climate change, land-use,
and land-cover changes on OC dynamics within river systems [5].

Different studies highlight the difficulty in identifying the major sources of carbon
to freshwater ecosystems, which is critical to properly link the terrestrial and aquatic
carbon cycles [6].

Globally, rivers receive about 2.9 Pg (one billion tonnes) C each year, a quantity that
represents the differences between global annual terrestrial production and respiration [5,7].
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A major part of this carbon is associated with sediments mobilized through surface runoff.
Only a fraction of this carbon is transported directly into the oceans (0.9 Pg C y~!) while
the majority is mineralized or out-gassed to the atmosphere (1.4 Pg C y~!), or buried
in lakes and reservoirs (0.6 Pg C y!) [7,8]. Indeed, the ability of natural ecosystems to
sequester significant amounts of OC provides a good example of an ecosystem service that
can be used in climate mitigation programs on local and regional scales. These mitigation
programs may reduce the potential impact of increasing carbon dioxide concentrations in
the atmosphere, which are directly and indirectly driving climate change.

Like many ecosystems, river environments around the world are threatened by cli-
mate changes [9]. Global changes in rivers include, but are not restricted to, water flow
interruptions, temperature increases, changes in nutrient loads, an effluent of new chemi-
cals, occurrence of invasive species and biodiversity losses [9,10]. All of them affect the
structure and functioning of the river ecosystem, and thereby their ecosystem services [8,9].
Notwithstanding, increasing concentrations of aquatic carbon is one of the critical changes
in river ecosystems [11-13]. Research in this regard mostly focuses on ocean acidification,
which is currently rising as a consequence of human activities” emission [14]. However,
the effects of elevated atmospheric CO; levels on freshwater CO, have not been clearly
demonstrated [12]. The degradation of dissolved organic carbon (DOC) has been men-
tioned as a potential driver of CO, concentrations in freshwater [15]. The increased DOC
concentration can have multiple effects on aquatic macrophyte productivity [16], and hence
on the entire food web and ecosystem. Aquatic macrophytes play a crucial role in carbon
storage in aquatic systems. However, aquatic macrophytes are affected by increasing
carbon concentrations which are related to rising CO, emissions, which increase organic
matter production by aquatic primary producers [17].

Sile River (North Eastern Italy) is the longest (95 km) and the sole fully flat resurgence
river in Europe, with a basin area of about 755 km?, located between the basins of the Brenta
and Piave rivers (Veneto Region Italy) [18-20]. This river originates from resurgent areas
which are located between Padua and Treviso Provinces in North Eastern Italy [21] and
flows into the Northern Adriatic Sea [22]. The river is affected by several anthropogenic
pressures, such as the channel’s modification by different human activities, discharge of
agricultural and urban wastewater and the intrusion of alien species, like Procambarus clarkii
Girard, 1852 and Silurus glanis Linnaeus 1758 [23]. The peculiar characteristics of water flows
(in normal conditions ranging from 25-30 to 35-45 m?/s) and temperature (12-14 °C) [24]
lead to the foundation of an environment with high naturalistic value, but also refuge for
all the spontaneous flora of the territory, in a balance between submerged and riparian
species and offering food and shelter to animals [25]. The vegetation in the riparian areas has
been affected by the composition and inclination of the riverbanks and the environmental
conditions. Various aquatic plants occur and change along the river, e.g., Vallisneria spiralis L.,
Elodea canadensis Michx., Callitriche stagnalis Scop. and Potamogeton natans L.

Research on river OC stock is very scarce and most studies come from South and
North America, with limited studies in Europe [26,27]. Thus, quantifying the OC stocks
in these ecosystems may help to define the baseline conditions, which can be further
used to address the impact of climate change on OC stocks in aquatic ecosystems. The
goals of this work are (i) to quantify the Sile River ecosystem OC stock of sediment and
dominant aquatic macrophytes during two sampling periods: summer and winter; (ii) to
evaluate the river OC stock in comparison to other ecosystems; (iii) to evaluate the effect of
environmental parameters on the ecosystem carbon storage capacity.

2. Materials and Methods
2.1. Study Area

Submerged aquatic macrophytes (SAMs) and sediments were collected from Sile River
in two different sampling campaigns: January (winter) and late July (summer) 2019 in
order to estimate the variations in OC stock during spring, the season with the highest
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primary productivity [28,29]. Three stations were selected along the Sile River according to
their characteristics (Figure 1):

Storga: a resurgent station with spring characteristics and clear shallow water (ca.
7.0 m transept and 0.5 m depth). Storga is located inside the park “Parco dello Storga”
of about 58 ha. The park is characterized by riparian formations of willows (Salix sp.),
poplars (Populus sp.) and alder (Alnus glutinosa L.) and by the presence of fountains,
streams, and flooded lowlands and hygrophilous woods [30]. The mean water column
temperature is 13.7 °C [20];

Morgano: station before Treviso city centres and located inside the oasis of Santa
Cristina. The oasis represents a great marsh of Sile River and a biotope of high
naturalistic value with numerous springs. The reserve is part of the Natura 2000
Network as a Site of Community Interest (SCI) and a Special Protection Area (SPA).
The station is characterized by ca. 10.0 m transept with maximum 2.5 m water depth.
The mean water column temperature is 13.7 °C [20];

Treviso: is located within the town of Treviso (ca. 25.0 m transepts and ca. 2.5 m depth)
with anthropogenic impacts from densely populated neighbourhoods and commercial
activities and near a hydroelectric plant. The mean water column temperature is
13.9 °C [20].

5 10 km

Figure 1. Sampling stations along Sile River, North Eastern Italy (Storga, Morgano and Treviso).

2.2. SAM Classification and Carbon Quantification

Samples of SAMs were collected in 5 m transept at each station along Sile River in

order to calculate the biomass (kg/m? wet weight) for each species according to Madsen
and Wersal [31]. SAMs were collected using a rake within a square of 50 x 50 cm?
and kept separately in plastic bags [32]. In laboratory, SAMs were identified according
to Pignatti et al. [33]. After separating roots and rhizomes (below-ground part) from
leaves (aboveground part), organic carbon (OC) contents were measured using a CHNS
elemental analyser (Elementar Vario MICRO Tube, precision <0.1% abs.) after sample parts’
pulverizing [34,35]. All analyses were performed in duplicate on different days to obtain a
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coefficient of variation <5%. The concentrations of OC are reported in Mg C ha™!, after
considering the cover areas of each SAM species.

2.3. Sediments Analyses

Sediments were sampled using a Plexiglass corer (i.d. 10 cm); each sample was divided
into four different subsamples: 0-5, 5-15, 15-25 and 25-35 cm. Three replicates for each
subsample were mixed and sorted for OC analyses and the determination of grain-size (%
< 63 um) and density (g/cm?). The sediment pH and Eh were determined using a portable
pH-meter (pHenomenal pH 1100 H, VWR, pH accuracy =+ 0.005 pH, Eh accuracy + 0.3 mV).

Organic carbon (OC) was determined indirectly as differences in Total Carbon (TC)
and Inorganic Carbon (IC). Total carbon was determined directly by CHNS Elemental
Analyser after sediment pulverization with a sediment mill. Inorganic carbon concentration
was determined after sample combustion for two hours at 440 °C [36]. All analyses
were performed in duplicate in different days to obtain coefficient of variation (CV) <5%.
The concentrations of sediment OC were reported in Mg C ha~!. The percentage of
Fines (fraction < 63 um) was obtained by wet sieving approx. 50 g of dried sediment
throughout Endecotts sieves (ENCO Scientific Equipment, Spinea, Italy), after removing
shell fragments [37]. Sediment dry density (g/cm~3) was determined by gravimetric
method weighting the sediment before and after sediment desiccation at 110 °C [38].

2.4. Water Environmental Parameters

Temperature (°C), redox potential (Eh) (accuracy =+ 0.15%) and pH (accuracy £0.015 units)
were determined using a portable pH meter (pHenomenal, pH 1100 H, VWR,). Dissolved
oxygen was determined using an oxygen portable meter (WTW ProfiLine™ Oxi 3310, accuracy
£0.01 mg/L, White Plains, NY, USA). Three surface water samples were collected. Sub-
samples were filtered through GF/F Whatman glass microfiber filters (porosity 0.7 um). Filtered
waters were analyzed for nutrient (ammonium, nitrite, nitrate, reactive phosphorus, silicate)
determination according to the spectrophotometric analysis procedures reported by Strickland
and Parson [39]. The quantification at different wavelengths of phosphates, silicates and
inorganic nitrogen compounds occurred by comparison with calibration curves made with sea
water. All colorimetric analyses were performed in triplicate. Chlorophyll-a (Chl-a) concentrations
were measured by spectrophotometric analysis [40] using the acetone (90%) extraction protocol.
Two additional 500 mL water sub-samples were filtered in situ through GF/F Whatman glass
microfiber filters (porosity 0.7 um), previously dried at 110 °C for two hours, in order to obtain
the concentration (mg L.~!) of the total suspended sediment (TSS), as described previously by
Sfriso et al. [41].

Visualization of data was performed using R software (version 3.5.3) and R studio
[RStudio, PBC, Austria] (version 1.2.5033) using the packages: ggplot2; ggpubr; RColor-
Brewer. The study stations map was created using software QGIS (version 2.18.28).

3. Results
3.1. SAMs Community Composition and Biomass

The in-field sampling revealed that eight species of SAMs were present along the
Sile River during the two monitoring periods (summer and winter) in the sampling
stations (Table 1). In total, two alien species were identified: Elodea canadensis and
Ceratophyllum demersum L.
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Table 1. List of submerged aquactic macrophytes (SAMs) and Biomass (kg/m? wet weight).

Summer Winter
Storga Morgano Treviso Storga Morgano Treviso
Species kg/m? w.w.
Berula erecta 2.53 227 1.27 1.15
Callitriche brutia 3.81 3.60 4.87 2.08
Callitriche stagnalis 5.39 4.60
Ceratophyllum demersum 3.95 3.85 3.19 3.91 2.75 2.58
Elodea canadiensis 0.54 0.49 0.56 0.43
Myosotis scorpioides 4.34 417
Myriophyllum spicatum 1.18 1.12
Stuckenia pectinata 512 2.45 1.41 491
Vallisneria spiralis 5.56 527 1.43 1.04

The station at Treviso was dominated by all the listed species, except Myosotis scorpi-
oides L. and Callitriche stagnalis Scop. Instead, the latter were present in the SAM community
at Storga. Myriophyllum spicatum L. was found only at Treviso, with an annual average
biomass of approx. 1.15 kg/m? whereas Ceratophyllum demersum was collected from all
stations, with the highest biomass (3.95 kg/m?) recorded at Storga during the summer pe-
riod. The biomass of this species decreased during winter and showed the lowest biomass
(2.58 kg/m?) at Treviso.

The lowest vegetation biomass was represented from Elodea canadensis, with values
<0.6 kg/m? both at Morgano and Treviso. The dominant SAM recorded at Treviso during
summer was Vallisneria spiralis L. (5.26 kg/m?), while in winter Stuckenia pectinata (L.)
Borner showed the highest biomass (4.91 kg/m?). Conversely, at Morgano during the
summer, the SAM with the highest biomass was Stuckenia pectinata (5.11 kg/m?) while in
winter the most species abundant was Callitriche brutia Petagna (4.86 kg/m?). At Storga
Callitriche stagnalis, Myosotis scorpioides and Ceratophyllum demersum represented ca. 95% of
the total biomass. Indeed, the biomass of these species did not show significant seasonal
variations. For instance, the biomass of Myosotis scorpioides and Ceratophyllum demersum
decreased by 4% and 1%, respectively, from summer to winter. Regarding the biomass
variability, the species that had the greatest loss (>70%) during the winter were: Stuckenia
pectinata at Morgano and Vallisneria spiralis at Morgano and Treviso.

3.2. Water and Sediment Parameter Variations

The variations in the water column parameters of the three stations are shown in Table
S1. The mean concentration of Reactive Phosphorus (RP) in all the stations during the
two seasons was of 0.78 £ 0.38 uM, with the highest concentration at Morgano in summer
(1.23 pM). On the contrary, the lowest RP values were measured at Treviso (0.31 and 0.30 uM
in summer and winter, respectively). Regarding DIN (Dissolved inorganic nitrogen), the
highest concentrations were measured at Storga (77.0 uM in summer, 81.2 uM in winter).
The concentrations of DIN increased during the cold months at all stations. However, in
accordance with the lowest RP values, DIN concentrations at Treviso were also the lowest
(mean value: 63.5 uM).

The pH and DO values in the water column highlighted the low variability between
the stations and the sampling periods. Indeed, the range of pH was 7.6-7.9 and the range of
DO was 10.1-14.5 mg/L, whereas the Chl-a showed the highest concentration at Morgano
(mean: 2.40 pg/L) and Storga (mean: 1.84 ug/L) in comparison to Treviso (average:
1.03 ng/L). The clear water recorded at Storga displayed the lowest TSS concentration
(4.85 mg/L). This value increased at Morgano (9.65 mg/L) and Treviso (15.7 mg/L).
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Regarding the sediment (Table S1), pH ranged between 7.04 and 7.40 in all stations
with a mean value of 7.22. The redox potential (Eh) ranged from 82.3 to 228 mV with
the lowest values at Treviso. The highest percentage of Fines (Table S2) was measured
at Storga (87% for the top 35 cm), while at Treviso the percentage of Fines decreased to
67%. In contrast, Morgano showed the sediment with the lowest percentage of Fines
(44%). Moreover, the highest Fine percentage was found at 25-35 cm depth at all stations.
Regarding the total nitrogen (TN) concentration (Table S3) in the top 35 cm sediment
(4.18-5.87 Mg TN ha!), higher values were observed during summer with little variability
between stations.

3.3. Sediment Carbon Determination

The distribution of OC in the sediment profile of Sile River sampling sites is shown
in Figure 2. The average OC concentration (0-35 cm) was 86.6 Mg C ha~!. The highest
OC content (0-35 cm) was recorded at Storga during the two sampling periods (104.7 and
104.2 Mg C ha~! in summer and winter, respectively), whereas the lowest content was
recorded at Treviso (71.8 Mg C ha~!) in winter. Morgano showed an increasing trend from
75.8 to 84.3 Mg C ha—1, whereas at Treviso OC decreased from 79.8 to 71.8 Mg C ha—1.

The OC content in the sediment 5 cm top layer in all sampling stations ranged between
10.5 and 17.5 Mg C ha~!, increasing with the sediment depth. The maximum content was
recorded at 25-35 cm depth (21.7-33.7 Mg C ha™1).

In the 5 cm top layer at Storga in winter, OC was 17.6 = 3.75 Mg C ha~! and increased
to 33.7 + 3.41 Mg C ha™! in the 35 cm sediment depth, whereas in summer the OC
content increased from 12.2 4+ 4.86 Mg C ha~! (0-5 cm depth) to 32.3 & 2.89 Mg C ha™!
(25-35 depth). Even the OC content at Treviso and Morgano increased with sediment depth
(5 to 35 cm) by ca. 200%.

Storga Morgano Treviso
0_
g
<
O |
Em 25
% Sediment depht:
L 501
b= . 0-5¢cm
3 B s5-15cm
5 15-25cm
2 759 25-35cm
S
IS
@
£ 100
5
@
)
125

Summer Winter Summer  Winter Summer  Winter
Figure 2. Distribution of sediment OC content for Sile River sampling stations.

3.4. SAMs Carbon Determination

The total aboveground biomass stored ca. 90% of the SAM carbon stock (Figure 3). The
mean OC stored by C. stagnalis at Storga was 3.83 Mg C ha~! (aboveground: 3.41 Mg C ha™ !,
belowground: 0.4 Mg C ha~!). However, the OC stored in this species decreased to
2.79 Mg C ha~! (aboveground: 2.64 Mg C ha~!, belowground part: 0.15 Mg C ha™!) at
Morgano and to 2.12 Mg C ha~! (aboveground: 1.91 Mg C ha~!, belowground:
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SAMs carbon contents (Mg C ha‘1)

0.21 Mg C ha™!) at Treviso. Seasonally, the OC stored in C. brutia increased in the summer
period by 11.6%.

Regarding S. pectinata, the mean OC storage at Treviso was 2.48 Mg C ha~! (above-
ground: 2.28 Mg C ha~!, belowground: 0.19 Mg C ha~!), while at Morgano OC was
1.82 Mg C ha~! (aboveground: 1.62 Mg C ha~! and belowground 0.20 Mg C ha~!). How-
ever, the OC stored in this species reduced during the winter period by 64.4%. Ceratophyllum
demersum was recorded at all stations with a mean OC content of 1.78 + 0.28 Mg C ha~!.
Vallisneria spiralis and B. erecta were only present at Treviso and Morgano and stored
1.09 £ 0.65 and 1.21 4 0.27 Mg C ha—?, respectively. Myosotis scorpioides accumulated 24.3%
of the total OC (mean value: 1.88 Mg C ha~!, aboveground: 1.65 Mg C ha~!, belowground:
0.22 Mg C ha™!) stored in SAMs at Storga. Some species exhibited low levels of OC storage
(<1 Mg C ha~1'), for instance, E. canadiensis averagely stored 0.20 Mg C ha~! at Treviso and
Morgano and M. spicatum accumulated 0.49 Mg C ha~! at Treviso.

125 Storga Morgano Treviso Aboveground
10.01
7.5 _ -
5.0 - Species:
25 - Berula erecta
P | B cariitiiche brutia
001 — — ‘ — . - Callitriche stagnalis
Summer Winter Summer Winter Summer Winter . Ceratophyllum demersum
0.00- Elodea canadensis
. - . Myosotis scorpioides
0.25 - Myriophylium spicatum
0.50 - I Stuckenia pectinata
Vallisnena spiralis
0.75 _ .
1.001
1.25

Storga Morgano Treviso

Belowground

Figure 3. Distribution of OC storage in SAMs in the Sile River sampling stations (Aboveground [range: 0-12.5 Mg C ha~']
and belowground [range: 0-1.25 Mg C ha~1]).

3.5. Ecosystem OC Stock

The distribution of the OC stock of the Sile river ecosystem (both sediment and SAMs)
is shown in Figure 4. The mean ecosystem OC was 96.2 + 14.3 Mg C ha~! in summer
and slightly lower in winter (94.2 + 16.4 Mg C ha~!). The sediment contributed with
86.6 Mg C ha~!, while SAM biomass with 8.66 Mg C ha~! accounting for 9.9% of the total
ecosystem OC stock. Storga showed the highest level of OC (112.2 Mg Cha~!, i.e., 104.5 and
7.7 Mg C ha~! in sediments and SAMs, respectively), without seasonal differences. In
the other two stations (Morgano and Treviso) OC stocks were 88.4 and 85.0 Mg C ha™t,
respectively, with slight decreases in winter (6.3% and 12.2%, respectively). In these stations
the sediments fraction was approx. 90% of the total.
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Figure 4. Distribution of ecosystem carbon stock for Sile River sampling stations.

4. Discussion
4.1. SAM Carbon Estimation and Environmental Considerations

This study highlights the capacity of the Sile River ecosystem to store OC in sediments
and aquatic plants. The mean ecosystem OC stock ranged from 79.4 to 112.5 Mg C ha!
with no significant seasonal variations among stations. This can be related to the low
variability of vegetation biomass among seasons. The SAM accounted for ca. 10% of
the ecosystems OC with a mean value of 8.6 & 1.7 Mg C ha~!. Furthermore, the total
aboveground biomass accounted for 90% (8.9 4+ 1.6 Mg C ha~!) of the vegetation OC
stock, contrary to the seagrass meadows [42] and mangroves [43], which had the largest
proportion of OC stock in belowground parts.

The highest OC amount in the Sile River was stored in the sediment; this could be
due to the high sediment capacity for C sequestration [44]. In addition, the highest OC
stock was recorded at Storga, which is a resurgent zone of shallow water with spring
characteristics influenced by groundwater discharges developed both by springs feeding
local sinkholes and waterways sourced inland [30]. As a result, the site is characterized
by the finest sediment grain-size and relatively high sediment C:N ratio. The increased
storage of carbon in the sediment at Storga could be related to the high affinity of carbon
for fine sediments [45]. On the contrary, the sediment OC stock at Morgano and Treviso
was lower because sediments were coarser, as previously described by Kauffman et al. [43].

The vegetation composition and structure of river ecosystems is determined by a
combination of environmental parameters, including topography, water depth, salinity,
nutrient concentration, sediment type, and inter-vegetation competition [46]. Indeed, the
seasonal variations in the DO and DIN of water at Morgano and Treviso which were
dominated by S. pectinata and V. spiralis could result in higher OC storage variability among
the sampling periods, with a 25% reduction in OC during winter. Moreover, the SAM
biomass in these stations increased from winter to summer in agreement with the increasing
OC stock of SAMs. Similarly, the size and morphometry of water bodies influenced the
SAM distribution, which was affected by the concentrations of DO and pH in water
column [47]. There was no clear relationship between OC stock in SAMs and C and N
concentrations in sediments. Equally important, several other unmeasured factors were
assumed to influence variations in the river carbon stock. For instance, phytoplankton and
epiphytes probably had an influence on the water quality and may have been responsible
for the SAM biomass changes as recorded from Frodge et al. [47]. These authors showed
that growing photosynthesizing plants within the water column contributed to higher
mid-water column DO concentrations within patches of E. canadensis and C. demersum.
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The low water flow and lower TSS at Storga may favor the development of SAMs of
a distinctive vegetation assemblage, like Myosotis scorpioides and Callitriche stagnalis. In
this context, Chambers et al. [48] showed that the biomass and shoot density of SAMs
significantly decreased with the increasing current velocity within the weed beds. In-
deed, the lowest SAM diversity and highest biomass were observed at Storga which was
characterized by low water flow. It is not surprising that M. scorpioides, which was only
recorded at Storga, is commonly present in freshwater marshes and slow-moving water.
Furthermore, this species grows best in saturated soils with high carbon content and is
usually found growing with many obligate plant species such as water parsley (Oenanthe
sarmentosa C. Presl ex DC, [49]).

The highest OC accumulation at Treviso and Morgano was recorded in Callitriche
brutia Petagna and Stuckenia pectinata. In contrast, V. spiralis accumulated lower OC during
summer despite the highest biomass obtained for this species in the same period. In fact,
the experimental evidence of a study by Coa and Ruan, [50] to investigate how V. natans
(Hydrocharitaceae) responded to high temperature and CO,, showed that the increase
in these parameters significantly enhanced the photosynthetic performance, growth and
clonal propagation of V. natans.

Moreover, it is important to state that the ecological status of the study stations was in
accordance with the Water Framework Directive (2000/60/EC), as previously described by
ARPAYV, 2019 [20]. The station of Storga was classified as an area with “Good” ecological
status, whereas the stations of Treviso and Morgano were assessed as “moderate”. Indeed,
this highlighted that the ecological status of the aquatic ecosystems might be related with
the ecosystem carbon stock capacity, as previously described by Buosi et al. [51] for the
sediment Carbon concentration in the seagrass meadows as bioindicator for the ecological
status of the Lagoon of Venice [52].

4.2. Ecosystems Carbon Stock Comparison

River ecosystems stored a significant proportion of terrestrial carbon stock [2]. The
studies that quantify the carbon stored in the River ecosystems are scarce [2,7,45]. The capac-
ity of ecosystems to store carbon is widely variable and related to the primary productivity
of ecosystem components [45]. Interestingly, the estimated carbon stock of the Sile river
ecosystem was comparable with the other ecosystems’ capacity to store carbon. In particu-
lar, the seagrass ecosystem had a globally carbon storage capacity ca. 200 Mg C ha~! [42].
This was related to the high primary production of seagrass meadows and their capacity
to filter out particles from the water column and store them in sediments [53]. However,
the mean carbon stock of seagrass biomass was 7.29 4= 1.52 Mg C ha~!, which is low when
compared with that in forests, which ranges from 30 Mg C ha~!, for boreal tundra wood-
lands, to 300 Mg C ha~! for tropical rainforests [54]. Similar values were obtained in the
wetlands in South Eastern Australia [45]. Shallow and deep freshwater marshes showed
a mean carbon stock of 200 4 20 and 230 + 190 Mg C ha~!, respectively. The permanent
open freshwater areas, however, exhibited a mean OC of 110 &+ 12 Mg C ha~! for the same
study [45]. Carbon is accumulated mainly in mangrove and salt marsh ecosystems, in
comparison to Sile river ecosystem. Kauffman et al. [43] showed that the mean ecosystem
carbon stock in salt marshes east of the mouth of Amazon river (Brazil) was 257 Mg C ha™!,
whereas the mean mangrove carbon stock was 361-746 Mg C ha~!. Similarly, the estimated
carbon stock of the mangrove ecosystem within the delta of the Zambezi River (Mozam-
bique) ranged between 373 and 620 Mg C ha~! [55]. In the tropical riverine wetlands of
the southern pacific coast of Mexico, Adame et al. [56] estimated that the carbon stock of
the mangrove ecosystem was 4-fold higher than the average carbon stock of the Sile river,
whereas salt marshes had a mean carbon stock of 336 Mg C ha~!.

5. Conclusions

This study highlights the contribution of the river ecosystems in the global carbon
stock. The quantification of stored OC within sediment and SAMs from the Sile River
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implied that the storage capacity for Carbon of the river ecosystem was varied, depending
on the differences of vegetation biomass and SAMs biodiversity. Furthermore, the variabil-
ity of water and sediment environmental parameters were found to affect the ecosystem
OC storage capabilities. These findings shed light on the role freshwater rivers play in
the global carbon cycle. Indeed, the estimated OC storage capacity from this preliminary
research showed that river ecosystems, like Sile River, can significantly contribute to the
global assimilation and storage of carbon dioxide. The conservation and protection of river
ecosystems have the capacity to reduce the emissions of greenhouse gas and increase the
storage of carbon stock while delivering key ecosystem services to river communities. For
this reason, the study and protection of river ecosystems and the conservation of SAMs,
threatened by anthropogenic pressures and climate change, is fundamental for environ-
mental improvement and ecosystem services. Furthermore, future studies with additional
sites and seasonal surveys of the river will enhance our understanding of the effects of
global climate changes on the river ecosystem and improve the ecosystem services.
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