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Abstract: The major lockdown due to the COVID-19 pandemic has affected the socio-economic
development of the world. On the other hand, there are also reports of reduced pollution levels.
In this study, an indicative analysis is adopted to understand the effect of lockdown on the changes in
the water quality parameters for Lake Hussain Sagar using two remote sensing techniques: (i) spectral
reflectance (SR) and (ii) chromaticity analysis (Forel-Ule color Index (FUI) and Excitation Purity). The
empirical relationships from earlier studies imply that (i) increase in SR values (band B2) indicates a
reduction in Chlorophyll-a (Chl-a) and Colored Dissolved Organic Matter (CDOM) concentrations,
and (ii) increase in FUI indicates an increase in Total Suspended Solids (TSS). The Landsat 8 OLI
satellite images are adopted for comparison between (i) January to May of year 2020: the effect of
lockdown on water quality, and (ii) March and April for years 2015 to 2020: historical variations in
water quality. The results show notable changes in SR values and FUI due to lockdown compared
to before lockdown and after unlock suggesting a significant reduction in lake water pollution.
In addition, the historical variations within April suggest that the pollution levels are least in the
year 2020.

Keywords: water pollution; COVID-19; remote sensing; chromaticity; Forel-Ule Color Index;
excitation purity; Chlorophyll; CDOM; TSS; anthropogenic activities

1. Introduction

The entire globe has witnessed a major socio-economic lockdown due to the spread
of the COVID-19 (COronaVIrus Disease-2019) pandemic. This has affected a large pro-
portion of the population worldwide and resulted in significant financial losses due to
disruptions in primary activities such as industries and transportation [1]. On the contrary,
the critical environmental factors, particularly the quality of air and water bodies across
the world, have shown improvements [2–4]. These factors significantly impact ecosystems,
human health, and overall economic growth, especially for developing countries [5]. Water
pollution has been one of India’s crucial challenges over the past few decades due to
urbanization, industrialization, poor water quality regulations, and disposal of untreated
sewage [6–8]. The clean-up and rejuvenation of heavily polluted water bodies pose an
enormous monetary liability on the country. Several reports have indicated a betterment
of water quality across India over the lockdown period [4,9,10]. The lockdown imposed
by the country during the COVID-19 crisis is one of the largest of its kind and halted the
entire country’s vital operations. The present study has attempted to explore the effect of
COVID-19 lockdown on the urban lake water quality using satellite imagery.
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The quality of freshwater bodies depends on diverse anthropogenic, hydrogeological,
and environmental factors such as (i) discharge of untreated effluents from industries
and residential areas; (ii) proximity of water bodies to agricultural, mining, and waste
disposal areas; (ii) possibility of saline water intrusion; (iii) extreme climatic events
such as hurricane/storm, drought, and flood; (iv) weather conditions like temperature,
rainfall, wind, and evaporation [11,12]; and (v) soil type, aquatic, and terrestrial vegeta-
tion. The pollutants reaching water bodies from different sources are subjected to various
physical, biological, and chemical attenuation processes and will undergo a considerable
reduction in concentration, toxicity, and volume [13,14]. However, the anthropogenic
activities substantially influence the self-cleansing process of water bodies [15]. A thorough
insight into the effect of anthropogenic activities on water quality is crucial for planning,
managing, and implementing the decontamination strategies for the polluted water bodies.
As these activities are stalled during the lockdown period, the comparison of water quali-
ties before, during, and after the lockdown period can provide a major understanding of
the influence on water quality.

The traditional methods of water quality assessment are carried out either by in
situ field sampling or laboratory analysis. Even though these methods provide accurate
results, they have certain disadvantages like laborious, slow, restricted to point-scale
sampling (limited spatial assessment), and data collection in inaccessible locations [16,17].
Alternatively, aerial and spaceborne Remote Sensing (RS) techniques can be adopted as a
viable and cost-effective tool for monitoring the water quality [18,19]. In this technique,
the sensors on satellites and other airborne platforms measure the radiation reflected
from the water surface at various wavelengths. Each of these wavelengths constitutes a
unique spectral signature with the absorption changes indicating the variation in the water
quality. Several studies have adopted the spectral reflectance (SR) data obtained from
satellite images as a reliable indicator in estimating the changes in water quality [4,20–23].
Moreover, with the advent of technologies and computational power, these techniques are
proving to be vital in decision-making, especially during disasters and pandemics.

On the other hand, the concept of “color” has been used to draw inferences through
the human eye for decades. It was envisaged that the “color” of the water is strongly
correlated to the water quality. Therefore, one can perceive water as “clean” when there
is an absence of blue absorbing and scattering constituents. However, the presence of
phytoplankton pigments (if found in predominance), such as Chlorophyll-a (Chl-a),
Suspended Particulate Matter (SPM), and Colored Dissolved Organic Matter (CDOM),
result in green, yellow, and brown colors of water [24]. The changes in water colors are
mainly due to variation in these Optically Active Constituents (OAC). Thus, the color of
the water can be used implicitly to indicate water quality. For example, water body with
blue or green color is generally recognized as acceptable water quality on the other hand
dark brown, grayish brown, or red, indicate water quality anomaly [25].

Chromaticity analysis is widely used for quantitative determination of the color of
ocean and inland waters, using the chromaticity parameters, such as Forel–Ule Color Index
and Excitation Purity [26–33]. In [34,35], the authors presented the Forel–Ule Color Index
(FUI), which can be used as a proxy for natural waters with different optical properties
(indicating anomaly in water quality). Oceanographers and limnologists have widely
used it since the 19th century. The FUI scale distinguishes the apparent colors of water
based on the amount of absorption and scattering of OAC. FUI strongly correlates with
turbidity, Secchi Disk Depth (SDD), Chl-a, and CDOM [24,26,28]. FUI is typically observed
using a handheld color scale. With the recent advancements of technology, it can also
be derived from the remote sensing products (reflectance or water-leaving radiance) and
through smartphone apps [28]. FUI scale comprises 21 color standards ranging from blue
to green and brown (1: indigo-blue; 21: cola brown) [28]. As water becomes more turbid or
muddy due to increasing suspended particulate and dissolved matter, the apparent color
of water darkens. This gives higher FUI showing brownish water colors. The light penetra-
tion depth given by SDD shows an inverse correlation with both FUI and turbidity [28].
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The other chromaticity parameter called Excitation Purity is a qualitative measure of
saturation of a color [36].

In this study, it is envisaged that the variations in the water color and SR obtained
from the RS data can provide an indicative assessment of the changes in the quality of
water bodies. The analysis is similar to the studies carried out in understanding the
changes in land use and land cover, vegetation, and soil moisture using RS data [37].
However, it is challenging to quantify the water quality parameters directly from the
surface reflectance, unlike land use and land cover classification, wherein the latter has well-
established techniques and requires few ground truth values through field studies. Due to
the heterogeneous characteristics and limited surface penetration of the electromagnetic
spectrum, it is not easy to assess the parameters through remote sensing. However, there
are few water quality parameters that are optically active such as Chl-a, CDOM, and TSS
which can be monitored using RS. The study presents an indicative comparative analysis
using remote sensing data. The changes in the surface reflectance, Forel–Ule color index,
and excitation purity will be used to identify the changes in the lake water quality. To
understand the effect of COVID-19 pandemic lockdown, the analysis is carried out for
(i) before, during, and after lockdown, and (ii) previous years RS data to understand the
historical variations. Lake Hussain Sagar, one of the most polluted urban human-made
lake water bodies in India, is selected for the analysis.

The paper is organized as follows. Section 2 provides details of the methods and
data used for the analysis. This section presents details about indicative analysis using the
spectral bands and FUI and their relationship with water quality parameters. Section 3
provides the salient features of the study area. Section 4 presents the results and discussion
using the indicative analysis representing the changes in the lake water quality due to
lockdown. Finally, in Section 5, the conclusions and limitations of the study are presented.

2. Data and Methods
2.1. Satellite Data

Reflectance is the ratio of total radiation reflected from the surface to the total incoming
radiation. In this study, variation in the optical property of the water surface is related to the
change in lake water quality. The data sets, data processing methodology, and the statistical
approaches to access the differences in the spectral values are as follows. The satellite-based
reflectance data are extracted from onboard Landsat 8 sensor Operational Land Imager
(OLI). Imagery for the study area was downloaded from Earth Explorer U.S. Geological
Survey (USGS) for the required periods [38]. The processed data for the case study can be
downloaded at [39]. The salient features of the Landsat 8 spectral bands are presented in
Table 1.

Table 1. Landsat 8 Operational Land Imager (OLI) spectral band details.

Sl. No. Band Region in EM Spectrum Wavelength (nm) Resolution (m)

1 Band 1 Visible ( Coastal aerosol) 430–450 30
2 Band 2 Visible (Blue) 450–510 30
3 Band 3 Visible (Green) 530–590 30
4 Band 4 Visible (Red) 640–670 30
5 Band 5 Near-Infrared (NIR) 850–880 30
6 Band 6 Short Wave-Infrared 1 (SWIR 1) 1570–1650 30
7 Band 7 Short Wave-Infrared 2 (SWIR 2) 2110–2290 30
8 Band 8 Panchromatic (PAN) 500–680 15
9 Band 9 Cirrus 1360–1380 30

OLI captures data with improved radiometric precision over a 12-bit dynamic range,
which improves the overall signal to noise ratio. Improved signal to noise performance
enables improved characterization of land cover state and condition. In this study, the
blue band (Band 2) in the visible range of the electromagnetic (EM) spectrum is used for
the surface reflectance based comparative analysis. Note that the other bands can also
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be associated with the water quality parameters. However, the studies have shown that
B2 band reflectance is found to be a dominant factor in water quality assessment [4,40],
whereas the visible range bands—band 1 (B1), band 2 (B2), band 3 (B3), and band 4
(B4)—are used in the chromaticity analysis.

2.2. Remote Sensing and Spectral Bands

Remote sensing techniques mainly use three approaches to derive water quality pa-
rameters: (i) analytical method, (ii) semi-analytical or semi-empirical method, and (iii)
empirical method. In the case of an analytical or model-based approach, the SR is based
on the inherent optical properties of the water through radiative transfer modeling [41,42].
The development of a robust model is sophisticated and demands fieldwork, algorithm
training, computational time, and knowledge of local Inherent Optical Properties (IOP).
The semi-analytical method utilizes the algebraic solution of the reflectance approxima-
tion to derive the parameters [43]. Similarly, the semi-empirical method uses absorption
features to develop the algorithms correlated to the measured constituents [44]. Empir-
ical methods directly relate the reflectance to the parameter of interest using statistical
regression techniques [45,46]. These methods provide robust results for the sites and data
sets from which they are derived but lack universality.

Several studies have derived the relationship between the SR and water quality
parameters using semi-empirical or empirical methods [47–49]. Among various water
quality parameters, only a few parameters such as TSS, Chl-a, and CDOM are OAC and
thus directly related to the SR [50]. The key reflectance band which is found to be dominant
in the literature is in the visible spectrum, specifically the blue band. SR in the blue band
is inversely proportional to the concentration of Chl-a and CDOM (Table 2). Thus, the
increment in reflectance value of this band will indicate a reduction in the concentration of
Chl-a and CDOM. This may be due to the absorption of radiation by these two parameters
in wavelengths between 450 and 510 nm [40,51]. The details about the water quality
parameters are discussed in the following paragraphs.

Table 2. List of spectral bands and their relationship with water quality parameters.

Spectral Band Water Quality Parameters Inference References

Blue band Chl-a inversely proportional [47,52,53]
CDOM inversely proportional [40,41,49,54–56]

2.3. Spectral Analysis of Water Quality Parameters

In general, the water quality assessment involves the analysis of various parameters
such as pH, Chlorophyll, Total Dissolves Solids (TDS), hardness, pH, turbidity, Electrical
Conductivity (EC), Secchi Disk Depth (SDD), Colored Dissolved Organic Matter (CDOM),
Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammonia Ni-
trogen (NH3-N), Dissolved Oxygen (DO), Total Phosphorous (TP), Total Nitrogen (TN),
alkalinity, chlorides, and other heavy metals. Out of all these water quality parameters,
only Chl-a, CDOM, and TSS are Optically Active Constituents (OAC), indicating they
interact with electromagnetic radiation and therefore can be inferred using remote sensing
techniques [50]. They have unique optical spectral signatures that are detected by the
observatory sensors. The rest of the parameters are found to be undetectable through
reflectance but can be indirectly evaluated using empirical relations, as they have shown
to exhibit a good correlation with OAC. The link between OACs and light signals is the
Inherent Optical Properties (IOP) like absorption and backscattering, which are distinct
for various constituents. The details about the selected water quality parameters and their
spectral characteristics are as follows.

• Chlorophyll pigment in vegetation allows them to create energy by photosynthesis.
One of its forms is Chlorophyll-a (Chl-a), which is found in all photosynthesis plants
and algae. The presence of Chl-a is used to estimate the amount of suspended algae
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and the extent of eutrophication in water bodies. Higher water temperatures and
longer daylight hours contribute to their growth. The major anthropogenic sources
which enhance the Chl-a content in water are untreated sewage, agricultural runoff,
and industrial wastes. The extent of damage due to eutrophication can be determined
by evaluating Chl-a concentration using the spectral band in visible wavelengths.
Chl-a absorbs radiation mainly in the blue (450–520 nm) band [17,20].

• Total suspended solids (TSS) are the inorganic materials comprising of salts and
a small quantity of organic matter present in water. An undesirable amount of
particulate matter in freshwater bodies increases turbidity, resulting in high nutrient
load, and blocks light transmission at the surface, affecting the overall health of aquatic
life. Major sources of solids in water bodies are (i) untreated industrial wastes and
sewage, (ii) urban land runoff, (iii) agricultural runoff, (iv) bits of decaying vegetation,
(v) atmospheric deposition, (vi) wind-driven resuspension, and (vii) phytoplankton
(suspended algae). TSS is strongly related to water color or chromaticity, which
increases with turbidity [57].

• Colored Dissolved Organic Matter (CDOM) is made up of various macromolecules
of carbohydrates, fatty acids, humic substances, and other hydrocarbons, which are
an essential source of carbon and energy for heterotrophic organisms living in the
water. It indicates the amount of organic carbon resulting from aquatic and terrestrial
vegetation (humus) decomposition and soil organic matter of the catchment area.
The anthropogenic activities causing an increase in CDOM are untreated domestic
sewage, runoff from agricultural land, and animal farms [55]. The presence of high
CDOM concentration can also block light from entering the water column, thus re-
ducing the phytoplankton productivity [58,59]. Studies have reported that CDOM
absorbs radiation below the 500 nm wavelength [41,46,60]. The optimal concentra-
tion is useful in the absorption of UV radiation and hence protects the aquatic biota.
However, the high concentration of CDOM is a threat to the functioning of the ecosys-
tem. This compound gives the greenish-brown color to inland water bodies depending
on their quantity.

2.4. Satellite Data Processing

The geographically corrected satellite imagery from USGS is processed to convert
the Digital Numbers (DN) of the image to the surface reflectance values for the selected
bands. This involves three main steps: (i) conversion of DN to spectral radiance using
the rescaling factors as proposed in [61], (ii) atmospheric correction for spectral radiance,
and (iii) spectral radiance to SR. The last two steps are derived using the improved Dark
Object Subtraction (DOS) method [62]. The mathematical form for obtaining the surface
reflectance is given as:

2.4.1. Step 1—Conversion of DN to Spectral Radiance

The radiance at satellite sensor, Lsatrad (Watts/
(
m2 × srad× µm

)
) of each pixel is

calculated using the radiance rescaling factors present in the metadata file for each band.

Lsatrad = ML ×Qcal + AL (1)

where ML and AL are the band-specific multiplicative and additive rescaling factor, respec-
tively, from the metadata file, Qcal = pixel values or DN.

2.4.2. Step 2—Atmospheric Correction

The radiance calculated from Equation (1) has to be corrected for atmospheric scatter-
ing by deducting the haze amount (radiance at the sensor that is increased due to the effect
of atmospheric haze) from total radiance value.

Lhaze1%rad = Lλmin − Lλ, 1% (2)
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where Lλmin is minimum spectral radiance value at the satellite sensor, Lλ, 1% is the
radiance of an object on each band. It is assumed to have a reflectance of 1%.

Lλ, 1% = 0.01× Eoλ×cosθs
d2×π

(3)

where Eoλ is the exoatmospheric solar irradiance (also called ESUNλ), θ is the sun zenith
angle, and TAUv is the atmospheric transmittance along the path from the ground surface
to the sensor.

2.4.3. Step 3—Conversion of Radiometrically Corrected Radiance to SR

The SR from the water surface, ρλ is calculated by the following equation,

ρλ = (Lsatrad−Lhaze1%rad)π×d2

Eoλ×cosθs×TAUv
(4)

where d is the distance between earth and sun (in astronomical units), Lsatrad is the spectral
radiance at the satellite sensor (Watts/

(
m2 × srad× µm

)
).

2.5. Forel–Ule Color Index (FUI)

The concept of “color” has been used in several studies for indicative analysis due
to its strong correlation with the water quality [26,29]. The International Commission on
Illumination (CIE) system provides an approach to describe the “Color” using luminosity,
dominant wavelength, and excitation purity (analogous to brightness, hue, and saturation,
respectively). The Chromaticity Diagram (Figure 1) helps us plot the hue and saturation
values of a particular color [36]. The diagram shows pure spectral colors (truly monochro-
matic light) on a tilted horseshoe-shaped locus of points. The space enclosed encompasses
all possible chromaticity values.

Figure 1. Chromaticity Diagram showing location of white point (WP), 21 FUI (blue circles), hue angle
(α), and dominant wavelengths (on the locus of diagram). S and So denote the distances from WP.
The axes of diagram represent the chromaticity coordinates.
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Chromaticity analysis uses three color primaries X, Y, and Z (tristimulus values) to
describe the color of an object as perceived by the human eye [24]. The tristimulus values
are integrals of the weighted upwelling reflectance spectrum ρ(λ) for 390–740 nm (the
region to which the human eye is sensitive). x̄(λ), ȳ(λ) and z̄(λ) are weighing functions,
which represent the color mixture values based on wavelength dependence of human
vision for red, green, and blue light, respectively.

X =

740∫
390

ρ(λ)x̄(λ)d(λ) (5)

Y =

740∫
390

ρ(λ)ȳ(λ)d(λ) (6)

Z =

740∫
390

ρ(λ)z̄(λ)d(λ) (7)

The tristimulus values can be reconstructed based on the linear weighted sum of
reflectance [27,30] of Landsat 8 OLI bands; Band 1(B1), Band 2(B2), Band 3(B3), and Band
4(B4) as given in Table 1. van der Woerd and Wernand [30] have provided the coefficients
for the equations as given below.

X = 11.053ρ(B1) + 6.950ρ(B2) + 51.135ρ(B3) + 34.457ρ(B4) (8)

Y = 1.320ρ(B1) + 21.053ρ(B2) + 66.023ρ(B3) + 18.034ρ(B4) (9)

Z = 58.038ρ(B1) + 34.931ρ(B2) + 2.606ρ(B3) + 0.016ρ(B4) (10)

These individual tristimulus values are normalized to get the chromaticity coordinates
x, y, and z, as follows. “White Point (WP)” is the center of the chromaticity diagram at
which x = y = z = 1/3 (CIE-E illuminant). Any pair of x, y coordinates can be identified by
a hue angle (α). It is drawn between a line joining the white point and the x, y coordinate
in an anticlockwise direction. The following equation is used to calculate the hue angle.

α = arctan(y− (1/3), x− (1/3))modulus 2π (11)

The angles between WP and the FU chromaticity coordinates (αiT) can be used to
determine the FUI [63], as shown in the Table 3.

Table 3. Determination of FUI based Hue angle for i = 1 to 21 as shown in Figure 1.

i αiT If α > αiT , Then FUI = i αiT If α > αiT , Then FUI =

1 227.168 1 12 62.186 12
2 220.977 2 13 56.435 13
3 209.994 3 14 50.665 14
4 190.779 4 15 45.129 15
5 163.084 5 16 39.769 16
6 132.999 6 17 34.906 17
7 109.054 7 18 30.439 18
8 94.037 8 19 26.337 19
9 83.346 9 20 22.741 20

10 74.572 10 21 21
11 67.572 11
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The correction (4α) is applied to hue angle as described by van der Woerd and
Wernand [27,30]. The coefficients of the following equations for Landsat 8 OLI are also
provided in [30].

4α = −52.16a5 + 373.81a4 − 981.83a3 + 1134.19a2 − 533.61a76.72 (12)

where, a = α / 100.

2.5.1. Excitation Purity (S*)

Excitation purity (S*) is a qualitative measure of saturation of a particular color,
i.e., how similar the color is to its dominant wavelength. It is the ratio of the distance
between WP and x, y coordinates (S) to the distance between WP and spectral locus of the
dominant wavelength, (So) [36]. The corrected hue angle (α +4α) is used to determine the
dominant wavelength by constructing a line between the x, y coordinates, and WP, and then
extrapolating the line until it intersects the locus of the chromaticity diagram. Similar to
hue angle correction, a correction (4S ) is applied to S as suggested by Lehman et al. [24].

4S = −0.0099a5 + 0.1199a4 − 0.4594a3 + 0.7515a2 − 0.5095a + 0.1222 (13)

Thus, excitation purity is given as

S∗ =
S +4S

So
(14)

3. Study Area

During the lockdown, the most affected activities which directly influence the pollu-
tion characteristics of the water bodies are (i) commercial/small-scale businesses, (ii) trans-
portation, (iii) industries, (iv) educational institutions, and (v) tourism [1,4,64]. In this
study, Lake Hussain Sagar (HS), one of the most polluted urban water bodies in India,
is selected for the analysis. The Lake HS is located at the heart of the city (as shown in
Figure 2), and the pollution is mainly due to the domestic sewage (generated from com-
mercial locations, educational institutions, and industries), industrial effluents, and storm
sewage.

Figure 2. Location Map of Lake Hussain Sagar, India.
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Lake HS (latitude 15◦ N and longitude 81◦ E) is the largest human-made lake in Asia
built in the year 1562 A.D. It was constructed to meet the drinking water and irrigation
water demands of the twin cities Hyderabad and Secunderabad during the years 1894–
1930. The lake is also known as Tank Bund, as initially it is constructed by forming a bund.
The lake was once famous for the aquatic life and particularly for the delicious Murrel fish
and a stopover point for the migrating birds, including flamingos. It is also a popular spot
for sailing. The 16 m high Buddha statue, also known as India’s “Statue of Liberty”, has
been a huge attraction for many tourists. This has given rise to boating in the lake. The full
tank level of the lake is about 513 m above the mean sea level. The total catchment area of
the lake is 240 sq.km, where the present water spread area at full tank level is 4.73 sq.km.
The average depth at full capacity is 5.02 m. The shoreline length is about 14 km. The lake
is fed by four incoming major drains (nalas): Kukatpally nala, Picket nala, Banjara nala,
and Balkapur nala. Along with untreated domestic sewage, Kukatpally nala also drains
industrial effluents into the lake [65]. The increased pollution of the lake has led to a huge
reduction in aquatic life. One of the major goals of the local municipalities is to restore the
lake as a freshwater source for the city and recreation purposes.

4. Results and Discussion

The level-1 Landsat 8 satellite images for bands B1, B2, B3, B4, and B5 are downloaded
from the USGS for the pre- and post-conditions of the first COVID-19 lockdown in In-
dia. The available satellite data for the case study was coincidentally before (25 March),
during (14 April), and after (2 May) the first lockdown period. The satellite imagery for
indicative analysis is collected for (i) January to May 2020 to study the lockdown effect,
and (ii) March and April for years 2015 to 2020 to study the historical variations. In the
year 2020, no cloud-free images were available for the month of February. The details of
all the selected data (97–98% cloud free images) are provided in Table 4. In this study, the
water quality of the lake HS is studied using two indicative remote sensing based analysis:
(i) spatio-temporal variation of Band B2 surface reflectance and (ii) chromaticity analysis
such as FUI and Excitation Purity.

Table 4. Details of the Landsat 8 OLI images of lake Hussain Sagar used in this study covering Path 144—Row 48. Cloud-free satellite
images are only selected in the analysis. No could-free satellite images were found in February 2020. For historical variations, only the
months March and April during years 2015 to 2020 are considered.

Sl. No. Year Date of Image Captured Image ID Remarks

1

2020

2 May LC08_L1TP_144048_20200502_20200509_01_T1 Initial unlock
2 16 April LC08_L1TP_144048_20200416_20200423_01_T1 During lockdown
3 15 March LC08_L1TP_144048_20200315_20200325_01_T1 Before lockdown
4 27 January LC08_L1TP_144048_20200127_20200210_01_T1 -

5 2019 14 April LC08_L1TP_144048_20190414_20190422_01_T1 -
6 29 March LC08_L1TP_144048_20190329_20190404_01_T1 -

7 2018 27 April LC08_L1TP_144048_20180427_20180502_01_T1 -
8 10 March LC08_L1TP_144048_20180310_20180320_01_T1 -

9 2017 24 April LC08_L1TP_144048_20170424_20170502_01_T1 -
10 23 March LC08_L1TP_144048_20170323_20170329_01_T1 -

11 2016 21 April LC08_L1TP_144048_20160421_20170326_01_T1 -
12 20 March LC08_L1TP_144048_20160320_20170327_01_T1 -

13 2015 19 April LC08_L1TP_144048_20150419_20170409_01_T1 -
14 18 March LC08_L1TP_144048_20150318_20170412_01_T1 -

The variations in the SR is restricted to B2 band as most of the studies indicate that
this band is highly correlated to water quality, mainly Chl-a and CDOM [17,20,41,46].
The atmospherically corrected B2 reflectance band image for the lake HS before and during
lockdown is shown in Figure 3. Through visual inspection of Figure 3, it is evident that the
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reflectance (false color) of the lake surface is different for the selected periods indicating
changes in the water quality. In Figure 3, it is observed that the SR of the lake during
lockdown (April 2020) shows higher reflectance (brighter) when compared to March 2020.

Figure 3. False color images showing changes in Band 2 spectral reflectance values for Lake HS:
(Left panel) 15 March 2020 (Before the COVID-19 lockdown); (Right panel) 16 April 2020 (During
COVID-19 lockdown). Blue color shows the maximum reflectance, and orange color shows the
minimum reflectance. (Legend shows the color band for the entire reflectance range.)

In order to understand the differences in the variations of the reflectance before, during,
and after lockdown, further analysis of the data is carried out by mapping the Empirical
Cumulative Distribution Functions (ECDF) and quantiles of surface reflectance values
over the lake as shown in Figures 4 and 5. The ECDF and Q-Q plots provide statistical
insights on the spatial variations of the SR values for a given water body and help to
understand the spatio-temporal characteristics of the water quality. Quantile–Quantile
(Q–Q) is a graphical technique to compare two datasets’ statistical characteristics without
fitting any distributions or finding the unknown parameters. A reference line is a 45◦line
and the deviation of plots from the reference line help to draw inferences about how the
two samples differ from each other. The Q–Q plot lies on the reference line if both the
datasets have same statistical parameters. The plot lies above the reference line if the latter
dataset has a higher mean or location parameter than the former. Slope of the plot increases
more than the reference line when the standard deviation of latter dataset is more than
former. The earlier studies (Section 2) indicate that increment in B2 band reflectance values
shows a decrease in Chl-a and CDOM concentrations.

The FUI has been widely used in indicative analysis to understand variations in
the ocean and inland water quality [26–33]. The water colors can be assigned with FUI
ranging from 1 (indigo-blue) to 21 (cola-brown). The higher FUI show brownish water color
indicating turbidity due to suspended particulate and dissolved matter, thus reducing the
light penetration depth value (SDD) [28]. On the other hand, lower FUI (blue water color)
indicates clear water [29]. Figures 4c and 6a show the FUI comparison in the year 2020
(Jan–May) and previous years (2015–2019) for the months of March and April. In addition,
the study uses excitation purity to analyze the saturation of a particular color which
is useful in analyzing the spatial variation of the color in the water body. The purity
percentage is compared between March and April for the years 2015–2020 as shown in
Figure 6b.
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Figure 4. Comparison of B2 surface reflectance and FUI for months January, March, April, and May
in year 2020. (a) ECDF for B2 SR; (b) Q–Q plot for B2 SR (X: Previous month image; Y: Current month
image); (c) Stacked bar chart showing FUI (number of pixels (%)).
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Figure 5. Comparison of B2 surface reflectance for months March and April in years 2015 to 2019. (a) ECDF for B2 SR;
(b) Q–Q plot for B2 SR.

4.1. Before, during and after Lockdown

Indicative analysis of B2 band SR and FUI for months January, March, April, and May
in the year 2020 is illustrated in Figure 4. The major observations are listed below.

1. ECDF (Figure 4a): The SR for April 2020 has increased when compared to January,
March, and May 2020. This indicates that there is an improvement in the water
quality in April (i.e., decreased Chl-a and CDOM (Section 2)). The SR values of
before lockdown and after unlock are similar, indicating an increase in pollution after
unlock. SR values for the month of April have the smallest range, unlike other months,
which implies that the SR values are uniformly distributed over the lake.

2. Q–Q analysis (Figure 4b): It is evident from the figure that there are considerable
changes in the SR values for March–April when compared to the changes in other
months. Further, the SR values clearly lie above the reference line because the re-
flectance has increased in April compared to March. It is to be noted that after unlock,
the Q–Q plot for April-May indicates there is a decrease in SR values, i.e., a decrease
in lake water quality. In addition, the January–March and April–May lines lie below
the 45◦reference line, which shows that the reflectance has decreased in March and
May due to an increase in Chl-a and CDOM levels in the before lockdown and after
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unlock months. The March–April line has a mild slope indicating that the standard
deviation in April is less than that in March and May.

3. FUI (Figure 4c): The maximum number of pixels (95%) have low FUI in month April
2020, when compared to the before lockdown and after unlock months, indicating
there is a decrease in turbidity of the lake. This might be due to the decrease in
TSS concentration [28] and an increase in SDD [31]. In case of unlock phase (May,
2020), the FUI index (50% of pixels) increases similar to the before lockdown phase
(March, 2020). It is worth noting that in the month May due to the initial unlock effect,
it shows 50% of the pixels with higher FUI (greater than 4), which is very similar to the
pre-lockdown conditions. Further, in both before lockdown and unlock conditions the
spatial FUI of the lake is similar. On the other hand, April 2020 shows the maximum
number of pixels (95%) having a uniform water color with the least FUI (FU4).

4.2. Historical Variations (2015–2020)

The monthly variability of SR in the months March and April for years 2015 to 2020
are analyzed using ECDF, Q-Q, FUI and Excitation Purity plots (Figures 5 and 6). Our
observations are listed below.

1. ECDF (Figure 5a): Except for April 2020, both March and April months show similar
behavior in SR values for all the given years. For April 2020, B2 has a considerable
increase in the SR values in comparison to the previous years. Furthermore, the range
of B2 SR values is consistent for all pixels of the lake in April 2020 as discussed earlier.

2. Q–Q plot (Figure 5b): The March–April Q–Q plot clearly shows that the inter-month
(March–April) for the year 2020 lies above the reference line when compared to the
previous years. This clearly implies an improvement in water quality in month April
2020 due to the lockdown. In the previous years, the mean reflectance is nearly the
same (line parallel to reference line) or lower than March (line below reference line).

3. FUI (Figure 6a): It is expected to have variations in the water colors throughout the
lake HS due to its multiple effluent inlets, indicating nonuniform water color (FUI)
throughout the lake area. This can be seen through the FUI variations in March and
April months for all the given years. However, April 2020 shows a maximum number
of pixels with a uniform color with the least FUI (FU4) compared to all the given years.
This implies the improvement and uniformity in the watercolor over the maximum
lake area. As no industrial effluents were discharged in the lake during the lockdown,
the lake water quality has improved and the water color is uniform over the lake area.

4. Excitation Purity (Figure 6b): This refers to qualitative measure of water color satura-
tion. The box plot for purity percentage representing the spatial variations in water
color saturation over the lake area. The figure indicates that in month April 2020,
the purity percentage is found to be consistent throughout the lake area when com-
pared to the other months and previous years. The effect of lockdown on excitation
purity is clearly visible in April 2020 box plot.

It is evident from the results that the trend in SR has considerably changed in April
2020 due to the lockdown when compared to the previous years (2015–2019). The sig-
nificant increase in SR during April 2020 could imply a reduction in Chl-a and CDOM
concentrations in the lake water. Similarly, FUI in April 2020 is found to be uniform and
minimum FUI over the lake area, indicating decrease in turbidity and TSS concentration
due to low industrial effluent influx in the lake.



Water 2021, 13, 73 14 of 19

Figure 6. Comparison of FUI and Excitation purity for months March and April in years 2015 to 2019. (a,b) Stacked bar
chart showing the FUI (number of pixels (%)) in March and April; (c) Box plot for excitation purity percentage (M: March, A:
April) (gray box represents interquartile range, black line in the gray box shows median value, and black circles are outliers).

4.3. Satellite Imagery: Effect of Atmospheric Correction

Satellite image quality is affected by the molecules (such as gases and water vapor)
and aerosols present in the atmosphere, which cause scattering and absorption of sun-
light. This increases the top of atmosphere reflectance (radiance) due to the additional
path or scattering (as shown in Equation (1) which does not account for the influence of
atmospheric haze). Therefore, the atmospheric correction is carried out to remove the
effect of haze Equation (2). It is evident from Q–Q plots and FUI (Figures 4 and 7) that
the radiance is unable to capture the near field conditions when compared to the surface
reflectance. Especially in the FUI analysis, radiance shows no variations in the FU color
when compared to that of surface reflectance. This implies that the radiance will not be
effective in the indicative analysis for detecting the changes in water quality. Thus the
atmospheric correction plays a significant role in deriving the surface reflectance from
satellite imagery [66].
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Figure 7. Comparison of B2 radiance (Top of Atmosphere Reflectance) and FUI for months January, March, April, and
May in year 2020. (a) Q–Q plot for B2 radiance (X: Previous month image, Y: Current month image); (b) Stacked bar chart
showing FUI (number of pixels (%)).

5. Summary and Conclusions

This study compares the effect of COVID-19 lockdown on the changes in the water
quality parameters for lake Hussain Sagar using the remote sensing techniques. It is
envisaged that the changes in the SR values and FUI (water color) over the lockdown
period indicate changes in the water quality of the lake. In this study, an indicative analysis
using (i) spatio-temporal variation of Band B2 SR and (ii) chromaticity analysis, such as FUI
and Excitation Purity, is carried out. It is evident from the results that due to the lockdown
the lake had a significant effect on the pollution characteristics when compared to the
previous years (2015–2019), suggesting a considerable reduction in the concentrations
of Chl-a, CDOM, and TSS. Water quality cannot be uniform throughout the water body
[67]. However, this study shows that during the lockdown, the concentration levels in the
lake are found to be more uniformly distributed when compared to before lockdown and
after unlock (2020) or previous years (2015–2019). This suggests that the lake pollutant
concentrations are uniformly distributed on the lake surface due to low effluent influx
during the lockdown. Reduction in pollutant levels was due to restrictive measures to limit
the anthropogenic activities and closure of several large and small-scale industries in the
city of Hyderabad.

5.1. Major Limitations and Extension

1. The comparison analysis is based on the SR (qualitative relationships with OAC)
and FUI. The field observations will be required to quantify the actual concentration
levels and changes in the lake water quality. However, in the absence of these values,
it is envisaged that the indicative analysis of remote sensing images are useful for
stakeholders and decision-makers.

2. The study is restricted to only three water quality parameters: Optically Active
Constituents (OAC) Chl-a, CDOM, and TSS. However, there are other important
parameters such as pH, DO, BOD, and COD which need to be evaluated for effective
water quality management. There are limited studies that are successful in relating
the SR values to non-OAC parameters and hence unable to provide any assessment
on these parameters. This indicates that for effective management of water quality of
large lakes, both remote sensing and continuous field-based monitoring is essential.
This can help generate a large dataset for developing spatio-temporal empirical
relationship for the water quality parameters.
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3. In this study, Landsat 8–30 m resolution data are used. The high-resolution data can
provide greater insights into the variations of the lake SR and FUI values. Moreover,
the higher resolution images can help in investigating the water quality variations of
smaller water bodies, including rivers.

4. The study is restricted to the B2 (blue) band and its empirical relationship with
pollutants Chl-a, CDOM, and TSS. However, there are other important bands and
band ratios such as B3/B2, B5/B4, B2/B4, and NDVI, which can be used in de-
veloping empirical relations [48,68]. Further, it is observed that there is a limited
consistency among these ratios and water quality parameters when compared to B2
band. The study is in progress to understand these ratios over various scenarios, as
discussed in point 5.

5. The study is in progress to develop a similar analysis for several large water bodies
across the globe to understand the variations of SR and FUI over different scenarios
such as urban vs. non-urban, developed vs. developing countries, various climate
scenarios (humid vs. arid vs. cold), and coastal vs. inland lakes. In addition,
the monitoring of these lakes will be continued during the subsequent lockdown
periods in India. Efforts are being made to collect the ground truth values for these
lakes.
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