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Abstract: A Transient Storage Model (TSM), which considers the storage exchange process that
induces an abnormal mixing phenomenon, has been widely used to analyze solute transport in
natural rivers. The primary step in applying TSM is a calibration of four key parameters: flow zone
dispersion coefficient (K f ), main flow zone area (A f ), storage zone area (As), and storage exchange
rate (α); by fitting the measured Breakthrough Curves (BTCs). In this study, to overcome the costly
tracer tests necessary for parameter calibration, two dimensionless empirical models were derived to
estimate TSM parameters, using multi-gene genetic programming (MGGP) and principal compo-
nents regression (PCR). A total of 128 datasets with complete variables from 14 published papers
were chosen from an extensive meta-analysis and were applied to derivations. The performance
comparison revealed that the MGGP-based equations yielded superior prediction results. According
to TSM analysis of field experiment data from Cheongmi Creek, South Korea, although all assessed
empirical equations produced acceptable BTCs, the MGGP model was superior to the other models in
parameter values. The predicted BTCs obtained by the empirical models in some highly complicated
reaches were biased due to misprediction of A f . Sensitivity analyses of MGGP models showed
that the sinuosity is the most influential factor in K f , while A f , As, and α, are more sensitive to
U/U∗. This study proves that the MGGP-based model can be used for economic TSM analysis, thus
providing an alternative option to direct calibration and the inverse modeling initial parameters.

Keywords: hydromorphic variable; Multigene Genetic Programming (MGGP); sensitivity analysis;
solute transport; Transient Storage Model (TSM); TSM parameter estimation

1. Introduction

Precise prediction of solute transport in natural streams is essential to management of
water quality in rivers. To analyze the fate and transport process of solutes, tracer testing
using a conservative or non-conservative tracer is a one straight forward method used in
many solute transport studies. In order to analyze solute transport mechanisms with a
tracer test, assessment and measurement of hydraulic and, geomorphic properties and
breakthrough curves (BTCs) are necessary. The obtained BTCs are used for straight analysis
and estimation of solute mixing parameters in mixing analysis models. However, in a
natural river system, analysis of the fate of solutes requires quantification of the effects
of transient storage zones, including factors such as bed material, pool-riffle, channel
meander, artificial hydraulic structures, and aquatic vegetation (Figure 1). In Figure 1, the
red dashed lines indicate the hyporheic exchange, and solid navy lines indicate free flows
through surface transient storages. These transient storage zones drastically influence flow
structure and cause anomalous dispersion characteristics which cannot be simulated using
a conventional one-dimensional advection dispersion equation model (1D-ADE) as shown
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in Figure 2. Thus, previous research has advocated models that account for the effect of
transient storage rather than 1D-ADE in order to better represent skewed BTCs with long
tails [1–10].

Figure 1. Schematics of the surface, hyporheic transient storage zones in an alluvial valley (modified after [11–15]).

Figure 2. Calibrated BTCs of Cheongmi Creek experiment data from [16] using 1D-ADE and TSM.

In order to solve the anomalous mixing problem shown in Figure 2, many efforts have
focused on the development of phenomenological models that simulate the BTCs observed
in natural tracer tests [17]. Representative models that were developed over the past
decades include the following: conventional Transient Storage Model (TSM) [10], multiple
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zone TSM [18], Fractional advection-dispersion equation model (FADE) [19], Modified
advection-dispersion model (MADE) [20], Multirate Mass Transfer Model (MRMT) [21],
Advective Storage Path Model (ASP) [22], Continuous Time Random Walk approach
(CTRW) [23], Solute Transport in Rivers (STIR) [24], and Aggregated Dead Zone (ADZ) [25].
Those models are continuously updated in order to reflect real mixing phenomena. Among
the phenomenological models that consider transient storage, TSM is the most widely used
solute transport model. TSM imitates the complicated natural river mixing process due to
transient storage by simplifying the perpendicular mass exchanges between two zones, a
mobile zone (main flow zone) and an immobile zone (storage zone) as shown in Figure 3.

Figure 3. Conceptual diagram of TSM for conservative pollutants.

TSM requires calibration of four key parameters, which are main flow zone dispersion
coefficient (K f ), main flow zone area (A f ), storage zone area (As), and mass exchange rate
(α), by inverse modeling in which best fit parameters can be found by matching simulated
BTC to the measured curve. In particular, one-dimensional transport with inflow and
storage (OTIS), which is a finite difference method numerical model, and its parameter
estimator OTIS-P are common software tools used for TSM analysis [26]. However, many
investigators have reported that the OTIS-P suffers from the equifinality problem that the
calibrated TSM parameters may be local optima or unreasonable parameter sets [27,28].
Several investigators have attempted to overcome the local minima problem by adopting
meta-heuristic optimization algorithms [16]. Even though the meta-heuristic optimization
methods have an advantage over local search algorithms, there is a problem in that the
estimated TSM parameter values differ given different curve similarity criteria [16]. From
another point of view, many researchers have focused on identifying the properties that
contribute to uncertainty in TSM parameter estimation [25,26,29,30]. For example, a study
that took the TSM parameter combination point of view showed that the value of experi-
mental Damkohler number (DaI), which is the ratio of solute advection and the storage
effect, in a reasonable range [0.5 10] has less uncertainty, so DaI is used as a reference value
in reasonable TSM parameter estimation [29]. In order to overcome uncertainty, uncertainty
software tools were developed using statistical approaches, such as Monte-Carlo analy-
sis [28], and a generalized likelihood uncertainty estimation (GLUE) framework [30]. On
the other hand, a recent study spotlighted the computational points of TSM, and proved
that computational conditions such as grid size (dx) and computational time step (dt) affect
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the result of TSM parameter estimation since numerical models have numerical errors [31].
Overall, TSM parameter estimation using inverse modeling has a primary limitation in that
it requires BTC measurement data and hydraulic data from tracer tests for every parameter
estimation. For this reason, conventional parameter estimation methods are infeasible
for mixing studies of large-scale rivers. For example, recent studies exploiting the solute
transport models pay attention to the contaminant source identification problem [32–34].
However, such studies are conducted under the assumption that the mixing parameters
are known since both 1D-ADE and TSM require calibration of parameters using inverse
modeling, which is a high-cost method with a great deal of uncertainty. More specifically,
users have to re-estimate TSM parameters when discharge or bed-form change, even at the
same stations since hydraulic properties, which influence TSM parameters, have changed.

To overcome the drawbacks of parameter estimation with inverse modeling, empirical
equations to calculate the properties of transient storage have been developed by analyzing
their relationship with hydraulic features, such as velocity, shear stress, and shape-related
factors in cross-section [4,10,35–41]. Jackson et al. [15] comprehensively classified hydro-
morphic factors accounting for diverse surface transient storage (STS) factors that exert
sudden changes in flow structure, apart from hyporheic transient storage (HTS). An addi-
tional accessible feature that explains STS in that article is a morphological feature, channel
sinuosity (Sn). Similarly, most of empirical equations used to estimate hte 1D-ADE dis-
persion coefficient KADE are functions of cross-sectional width (W), mean hydraulic depth
(h), mean velocity (U), and shear velocity (U∗) [42–49]. Early works that took a regression
approach to TSM parameter estimation focused on relating hydraulic properties using only
storage area ratio ε = As/A f . Recent studies produced extra parameters accounting for
transient storage zone, such as K f , the storage residence time Tsto = ε/α, and As [37–40].
Plus, a few studies [38,39] considered KADE as an influential factor accounting for transient
storage, but KADE cannot be obtained unless BTCs are available. More recently, a set
of empirical equations for OTIS-based TSM parameters, K f , As, and α, were proposed.
Femeena et al. [40] carried out a meta-analysis of various published studies on river mixing
tracer tests, and they included 1D-ADE dispersion coefficient, KADE, values in the deriva-
tion of the empirical equation for the main flow zone dispersion coefficient, K f . It has been
reported that KADE has a larger value than K f for the same BTCs since TSM deforms BTCs
by the composite effect of the four TSM parameters while 1D-ADE deforms BTCs with only
KADE [37]. The equations are based on non-linear regression analysis and finding equation
forms by trial and error; equation forms uncovered by this approach can be restricted by the
researcher’s intuition, so it is difficult to find hidden non-linear relationships. Even though
previous equations are valuable since they do not require much information for estimation
of the three TSM parameters, there have been no efforts to identify the main flow zone area,
A f , using the empirical model since many investigators regard it is a deterministic value
once hydraulic properties are measured in the tracer test. Thus, a complete model with the
four key transient storage parameters (K f , A f , As, and α) does not yet exist.

As data-driven approaches emerge, recently developed models have employed ma-
chine learning methods (e.g., support vector machine (SVM), artificial neural networks
(ANNs), and symbolic regression techniques). Symbolic regression techniques have the
advantage of producing explicit forms of equations, while the other machine learning
methods produce implicit results. Taking an example of the water resource problem,
multi-gene genetic programming (MGGP) was successfully utilized in daily streamflow
prediction [50], and prediction of KADE [41]. In accordance with the comparison study,
genetic programming (GP) showed superior results compared to SVM and particle swarm
model selection [51], whereas SVMs and ANNs have the potential for over-fitting and
challenge of kernel parameter tuning results [52].

This study has three main objectives. The first aim of this study was to develop new
dimensionless empirical equations for the complete set of TSM parameters, K f , A f , As,
and α, that reflect the effects of both hydraulic and morphological features, using MGGP,
which has been proven to be preferable in representing the non-linear behavior of the
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water quality variables as well as streamflow. In this study, we suggest new expressions
for A f in the analysis since the main idea of TSM implies that A f can vary when other
TSM parameters change, even though past efforts did not present an empirical equation
for the main flow zone area A f . The second objective was to investigate the applicability
of the proposed equations for a tracer injection experiment in a natural river, Cheongmi
Creek, Korea. Consequently, one-at a time (OAT) sensitivity analysis was conducted for
each empirical equation of the MGGP model in order to identify the major hydromorphic
property of each TSM parameter. Thus, the objectives of this study were to present new
alternative options for the TSM parameter estimation and to analyze the TSM parameters
in terms of hydromorphic properties that are rather easily measured.

2. Models and Methods
2.1. Transient Storage Model

The fundamental idea of a TSM is to simplify complex natural river into a free flow
zone and an immobile storage zone, as illustrated in Figure 3. After the first introduction
of a TSM, the executable program OTIS was developed; it additionally considers lateral
inflow and reactive solutes [26], and it is far the most popular TSM implementation [17].
TSM consists of a main flow zone equation (Equation (1)) and a storage zone equation
(Equation (2)), where solutes are exchanged perpendicularly between the two zones.

∂C f

∂t
= − Q

A f

∂C f

∂x
+

1
A f

∂

∂x
(A f K f

∂C f

∂x
) +

qL
A f

(CL − C f )− α(C f − Cs) (1)

dCs

dt
= α

A f

As
(C f − Cs) (2)

where C f and Cs are the concentration of the main flow zone and the storage zone, respec-
tively [M/L3]; Q is the discharge [L3/T]; A f and As are the area of the main flow zone and
the storage zone, respectively [L2]; K f is the dispersion coefficient in the main flow zone
[L2/T]; qL is the lateral water inflow [L3/T/L]; CL is the concentration of the lateral inflow
[M/L3]; and α is the mass exchange rate between the main flow zone and the storage
zone [1/T].

Remarks for the TSM

One-dimensional solute transport analysis is successfully applicable under the fol-
lowing three conditions: (1) statistically steady flow field; (2) constant cross-sectional area;
(3) complete mixing over the cross-section [8]. However, even if the cross-sectional mixing
is completed, the 1D-ADE simulation cannot be correct in complicated geometry, where
skewed BTCs with a long tail are observed [45,53]. Nevertheless, if the characteristic length
scale for variation is much larger than the channel variation, the longitudinal dispersion
process in Equation (1) can be reasonable [53]. Complicated geometry accompanies storage
zones where the solute is trapped. The streamflow area can be divided into the main flow
zone and storage zone, and concentration difference induces the mass exchange mecha-
nism between the two differed areas [54]. The TSM expresses the linear exchange process
regarding the mass exchange coefficient and the storage area ratio, adopting the gradient
induced mass exchange assumption (Equation (2)).

Since the TSM regards the cross-sectional area as a summation of the main flow
zone and storage zone areas, it compels the assumption of instantaneous and uniform
distribution of solute also in the storage zone. However, it is not easy to explain the
simultaneous occurring of complex solute transport mechanisms (i.e., uniform distribution
in the two cross-sectional areas, mass exchange, and no flow between adjacent storage
areas) using this linear kinetic [10]. Despite, that a solute pulse is transiently trapped
and release in storages in mountain streams. Accordingly, Equation (2), which models
distributed transient storage zones along a flow path, is plausible [10].
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As the coupled part of Equations (1) and (2) is replaced with residence time distri-
bution (RTD), which determines how the tail of BTC decays, the TSM can be seen as
the exponential distribution RTD model [22]. The exponential RTD is appropriate only
under the well-mixed condition in both the main flow and storage zones [55]. Hence, the
exponential RTD model underestimates the hyporheic exchange effect [56]. Experimental
studies have proved that the power-law RTD fits better than the exponential RTD model,
such as the TSM, as HTS contributes more [17,21,56–61].

2.2. Multi-Gene Genetic Programming

As previously mentioned, to analyze pollutant mixing in rivers using TSM, the pa-
rameters of the Equations (1) and (2) need to be estimated by either inverse modeling or
empirical equations. In this study, new empirical equations for the set of TSM parameters
were proposed using a multi-gene genetic programming (MGGP) model.

Genetic programming (GP) is a specialized genetic algorithm (GA) which is an evo-
lutionary technique that mimics natural evolutionary processes such as mutation and
crossover. The main difference between GA and GP is that GP evolves tree-based data
structures while the GA evolves numeric vectors.

GP attempts to find the model with the optimal fit by constructing and modifying trees
consisting of functions and variables. First, a random population of an individual gene is
generated. Once the population of genes is randomly generated and fitness function values
are evaluated, each gene is modified based on the principles of natural evolution with
mutations and crossovers, thus producing offspring. The mutation process picks branches,
along with sub-nodes, and replaces each bunch with a randomly generated subtree as
depicted in Figure 4. For the crossover operation, terminals or branched nodes of parent
trees are randomly selected, and the selected points are exchanged as depicted in Figure 5.
Those two operations are applied to models with low fitness after the fitness value of each
function is evaluated. This evolution step is iterated until the termination criterion is met,
enhancing the fitness of the models produced from GP.

Figure 4. Mutation operation of GP.

MGGP is a scaled symbolic regression method that is an advanced version of standard
GP. The MGGP model is a linear weighted combination model consisting of individual
gene-trees. The MGGP uses one or more gene-trees and calibrates coefficients of the gene-
trees using statistical regression methods such as least-square regression. A typical example
of MGGP model is shown in Figure 6, in which bi are the coefficients of the gene-trees.

As in standard GP, which iteratively reproduces new models using crossover and
mutation procedures, the MGGP algorithm contains crossovers and mutations as well.
The evolutionary processes in MGGP are so-called high-level crossovers and mutations,
whereas those of standard GP are called low-level processes.
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Figure 5. Crossover operation of GP.

As a result of the operations done in MGGP, MGGP produces a bunch of equations,
which are linear combinations of non-linear terms, without any pre-specified functional
structure. In addition, the frequencies of variables in the obtained formulae reflect the
relative importance of the variables. Subsequently, the MGGP approach offers more
opportunity to catch nonlinearity associated with the phenomenon than does finding
formula structures using the trial-and-error method.

Figure 6. Example of MGGP tree structure.
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3. Formulation of Empirical Equations
3.1. Dimensional Analysis and Data Collection

In order to develop generalized equations, dimensional analysis was performed based
on Buckingham’s Pi theorem. As previously mentioned, past studies asserted that the
hydromorphic properties contributing to the transient storage effect are morphological
factors (such as channel meandering and cross-sectional shape), hydraulic conditions, and
bed shear stress [13,15]. For example, Tonia and Buffington [13] explained that morpho-
logical parameters (e.g., channel meandering, pools, and riffle sequences) mainly drive
the HTS exchange process. In addition, we summarized the relevant factors, which were
easily obtained and the generally applcable properties, considering the classification of
Jackson et al. [15], for STS, as in the following equation.

Π1(K f , A f , As, α, ν, g, ρ, W, h, U, U∗, S0, Sn) = 0 (3)

where, ν is the kinematic viscosity[L2/T]; g is gravitational acceleration [L/T2]; ρ is the
density of water [M/L3]; W is the channel width [L]; h is the mean depth [L]; U is the
mean velocity [L/T]; U∗ is the shear velocity [L/T]; S0 is the mean bed slope [-]; Sn is the
channel sinuosity. According to [38,39], Froude number Fr and Reynolds number Re did
not show discerning relationships with the TSM parameters. Femeena et al. [40] excluded
bed slope due to measurement uncertainty. Nevertheless, slope-based shear velocity and
sinuosity were included as input variables in order to take all available features into
account. Consequently, the functional relationships between dimensionless variables can
be summarized as

(
K f

hU∗
,

A f

Wh
,

As

Wh
,

α

U∗/h
) = f (

W
h

,
U
U∗

, Sn) (4)

Basically, a meta-analysis was performed in order to assemble sufficiently large TSM
parameter values. OTIS-based TSM parameters were taken into consideration in the
derivation of empirical equations. In particular, complete data sets, with the four TSM
parameters (K f , A f , As, and α) and hydromorphic properties (cross section, channel
sinuosity, bed slope, and so on), were taken into account in the analysis. In the assembled
data set, shear velcotiy, U∗, was calculated using bed slope (Equation (5)).

U∗ =
√

ghS0 (5)

Among 700 collections of meta-data, 128 datasets from 14 published papers [38,62–74]
were adopted for this study by selecting data which provided all variables of the
Equation (4) and satisfied U/U∗ > 1. The meta-data list is available in the supplementary
material. Noh et al. [16] assessed the applicability of optimization techniques for param-
eter estimation of the four TSM parameters. Using their parameter estimation setting,
we exploited the meta-heuristic optimization method SC-SAHEL (Shuffled Complex-Self
Adaptive Hybrid EvoLution) with a mean squared error (MSE), meta-data includes un-
published parameter estimation values from a tracer test conducted in Gam-Creek, Korea
(Appendix A). A detailed description of the SC-SAHEL optimization algorithm is found
in [75].

Even though the TSM parameters estimated by Cheong et al. [38] were based on the
analytical solution of Hart [55], not OTIS, the estimated parameter values were included in
the derivation under the assumption that the estimated parameter values would produce
the same BTCs. Different expressions of the TSM parameters can be transformed using the
following equations where ε is the storage zone ratio [-]; and T is the residence time [T].

A f =
Q
U f

(6)

ε =
As

A f
(7)
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As = εA f (8)

α =
ε

T
(9)

The chosen TSM parameter data were randomly divided into a training set (90), and a
test set (38) in order to derive new equations. Table 1 presents simple statistics (minimum,
maximum, and mean) for the dimensionless variables of the training set and the test set. In
addition to the table, the simple statistics are shown as the boxplots in Figure 7. As shown
in this figure, the total data range of the training set embraces the data range of the test set.

Figure 7. Boxplots of dimensionless variables; (a) U
U∗ (b) W

h (c) Sn (d) K f
hU∗

. (e) A f
Wh . (f) As

Wh . (g) α
U∗/h .
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Table 1. Statistics of the transient storage parameters.

Parameter
Training Set (90 Sets) Test Set (38 Sets)

Mean Minimum Maximum Mean Minimum Maximum
W
h 46.83 3.80 331.86 36.51 3.80 114.51
U
U∗ 5.07 1.02 17.59 5.20 1.02 15.58

Sn 1.36 1.00 2.27 1.34 1.00 2.00
K f

hU∗
335.26 0.60 5558.20 295.79 3.42 1841.00

A f
Wh 1.02 0.26 7.00 1.01 0.47 2.78
As

Wh 0.22 0.00 3.09 0.14 0.01 0.44
α

U∗/h × 104 19.50 0.04 256.80 14.14 0.34 164.99

In order to consider the multicollinearity between dimensionless hydromorphic vari-
ables, variance inflation factor (VIF) values were calculated. The VIF is one of the criteria
necessary for the evaluation of linear dependency between input variables in the regression
analysis. It can be calculated with the following equation.

VIFi =
1

1− R2
i

(10)

where R2
i is the calculated coefficient of variance for regression of the ith input variable

on the other input variables. Generally, if VIF is greater than 10, then multicollinearity is
said to be high. The calculated VIF values for the input variables W/h, U/U∗, and Sn are
1.002, 1.005, and 1.005, respectively. Thus, there is no significant multicollinearity problem
in the regression.

3.2. Formulated Equations
3.2.1. Formulation by MGGP

New MGGP expressions for the TSM parameters were derived using GPTIPS, which
is the MATLAB library for MGGP [76]. MGGP evolves function terminals of the equations
by following a specified function set. The four basic operators and power-based operators
(power, square, cube, exp, and tanh) were nominated in the function terminal of MGGP.
On the other hand, GPTIPS presents Pareto front models under two objective functions
(model complexity and fitness) since over-fitting is a concern with high complexity models.
In the same manner, MGGP was performed 200 times in a sequence of 500 generations
for a population size of 500 for genetic operations in order to produce various forms of
the Pareto front results. The maximum number of genes and the tree depth are directly
related to the complexity of the produced equations since MGGP evolves in every iteration.
Thus, in this study, the maximum depth and maximum number of genes were set to 6
and 4, respectively. The other hyperparameters, elitism, crossover relative parameters,
and mutation parameters indicate the probability of a genetic operator’s activation in each
generation, and those parameter values were chosen based on the previous study [41].
Table 2 summarizes the hyperparameter setting for MGGP in the present study.

The Pareto equations for each TSM parameter are given as follows.

K f

hU∗
= 9.9× U

U∗
+

2.32× 102 × Sn

4.4× U
U∗ − 3.53× 10

+
4.8× 102 × U

U∗
W
h × (exp(Sn)− U

U∗ + 8.02)
+ 0.623× Sn ×

W
h
× exp(Sn)− 21.5

(11)
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A f

Wh
× 102 = 1.74× U

U∗
+ 6.92× exp(

−6.22
W
h × ln(S3

n × ln(Sn))
)

− 212.0× Sn
W
h

−
0.0637× ln(1.81/ U

U∗ )

ln(6.11/ U
U∗ )

+ 87.8

(12)

As

Wh
× 103 = 3.32× W

h
− 14.8× U

U∗
− 1.36× Sn ×

W
h

+
9.6× W

h
1/2

7.04× U
U∗ − 26.6

+ 158.0 (13)

α

U∗/h
× 104 = 4688.0× exp(

W
h
− Sn +

U
U∗
− (Sn −

W
h
)2)

+
2.32× W

h

2.25× Sn + 2.25× W
h − 2.25× (W

h −
U
U∗ )

2

+ (
0.236

U
U∗ − Sn + exp(− U

U∗ )
)2 + 8.45

(14)

Table 2. MGGP parameter settings.

Parameter Settings

Function set +,−,×,÷,√,
square, cube, exp, tanh, power

Population size 500
Number of generations 500
Runs over 200
Maximum number of genes
allowed in an individual

4

Maximum tree depth 6
Tournament size 15
Elitism 0.01 % of population
Crossover events 0.84
High level crossover 0.2
Low level crossover 0.8
Mutation events 0.14
Sub-tree mutation 0.9
Replacing input terminal
with another random terminal

0.05

3.2.2. Formulation by PCR-Based Regression

In order to test the empirical equations of the MGGP model, PCR-based regression
equations were additionally derived using MATLAB’s LIBrary for Robust Analysis (LI-
BRA) [77]. PCR is a classical option for multiple linear regression, as it is robust even
with correlated data and it makes it easy to interpret the input variables. The standard
regression model defines an equation in the form y = Xβ + εreg, where y is the observation
maxrix; X is the regressor matrix; β is the regression coefficient matrix; and εreg is the
regression error. The main distinction of PCR is that it determines model coefficients from
A which is the eigenvector of XX ′. Using the orthogonality of A, the general regression
model of PCR can be expressed as

y = X AA′β + εreg (15)

A scree plot was used to determine the number of principal components as shown in
Figure 8. The recommended number of principal components is three since the cumulative
eigenvalue is lower than 10% only with three principal components.
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Figure 8. Scree plot of principal components.

The empirical models using PCR were derived as:

K f

hU∗
= exp(−0.0341)(

W
h
)0.7438(

U
U∗

)1.1759(Sn)
1.2125 (16)

A f

Wh
= exp(−0.8162)(

W
h
)0.1345(

U
U∗

)0.1594(Sn)
0.0729 (17)

As

Wh
= exp(−2.5634)(

W
h
)0.3790(

U
U∗

)−0.6310(Sn)
−1.1116 (18)

α

U∗/h
= exp(−4.8443)(

W
h
)−0.5577(

U
U∗

)−0.2743(Sn)
−2.4113 (19)

The equations derived with both MGGP and PCR are in dimensionless form, but the
MGGP equations had more complicated structures than did the PCR equations. The major
difference between the two models was that the MGGP model considers the linear contri-
bution of each input variable in addition to the nonlinear correlations. For example, U/U∗
had linear effects on Equations (11) and (12), and it could be expressed as independent
terms. As had two linear terms of W/h and U/U∗, but α showed the most complicated
formulation. Contrary to the MGGP model, we assumed that the structures of the four
PCR equations are identical as per a pre-determined nonlinear power-law relationship. In
addition, PCR equations using the total dataset were derived for expanded use but were
not analyzed (see Appendix B). All derived equations are provided as MATLAB function
files in the supplementary material.

3.3. Statistical Performance of the Models

In order to assess the performance of the proposed equations relative to published
equations for the TSM parameters, simple regression Equations (20)–(22) presented in [40]
were also considered in this study.

K f = 1.5UWh0.5 (20)

As = 0.1[0.1W +
Q
h
]1.2 (21)

α =
0.001U

Wh
(22)
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The equation set (Equations (20)–(22)) was noted as F2019 for brevity. Four perfor-
mance criteria, accuracy, discrepancy ratio (DR), root mean squared error, coefficient of
determination (R2) and Pearson’s correlation coefficient (ρ) were evaluated to compare the
performance of the equations.

Accuracy(%) = 100× frequency(−0.3 ≤ DR ≤ 0.3)
n

(23)

DR (Discrepancy Ratio) =
P(observed)

P(predicted)
(24)

RMSE (Root Mean Squared Error) =

√
∑n

i=1(Pi,(observed) − Pi,(predicted))
2

n
(25)

R2 =
SSE
SST

=
∑n

i=1(Pi,(observed) − Pi,(predicted))
2

∑n
i=1(Pi,(observed) − P(observed))

2
(26)

ρ =
COV(P(observed), P(predicted))√
Var(P(observed))Var(P(predicted))

(27)

where, Pi,(observed) and Pi,(observed) are the ith components of observed and the predicted
target TSM parameters, respectively; and P(observed) is the mean value of the observed
TSM parameter.

Each calculated performance criterion is shown in Table 3. The bold characters in
Table 3 indicate the best model for each performance criterion. The MGGP model predicted
K f and A f with the highest accuracy. Compared to the PCR and F2019 equations, MGGP
predicted As with a reasonable degree of accuracy, even though the PCR model gave a
slightly better result. The prediction of α by MGGP showed low accuracy in both the
training set and the test set. The accuracy of the other two models are about the same as
that of MGGP for the prediction of α.

Table 3. Calculated performance criteria of empirical equations.

Criteria TSM Parameter
Training Set (90 Sets) Test Set (38 Sets)

MGGP PCR F2019 MGGP PCR F2019

Accuracy (%)

K f 53.33 41.11 46.67 47.37 42.11 42.11
A f 95.56 92.22 - 97.37 97.37 -
As 56.67 57.78 56.67 47.37 52.63 47.37

α× 104 36.67 34.44 34.44 21.05 28.95 28.95

RMSE

K f 28.20 83.04 475.91 75.83 32.00 43.80
A f 345.60 391.75 - 56.92 44.86 -
As 41.96 44.80 21.43 9.54 2.60 10.58

α× 104 8.52 14.63 15.74 10.34 8.67 8.46

R2

K f 0.49 −3.42 −144.06 0.20 0.86 0.73
A f 0.93 0.91 - 0.84 0.90 -
As −0.07 −0.21 0.72 −3.34 0.68 −4.34

α× 104 0.67 0.04 −0.11 −0.29 0.09 0.14

ρ

K f 0.89 0.78 0.74 0.47 0.96 0.96
A f 0.99 0.99 - 0.92 0.96 -
As 0.62 0.61 0.89 0.97 0.97 0.62

α× 104 0.83 0.32 0.08 0.35 0.48 0.55

The RMSE and R2 results showed that the predictability of the MGGP model was good
in terms of K f , A f , and α in the training set. The PCR equations were good at predicting K f ,
A f , and As in the test set, and the F2019 model for As showed the lowest RMSE value over
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the training set. Regarding the α test set, F2019 (Equation (22)) had the lowest RMSE and
the highest R2 values, but the MGGP model was the best model on average. The model
with the best mean RMSE and R2 was the MGGP model, except for As.

In regards to ρ, most of the models were higher than 0.5, but low ρ values were
observed in every model for prediction of α. In particular, ρ values for the training set
using the MGGP formulae were closest to 1 for the training data, whereas PCR showed
slightly more significant correlation in the test set. Still, the best performance of average ρ
were given by the MGGP predictions for every TSM parameter.

Briefly, the equations derived by MGGP gave the best performance in the training set
and averaging performance of the training and test sets. The PCR equations showed stable
performance and intermediate results between those of MGGP and F2019. The equations
for As and α equations in F2019 performed fairly despite their simple formulations.

The prediction results are illustrated as acatter plots in Figures 9 and 10. Furthermore,
Figures 11 and 12 present DR histograms, which represented the distributions of the
predictions, of the training set and the test set, respectively. Figure 9a, Equation (20)
overestimated K f , especially K f was large. As shown Figures 11 and 12, high-variance
distributions were obtained using Equations (16) and (20) in both the training and the test
set. The MGGP model presented the smallest deviation in α. Both the MGGP and the
PCR models for A f presented similar results. In As, three equations better predicted the
training set than the test set in the range of [−0.3 < DR < 0.3]. Figures 9 and 10 showed
that the predictions of α by all equations are scattered. These discrepancies are clearly
demonstrated the DR histograms depicted in Figures 11 and 12. Every model had difficulty
when used to predict the test set of α, with double-peaked distributions. In particular, the
MGGP model over-estimated α. According to the presented figures, the PCR formulae,
which were in the range of [−1 < DR < 1], gave the most stable overall performances.

Figure 9. Observed parameter values versus predicted values by empirical equations for the training set; (a) K f . (b) A f .
(c) As. (d) α.
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Figure 10. Observed parameter values versus predicted values by empirical equations for the test set; (a) K f . (b) A f . (c) As.
(d) α.

Figure 11. DR histograms of each empirical equations for TSM parameters for the training set; (a) K f . (b) A f . (c) As. (d) α.
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Figure 12. DR histograms of each empirical equations for TSM parameters for the test set; (a) K f . (b) A f . (c) As. (d) α.

From the results of the scatter plots and the DR histograms, the empirical equations
predicted the two-dimensional shape variables (A f and As) more accurately than the solute
mixing related variables (K f and α). It implies that the three hydromorphic variables, W/h,
U/U∗, and Sn, are not enough to describe the complicated physical mixing process in
natural rivers where a number of transient storages are arranged, as shown in Figure 1.
Unfortunately, adopting more variables is not easy. Therefore, even recent empirical
approaches to the 1D-ADE’s dispersion coefficient are adopting W/h and U/U∗ due to the
limitations of knowledge in physical process and measurement technique [41,48,49,78].

Large errors in predictions of K f and α may be produced from the TSM model error.
As aforementioned, the TSM considers only the bulk shear dispersion in the main flow
zone, and it treats transverse mass exchange at the storage zone boundary. This weakly two-
dimensional vision neglects the transverse dispersion even though it allows the transverse
solute transport.

Subsequently, difficulty in the prediction of K f is inherent due to too simplified vision
of the empirical equations as described above. The discrepancy in α can be explained in a
similar sense since not only its order is too small but also α has trade-off interaction with
K f [30].

4. In-Stream Application
4.1. Tracer Test Description

To validate the suggested empirical equations, we used tracer test data, which was
obtained from Cheongmi Creek, Yeoju-si, Gyeonggi-do, South Korea, in 2015 [16] . The
experimental reach, a braided river with many storage zone areas (e.g., sand bars, me-
andering channels, and a bridge), was located downstream of Dangjin Bridge near the
confluence with the Han River. The total length of the experimental reach was 3550 m, and
it was divided into four sections denoted S1–S4 for measurement of concentration and five
sections, denoted U1–U5 for measurement of hydraulic properties (Figure 13).
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Figure 13. Plan view of the Cheongmi Creek test site.

Table 4 and Figure 14 show the hydromorphic properties measured in the Cheongmi
Creek tracer test. In the table, LIP is the flow distance from the injection point (IP). The
shear velocity had been calculated using the slope from the Manning equation, and the
applied Manning coefficient, 0.037, was determined by consulting the published guide [79].
Cross-sectional mean velocity and water depth were measured using RDI-StreamPro ADCP
at all sites. The discharge during the tracer test was 2.26 m3/s, and the cross-sectional area
was calculated, dividing measured discharge by mean velocity (Table 4). Sinuosity can be
calculated with plan view. The calculated sinuosity of the specified reaches S1-S2, S2-S3,
and S3-S4 are 1.0562, 1.0671, and 1.1207, respectively.

Table 4. Measured hydromorphic properties in Cheongmi Creek experiment.

Station LIP (m) W (m) h (m) U (m/s) U∗ (m/s)

I.P 0 17.1 0.72 0.19 0.023
U1 380 32.5 0.45 0.15 0.020
S1 940 17.5 0.33 0.39 0.055
U2 1300 32.6 0.53 0.13 0.017
S2 1690 31.7 0.63 0.11 0.014
U3 2050 34 0.59 0.11 0.014
U4 2410 16.5 0.35 0.39 0.055
U5 2730 34.6 0.18 0.37 0.057
S3 3080 14.1 0.39 0.41 0.056
S4 3550 24.25 0.36 0.26 0.036

Average 1810 25.48 0.42 0.21 0.028
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Figure 14. Plots of measured hydraulic data in Cheong-mi Creek; (a) Width and depth; (b) Velocity and shear velocity.

The experimental site is a meandering channel with sand bars at the inner banks. The
meandering bends start at the sub-reaches S1-S2 and S3-S4. In sub-reach S3-S4, the river
flows more rapidly and more sinuous than in sub-reach S1-S2. The sub-reach S2-S3 is the
downstream half of the first bend where flow accelerates. In addition, The sub-section
S2-S3 is the most complicated section due to the Hyeonsa Bridge, which accompanies
vortical structure, sudden contraction, and expansion. Therefore, cross-sectional shape and
velocity change abruptly between S2 and S3.

Rhodamine WT (RWT) (0.2 kg) was injected at multiple points considering the one-
dimensional fully-mixed condition (both horizontally and vertically) in a natural stream.
The distance between the IP and S1 can be estimated using Equation (28) [80].

L0 = 0.1(
1
n
)2 UW2

Ez
(28)

in which, L0 is the distance from the injection point for complete mixing on cross-section
[L]; n is the number of injection points in the lateral direction; and Ez is the lateral mixing
coefficient which is estimated from Ez/HU∗ = 0.15 [45] [L2/T]. The fully mixed condition
distance from the IP was estimated at 300 m using Equation (28). The distance between
IP and S1 was set at 940 m to consider the storage effect in the braided channel, from a
conservative perspective.

RWT was measured using YSI-600OMS fluorometers; the measurement devices were
calibrated beside the experimental river before being installed. In order to obtain cross-
sectional averaged concentrations, three or four sensors were fixed at laterally uniform
distances at all measurement sites. During postprocessing, the recorded concentrations
were corrected, taking into account stream temperature differences due to the day crossing
by referencing the temperature at the start of the observation (Equation (29)) [81]. Also,
the background concentration was removed in keeping with the corrected concentration
considering the variation in temperature from Equation (29).

C = C0 exp(−nRWT(t− t0)) (29)

where C and C0 are the RWT concentrations at temperatures t and t0, respectively [ppm]; t is
the temperature of the stream during the measurement [◦C]; t0 is the reference temperature;
and nRWT is the temperature calibration coefficient of RWT (nRWT = 0.027) [82].

4.2. Simulation Results

In this subsection, TSM parameters and BTCs were predicted using the hydromorphic
properties measured with the tracer test. Table 5 summarizes the calibrated TSM parameters
via inverse modeling and the TSM parameters calculated using the three empirical models
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(MGGP, PCR, and F2019). In addition to the TSM parameters, DaI was calculated in each
case to assess whether the estimation was reasonable. DaI is given by:

DaI =
αLreach(1 +

A f
As
)

Q/A f
(30)

where Lreach is the reach length [L]. Every evaluated DaI value was in a range of [0.1 10],
which is a reasonable estimation range [62,74]. Since F2019 do not provide a formula for
A f , reach averaged cross-sectional area was adopted instead.

Table 5. Estimated TSM parameter values from the breaktrhough curves of Cheongmi Creek experiment.

Sub-Reach Methods
TSM Parameters

DaI ε
K f (m2/s) A f (m2) As (m2) α × 104 (1/s)

S1-S2

Calibrated 1.3335 9.6377 5.4298 2.4187 2.1467 0.5634
F2019 5.7524 14.6009 1.0905 0.1282 0.8939 0.0747

MGGP 1.1441 15.1014 2.3081 0.4206 1.5898 0.1528
PCR 3.2945 15.4021 1.5045 0.1633 0.9379 0.0977

S2-S3

Calibrated 1.2135 9.0384 2.9589 1.2481 2.8132 0.3274
F2019 7.2714 11.1621 1.2463 0.2499 1.7079 0.1117

MGGP 2.1512 11.5136 2.0088 0.8116 3.8688 0.1745
PCR 4.3786 11.9084 1.2275 0.2918 2.2867 0.1031

S3-S4

Calibrated 2.0850 7.5056 1.5380 1.5573 1.4293 0.2049
F2019 5.9005 7.1906 1.2024 0.4659 0.4863 0.1672

MGGP 1.6943 7.3859 1.0414 1.0338 1.2850 0.1410
PCR 4.3206 7.4839 0.6643 0.3746 0.7151 0.0888

In the sub-reach S1-S2, a sand bar had migrated because of the sudden expansion
of the channel. The mean cross-sectional area of the first sub-reach was 14.6009 m2, and
the calibrated A f was smaller than the actual cross-section. The defect of the calibrated
A f contributed 5.4298 m2 to the storage zone area, but A f + As was greater than the
measured cross-section area due to the sand bar HTS. Moreover, the measured velocity at
S1 (0.39 m/s) was more than three times faster than that at U2 (0.13 m/s) and S2 (0.11 m/s),
so that the estimate of the effective area was low. Keeping in mind the A f s value used in
the F2019, the MGGP model better predicted A f than the PCR model, in the sub-reach
S1-S2. The F2019 and PCR models over-estimated K f ; the values in those models were
4.31 times, and 2.5 times higher, respectively. Every model under-estimated the storage
parameters (As and α).

The second sub-reach, S2-S3, included the Hyeonsa Bridge, which is an artificial STS.
Due to the existence of the bridge pier, hydromorphic variables were extensively altered
throughout the reach. Thus, DaI, which reflects the storage effect, was higher in this
sub-reach than in other sub-reaches, despite the magnitudes of As and α being half of
those in compared to the reach S1-S2. The MGGP model was superior to F2019 and PCR
models in the prediction of the four parameters, while all models over-estimated K f and
under-estimated two storage parameters. The F2019 model predicted K f as 7.2714, which is
six times higher than the calibrated value. The predictabilities of As and α were reasonable
in the order MGGP-F2019-PCR and MGGP-PCR-F2019, respectively.

The last sub-reach, S3-S4, was a meandering band reach with channel expansion.
Unlike in the other sub-reaches, in this sub-reach, the measured cross-section was smaller
than the calibrated value. Furthermore, using the PCR model for As was the best choice in
this reach, whereas the measured value was more reliable in the other reaches. In terms
of K f , the MGGP model was most accurate, followed by PCR-F2019. The MGGP model
predicted α accurately, but F2019 was better at predicting As.
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The observed BTCs in the tracer test and the curves generated using the empirical
equations are shown in Figure 15. The BTCs in sub-reaches S1-S2 and S2-S3 using the
F2019 model had the largest R2s, followed by the PCR model and MGGP model. In the last
sub-reach, the three models produced values with good accuracy, with R2 > 0.99; and the
R2 of the MGGP BTC was the largest, 0.997.

Figure 15. Simulated and observed breakthrough curves in Cheongmi Creek experiment case: (a) section 1–2. (b) section 2–3.
(c) section 3–4. (d) All stations (only measured curves).

From the perspective of shape, the BTCs from F2019 had slow rises and steep decreases.
The PCR and MGGP models reproduced steep rises and gentle tails. In the first two sub-
reaches, S1-S2 and S2-S3, the peaks of the MGGP and PCR BTCs appeared slower than did
the BTCs from F2019. Thus the F2019 model simulated the observed BTCs more precisely,
even though the MGGP and PCR models predicted K f , As, and α more accurately. All
models simulated BTCs without a phase lag in the last sub-reach, while all models predicted
A f with high accuracy. This result revealed that precise prediction of A f significantly affects
the production of BTCs, which have accurate time-related features, such as the time to peak
concentration, time to centroid, and so on.

Regarding both the estimation values and simulated BTCs, overall predictabilities
were high in the order of S3-S4, S2-S3, and S1-S2. Contrary to, ε, which is given by
Equation (7), followed the inverse order of the predictabilities. Especially, the BTCs and
TSM parameters in S2-S3 were much successfully estimated than in S1-S2, although DaI-
based uncertainty was higher in S2-S3 than in S1-S2. It implies that ε has a positive
correlation with uncertainty in parameter estimation. The largest wetted area (A f , As, ε,
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W, and h) and the slowest flow were observed in the first sub-reach, S1-S2, among the sub-
reaches. As aforementioned, the TSM is inferior as the ratio HTS has more significance than
STS, resulting in problematic prediction. Therefore, it hints that HTS was more influential
than STS in the sub-reach S1-S2 since friction factor f and ε account for the hyporheic
exchange particularly [71,83].

5. Sensitivity Analysis

As demonstrated in the preceding sections, the MGGP model stably predicted the
TSM parameters. Hence, the MGGP model has been adopted as a benchmark model for
the following sensitivity analysis. One-at-a-time (OAT) sensitivity analysis was performed
to identify the extent to which a change in the input variable’s of, ±20% from the medians,
affect the TSM parameters. For quantitative assessments, the elasticity (Equation (31)) and
the sensitivity index (SI) (Equation (32)) were computed.

el =
∂parameter (%)
∂variable (%)

(31)

SI (Sensitivity Index) =
max (parameter)−min (parameter)

max (parameter)
(32)

where el is a gradient of the parameter using the median where input variables, and
SI indicates the absolute rate of change when the variable changes by 40%. The mag-
nitude of a variable is reflected in the calculation of evar, though SI considers only the
targeted parameter.

Figure 16 presents spider plots and two sensitivity indices for each MGGP equation,
since the MGGP model showed the highest correlation with our observations in every

TSM parameter. Figure 16a shows that
K f
hu∗

is sensitive to Sn which supports previous
studies on mixing in meandering channels, in which that sinuosity had a strong positive
relationship with secondary current [84,85], increasing the dispersion coefficient [86]. The
other dimensionless input variables were also found to increase shear dispersion. The el
of Sn, 141, was the highest due to the small order, and it is 14 times more significant than
the value of U/U∗. In terms of SI, Sn is the most sensitive variable, followed by W/h and
U/U∗. The SI values of W/h and U/U∗ were 0.135 and 0.29, respectively.

On the other hand, the main flow zone area, A f , was insensitive at low sinuosity,
though it was nonlinear at high sinuosity. Thus, the general sensitivity of Sn was not clear
despite having the largest SI and el. However, the power of Sn in the PCR model for A f
(Equation (17)) was 0.0729, which is the smallest power, implying that the effect of Sn on
A f is not significant. U/U∗ and W/h yielded similar SI values, even though U/U∗ was
nine times more sensitive than W/h in terms of el.

U/U∗ and Sn were reciprocal to the storage zone area, As, except for around the
median value of U/U∗ which showed nonlinear behavior around the median value. Even
though U/U∗ showed nonlinear behavior resulting in very large sensitivity criteria, the
absolute power of the PCR As equation was 0.6310, which is an intermediate value between
that of the other two variables. In the spider plot, the influences of the input variables were
significant in the order U/U∗, Sn, and W/h. Boundary shear stress affects a slow storage
zone area in a wide river. In a river with a wide cross-sectional area, there are more likely to
be transient storage areas, so a weakly positive correlation of W/h with As is established.
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Figure 16. Spider plots and calculated indices for sensitivity analysis of the MGGP model; (a) K f
hU∗

. (b) A f
Wh . (c) As

Wh . (d) α
U∗/h .

Figure 16d shows different features from those of the PCR equation, Equation (19),
illustrating that the mass exchange rate is negatively correlated with all input variables.
The action of U/U∗ on α is most powerful at SI = 0.007. However, U/U∗ presented similar
elasticity to Sn with el = −3.4× 10−6 and 3.2× 10−6. In total parameter adjustment, W/h
was slightly more responsive than Sn; SI was in which 0.003 and 0.002, respectively. How-
ever, the elasticity of W/h was sixteen times weaker than that of the other hydromorphic
variables. This result showed that a change in the exchange rate is mainly governed by
U/U∗ since it intensifies the advective effect, and the turbulence intensity in the main
flow zone.

From subplots (c) and (d) in Figure 16, as U/U∗ increases, As decreases more rapidly
than A f increases. It means that ε has a negative correlation with U/U∗. In a similar
approach, W/h is proportional to ε since el of W/h in A f was two times larger than
in As. This analogy about U/U∗, the ratio of stream power and friction, in the storage
parameters, As and α, coincides with the observations that the U and f are the most relevant
factor [62,71,83].

According to the graphs, the most significant features in the main flow zone disper-
sion and the storage zone processes are Sn and U/U∗, respectively. However, we note
that the variance of Sn is very small compared to W/h and U/U∗. Regarding this, the
contributions of U/U∗ would be remarkable to both K f and the transient storage effect.
Thus the assumption that U/U∗ is a driving factor in the one-dimensional mixing process
is still valid.
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6. Conclusions

In the present study, we investigated how hydromorphic parameters interact with
TSM parameters by analyzing empirical equations. In the main purpose of analysis, new
equations for four TSM parameters (the main flow zone dispersion coefficient (K f ), the
main flow zone area (A f ), the storage zone area (As), and the storage exchange rate
(α)) were developed using MGGP and PCR. The newly proposed equations for the TSM
parameters consist of dimensionless TSM parameters (K f /(hU∗), A f /(Wh), As/(Wh), and
α/(U∗/h)) and dimensionless input variables (U/U∗, W/h, and Sn) which were derived
from dimensional analysis. A total of 128 datasets were selected for the derivation of the
equations in the meta-analysis. The two presented models and the model published by
Femeena et al. were compared using performance criteria. Afterward, field assessment
was carried out by matching observed BTCs from Cheongmi Creek and simulated BTCs
using the empirical models. Consequently, OAT sensitivity analysis of the MGGP-based
TSM parameter empirical equations was performed.

In terms of the performance criteria, the best model was the MGGP model in the
training set. Besides, the MGGP model produced superior results as averaging performance
criteria of the training set and test set. Next, the PCR model made stable prediction in
the test dataset for K f , A f , and As. The F2019 model kept over-estimating K f , but it was
slightly better than the other two models in the prediction of α in the test set. Considering
the overall performance indices, the MGGP equations stably predicted all TSM parameters.

The results of the instream application indicated that all empirical models generated
acceptable BTCs. However, prediction of mean stream velocity, accounting for A f , over the
complicated reach of a natural stream, using simple methods, remains infeasible.

In the sensitivity analysis section, which focused on the MGGP model, Sn significantly
affected K f . Change in A f was more responsive to U/U∗, and W/h. The effect of U/U∗
on As was considerable compared to the effects of the other dimensionless variables. The
exchange rate, α, was mostly affected by the ratio of stream velocity and shear velocity,
U/U∗.

Regardless of the applicability of the developed equations, hidden relationships of non-
applied features of the transient storage effect may have been neglected in this study, since
the adopted hydromorphic variables were insufficient to explain the complicated storage
zones in real rivers. Nevertheless, we suggest the use of the new empirical equations to
analyze TSM parameters as reference values in conventional inverse modeling or as an
alternate approach in situations where direct inverse modeling is not accessible.
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MGGP Multi-Gene Genetic Programming
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Appendix A. Description of the Gam-Creek Tracer Test

Additional tracer test was performed in Gam-Creek, Gimcheon-si, Gyeongsangbuk-do
to collect the calibrated TSM parameters. Figures A1 and A2 show the plan view and
obtained BTCs, respectively, in the tracer test. A bathymetry survey was conducted utilizing
Real-Time Kinematic-Global Positioning System (RTK-GPS). The used RTK-GPS model is
Sokkia GRX1. The used coordinate of the GPS is a GSR80 ellipsoid Traverse Mercator X-Y
type (EPSG: 5186), which is a standard of the National Geographic Information Institute
of Korea. Sontek FlowTracker and YSI-600OMS fluorometers are used to measure flow
velocity and BTCs. The calibrated TSM parameters and the measured hydromorphic
variables are showed in Table A1.
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Figure A1. Plan view of the Gam-Creek tracer test.

Figure A2. Observed BTCs in Gam-Creek tracer test and calibrated BTCs; (a) section 1–2. (b) section 2–3. (c) section 3–4.
(d) All stations (only meausred curves).
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Table A1. Measured hydraulic features and estimated TSM parameters in the Gam-Creek tracer test.

Reach
Variables

S1-S2 S2-S3 S3-S4

Hydraulic
Features

Lreach (m) 1200 830 2000
Q (cms) 11.06 11.06 11.06
W (m) 57.36 58.86 53.00
h (m) 0.36 0.36 0.43

S0 0.0007 0.0024 0.0007
U (m/s) 0.53 0.52 0.48

Sn 1.082 1.028 1.078

TSM
Parameters

K f (m2/s) 0.568 0.596 4.926
A f (m2) 18.279 17.175 31.135
As (m2) 4.1473 2.6932 10.4883

α× 104 (1/s) 3.758 2.920 1.533

Appendix B. Derived PCR Equations Using Total Dataset

The below PCR-based equations derived using the total dataset are provided for those
who want to use them in expanded use.

K f

hU∗
= exp(0.1955)(

W
h
)0.6631(

U
U∗

)1.3072(Sn)
1.0837 (A1)

A f

Wh
= exp(−0.7098)(

W
h
)0.1213(

U
U∗

)0.1365(Sn)
0.0132 (A2)

As

Wh
= exp(−2.2661)(

W
h
)0.3284(

U
U∗

)−0.6268(Sn)
−1.4327 (A3)

α

U∗/h
= exp(−4.8611)(

W
h
)−0.5223(

U
U∗

)−0.4683(Sn)
−2.1773 (A4)
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