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Abstract: A framework for the assessment of relative risk to watershed-scale water resources from
systemic changes is presented. It is composed of two experiments, or pathways, within a Monte
Carlo structure and provides quantification of prediction uncertainty. One simulation pathway is the
no change, or null hypothesis, experiment, and the other provides simulation of the hypothesized
system change. Each pathway uses a stochastic weather generator and a deterministic water balance
model. For climate change impact analysis, the framework is calibrated so that the differences
between thirty-year average precipitation and temperature pathway values reproduce climate trends.
Simulated weather provides forcing for identical water balance models. Probabilistic time histories
of differences in actual evapotranspiration, runoff, and recharge provide likelihood per magnitude
change to water resources availability. The framework is applied to a semi-arid watershed in Texas.
Projected climate trends for the site are a 3 ◦C increase in average temperature and corresponding
increase in potential evapotranspiration, no significant change in average annual precipitation, and
a semi-arid classification from 2011–2100. Two types of water balance model are used in separate
applications: (1) monthly water balance and (2) daily distributed parameter. Both implementations
predict no significant change, on average, to actual evapotranspiration, runoff, or recharge from
2011–2100 because precipitation is unchanged on average. Increases in extreme event intensity are
represented for future conditions producing increased water availability during infrequent events.

Keywords: climate change risk; watershed water resources; uncertainty; water balance model;
weather generator; Monte Carlo simulation; semi-arid

1. Introduction

Climate is the weather of a place averaged over an interval [1]. Weather includes the
daily events that occur in the atmosphere, and it changes across a much shorter period
like minutes to weeks [2]. Three-decade averages of weather measures, called Climate
Normals, provide a place- and period-specific climate description [3].

Projections of future climate have heightened importance because of concern with
anthropomorphic drivers pushing climate variations beyond the bounds of historical
observations. Across the planet, temperatures are expected to increase by 1.5 ◦C between
2030 and 2052 relative to pre-industrial levels. Changes to precipitation are projected to
be region dependent with increased precipitation intensity in some areas and increased
probability of drought in several regions [4].

These future climate projections are based on the global climate model (GCM) simula-
tion results. GCMs are coupled atmosphere-ocean, general circulation models that simulate
global weather with a sub-daily time step. GCMs simulate future weather to generate a
description of future climate. GCM results have provided climate change projections for
analysis of water resources impacts in diverse geographic regions across varying temporal
and spatial scales [5–13].

GCM-simulated weather can be used for analysis of future water resources because
weather conditions drive the availability of water resources. Precipitation (P) is the water
source, and evapotranspiration (ET) is the primary subtraction of water. ET includes water
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lost from the leaves of plants, or transpiration, and water that evaporates from the soil
surface, puddles, ponds, lakes, and rivers [14]. It is dependent on vegetation, soil type, and
weather; ET tends to increase with increasing temperature.

The first-order expectation is that increases in precipitation amount and intensity
will increase the amount of water in the water budget and increases in temperature will
remove more water from the water budget through increased ET. However, decadal pro-
jections of climate are insufficient to predict impacts to water resources. If precipitation
intensity increases during colder months when ET is lower, water availability could in-
crease even though average precipitation is constant and average temperature increases by
several degrees.

Water availability is defined as P − ET. Only when P exceeds ET (P − ET > 0) is
water available to contribute to runoff and recharge. To predict the future impacts to
water availability, a water balance calculation is used with projected climate to capture the
interplay of precipitation and temperature forcing and the influence of vegetation, land
cover, and soils on the water budget. Water balance models provide one form of water
budget calculation and are procedural models that estimate the balance between incoming
water to the watershed from precipitation and outflowing water from the watershed related
to the processes of ET, stream flow, and groundwater recharge [14,15].

Future weather, climate, and water availability are uncertain. Unknown details of
future greenhouse gas emissions, incomplete understanding of some processes that control
the evolution of climate and limited physical process representation due to computational
constraints generate weather and climate uncertainty [16]. Because future water availability
is determined by future weather, climate uncertainty is propagated through deterministic
water balance calculations to produce a range of possible water resources futures.

Uncertainty in future simulation results can be partitioned into scenario, response,
and structural components. Scenario uncertainty is the lack of knowledge about what
future levels of boundary forcing should drive model simulations. Response, or epistemic,
uncertainty is lack of knowledge about how the current and future system will respond to
a particular scenario or estimated set of future forcing conditions. Structural uncertainty
is lack of knowledge of the optimal form of equations describing complex physics and
numerical solution methods [16].

Ensemble modeling approaches are employed to describe and quantify future result
uncertainty. An ensemble is a collection of simulation results from multiple models and
perhaps multiple model versions that include different physical forcing like different future
emissions scenarios in GCMs [16,17]. The goal of an ensemble is to capture a range of
futures that brackets the possible within a cone of uncertainty. In analysis of ensembles,
prediction of the same result by multiple models is often assumed to confirm an increased
likelihood for that future, and the likelihood for a future is calculated as the proportion of
results that estimate a future [16].

Ensemble GCM results have been used in conjunction with various types of water
balance calculations to predict impacts to water availability at global, regional, and water-
shed scales [18–23]. These studies identify water resources impacts through comparison of
water budgets simulated using historical weather and ensembles of GCM results composed
of less than 100 members. In the comparison, each GCM ensemble member, a model and
forcing scenario combination, drives a future water budget calculation to produce a result
ensemble composed of the same number of future realizations as GCM ensemble members.
Uncertainty is characterized by the spread of water budget results in the ensemble, and
climate uncertainty generates most of the uncertainty in future water budget results. GCM
simulated weather is directly used as water budget calculation inputs, which discretizes a
continuous future climate cone of uncertainty into a limited number of weather-forcing
time series.

It is not expected that GCM simulations will accurately predict the weather for a
particular day or month several years in the future. The goal of GCM simulations is to
project future Climate Normals pertaining to a hypothesized trend in future greenhouse
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gas emissions. Consequently, improved quantification and description of future water
resources uncertainty can be obtained using a continuous representation of the future
climate cone of uncertainty generated from an ensemble of thousands of realizations
of future weather. A more complete representation of future climate uncertainty will
propagate through deterministic water balance calculations to generate a more robust
depiction of future water resources uncertainty.

A probabilistic simulation framework, or algorithm, is presented and implemented to
isolate watershed-scale impacts to water resources from systemic changes to the terrestrial
water cycle. Impacts to water availability from climate change are analyzed for a small (less
than 519 km2 or 200 mi2) watershed. Within the framework, two weather generators create
weather forcing for independent water balance models. A weather generator is a statistical
model of daily weather sequences designed to reproduce statistical properties of observed
weather. One weather generator portrays historical observations, and one represents
future climate from ensemble GCM results. Comparison of water budgets calculated
using historical weather with those determined from GCM-derived future climate provide
impacts to water resources from climate change.

Actionable outputs are probabilistic time histories of differences in water availability,
split into recharge and runoff components, between historical and future conditions. The
combination of projected changes with an associated likelihood provides a risk assessment,
planning, and forecasting resource for water resources managers. Framework-based anal-
ysis of risk includes probability and consequences. Consequences are changes to water
availability, and likelihoods for each consequence are calculated as part of the representa-
tion.

Key strengths of this framework implementation relative to previous work are gener-
ated through using two weather generators in place of historical observations and ensemble
GCM results. The comparative weather generator formulation provides for: (1) Thousands
of realizations of the system rather than just one realization for each ensemble member
which provides detailed depiction of the future climate cone of uncertainty and results in
enhanced projection of the future water availability cone of uncertainty; (2) explicit isola-
tion of water availability impacts from climate change through probabilistic comparison of
two independent and identical water balance models with different weather forcing; and
(3) comparative statistical analysis of historical observations and ensemble GCM results
that allows identification of structural uncertainty issues in downscaled GCM results and
elimination of these issues from framework results.

In the case study implementation, identified climate trends are a 3 ◦C increase in
average temperature with a corresponding increase in potential evapotranspiration, no
significant change in average annual precipitation, and a semi-arid classification from 2011–
2100. Structural uncertainty issues of synthetic drizzle and underprediction of extreme
event intensity were discovered in downscaled, GCM results and eliminated from the
weather generator representation. In terms of water availability, no significant change, on
average, is projected for actual evapotranspiration, runoff, or recharge from 2011–2100
because precipitation is unchanged on average. However, increases in extreme event
intensity are represented for future conditions resulting in estimates for increased water
availability and ET during infrequent events.

2. Methods and Data

Methods include the implementation of weather generator and water balance models
within the framework and techniques used for result presentation. The impact assess-
ment framework is applied to a site in west-central Texas. Data employed in the study
include physical characteristics, historical weather observations, and GCM simulated,
future weather for the study site (Additional details concerning methods and the study site
are available in Appendix A).



Water 2021, 13, 40 4 of 40

2.1. Study Site Data

The 471 km2 Dolan Creek Watershed in Val Verde County, TX, USA was selected as
a study site for framework application, see Figure 1 and Figure S1. Dolan Creek is the
primary stream in the watershed and provides the surface outlet. It is ephemeral with
the exception of the downstream-most reach where a number of springs, including Dolan
Springs, provide flow to the stream throughout the year (see Figures S1 and S2). USGS
Gauge 08449100 is located on Dolan Creek near the watershed outlet and the confluence
of Dolan Creek and Devils River. This stream gauging station has been in operation since
November 2011. A rain gauge is collocated with the stream gauge, was installed at the
same time, and is the only rain gauge in the watershed.
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Figure 1. Site watershed location and comparison of PRISM and downscaled, ensemble GCM
simulation (LOCA) weather parameter grids. The label for each grid cell, used in this study, is
displayed in the center of the cell. PRISM grid and labels are in blue; “LOCA Archive” grid and
labels are in orange. Grid index numbering for LOCA and PRISM is the numbering used in this
study and is not a reference identifier. The site watershed is northwest of San Antonio, TX, USA.

The site is in karst terrain. Dolan Creek watershed is at the southwestern margin
of the Edwards Plateau, a resistant carbonate upland of nearly flat-lying limestone and
dolostone with thin soils, caprock mesas, and dry arroyos [24]. In terms of hydrologic soil
properties, ridgetops and valley/mesa sides (92–93% of total watershed area) have low
water storage capacity, shallow bedrock, and high runoff potential while the streambeds
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and valleys (7–8% of total watershed area) provide high infiltration rates, relatively deep
bedrock, and near surface water storage capacity [25]. Most of the watershed, 92%, is
naturally impervious with shallow to no soil because of the rocky nature of the mesa-
dominated landscape. However, the site watershed is in karst terrain and valley bottom-
areas exhibit enhanced secondary porosity from limestone dissolution. This secondary
porosity creates the relatively large storage capacity and elevated permeability which
produce rapid infiltration in valleys and dry stream beds.

Beck et al. [26] provide global maps of Köppen-Geiger climate classifications at 1-km
resolution for current conditions and for future conditions projected through 2100 from
GCM simulations. The study area is mapped in the hot, semi-arid category (BSh) under
both current and future conditions. The Köppen-Geiger climate classification system is a
widely used vegetation-based empirical system which is based on the idea that climate is
best defined by native vegetation [27].

2.1.1. Historical Weather Data

PRISM (parameter-elevation relationships on independent slopes model) gridded
climate data [28] provide weather parameter observations for the study. PRISM daily time
series for precipitation, maximum temperature, and minimum temperature were acquired
for 1 January 1981 through 4 May 2019.

PRISM climate variables are spatially interpolated weather elements and are not
technically direct observations or point measurements. It is an interpolation method that
seeks to produce gridded climate elements from a network of observation stations that
reflects the known spatial climate patterns across the continental United States (CONUS).
PRISM has been shown to provide improved climate grids relative to WorldClim and
Dayment, and PRISM gridded climate estimates display the largest relative improvement
in mountainous and coastal areas of the western United States [29].

Figure 1 displays the PRISM grid in the vicinity of the site; PRISM grid cells are
approximately 18.6 km2 in area. Multiple grid cells in the PRISM data set are completely or
partially within the watershed. Each grid cell has a time series of observations for daily
precipitation depth, maximum temperature, and minimum temperature.

Figure 2 presents the 1981–2010 Climate Normals calculated from area-weighted
PRISM data for the watershed. Area-weighting involves weighting each grid cell value
by the proportional area of the grid cell, within the watershed, to the total watershed area
to produce a single value characteristic of the entire watershed from multiple grid cells
(Additional details of this process and weight definitions are available in Appendix A).
Average monthly potential evapotranspiration for a reference crop, or monthly ETo, is also
plotted on Figure 2. Average monthly potential evapotranspiration exceeds precipitation
for every month confirming that the site is an arid environment.
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2.1.2. Downscaled GCM Simulation Results

Ensemble GCM simulation results provide future weather and climate for this study.
Because the study site is a small watershed, global-scale model results need to be down-
scaled prior to use in framework formulation. Spatial downscaling imparts enhanced
resolution spatial structure to GCM results. “There are two predominant types of spatial
downscaling—dynamical and statistical. Dynamical methods use GCM output as bound-
ary conditions for finer resolution regional climate models, linking process-based physical
relationships between small- and large-scale behavior. While these methods may capture
(possibly unobserved) nonstationary behaviors, they are computationally expensive and
are not practical for downscaling of the large ensembles of century long GCM runs that are
of interest in many modern studies, on the continental scale. Statistical downscaling meth-
ods rely on historically observed statistical relationships between coarse-and fine-spatial
scale patterns [31] (p. 4).”

Statistically downscaled, ensemble GCM simulation results from Coupled Model
Intercomparison Project Phase 5 (CMIP5) are publicly available for the study site from
the “Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections” archive [31,32].
Three different statistical downscaling methodologies are available in this archive: (1) BCSD:
Bias correction with spatial disaggregation [33]; (2) BCCA: Bias correction with constructed
analogs [5]; and, (3) LOCA: Localized Constructed Analogs [34]. Only CMIP5, LOCA
downscaled ensembles from “Downscaled CMIP3 and CMIP5 Climate and Hydrology
Projections” archive, hereafter the “LOCA Archive”, are used in this study.

LOCA is an example of a constructed analog method. Constructed analogs are created
by finding a set of observed days that are like the GCM day when coarsened to the GCM grid.
LOCA improves upon other constructed analog methods through selection of analog days in
a synoptic-scale region around the downscaling point rather than across the entire domain,
which results in different model points using different analog days. These relative im-
provements reduce issues of spurious drizzle generation and damping of local precipitation
extremes that are known to occur in downscaled, GCM simulation results [31,34].
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The “LOCA Archive” provides simulated values for daily precipitation depth, maxi-
mum temperature, and minimum temperature for 1950–2099. Results are provided on a
1/16◦ latitude-longitude grid, displayed on Figure 1; each grid cell is approximately 42 km2

in area. Multiple grid cells are completely or partially within the study area. These down-
scaled climate projections are an ensemble of results from 32 models and two emissions
scenarios (Table S1 lists the GCMs by organization and the emissions scenario that are in the
“LOCA Archive.”) that provides 64 simulated time series of daily precipitation, minimum
air temperature, and maximum air temperature per grid cell. Each of the 64 realizations is
assumed to be equally likely.

Representative concentration pathway (RCP) 4.5 and 8.5 emissions scenarios were
available in the “LOCA Archive” at the time of this study. RCP4.5 and RCP8.5 are the two,
future projection (2006–2300) simulations in CMIP5 core, long-term experiments. RCP8.5
is a high emissions scenario and RCP4.5 is a midrange mitigation emissions scenario [35].
RCP4.5 stabilizes radiative forcing at the 4.5 W/m2 level in the year 2100 and the 4.5 W/m2

forcing threshold is not exceeded during the scenario [36]. RCP8.5 assumes no global
climate change impact limitation policy framework along with high energy demand and
corresponding emissions. In RCP8.5, emissions increase across the simulation time frame
to 8.5 W/m2 at 2100 [37].

2.2. Technical Approach

The goal of the framework, presented on Figure 3, is to analyze relative impact of
systemic changes, including climate change, on watershed-scale water resources and to
explicitly identify the uncertainty associated with projected impacts. It is composed of
two separate experiments, or pathways, that are executed jointly within a probabilistic
simulation framework. One internal pathway is the null hypothesis experiment (H0) that
represents “no change” or historical conditions. The other pathway is the alternative
hypothesis experiment (H1), representing systemic change.

Each pathway contains two models linked in series; a weather generator model
generates synthetic input weather forcing for a watershed water balance model. The
framework contains four models total (two simulation experiments, each with two models).
To isolate projected impacts resulting from systemic variations, one model type, either the
weather generator or the water balance model, should be different between the pathways.
The other model type should be identical in both pathways. To assess changes to runoff and
recharge resulting from future climate trends, identical water balance models are used in
both experiments, and different weather generator models are employed in each pathway.

Probabilistic simulation is the process of explicitly representing uncertainty by describ-
ing model inputs as probability distributions. A probability distribution is a mathematical
representation of the relative likelihood of an unknown variable having a specific value.
It provides a means to quantify uncertainty related to the possible values of an unknown
variable and a summary description of a sample of a larger population.

The framework uses Monte Carlo techniques to implement probabilistic simulation
and analysis. Monte Carlo simulation means that the entire framework is simulated many
times. Each simulation is a realization of the system; using multiple realizations provides
an ensemble modeling approach. For each realization, uncertain input parameters are
randomly sampled from probability distributions.

2.2.1. Stochastic Weather Generators

A weather generator is a statistical model of daily weather sequences designed to
simulate key statistical properties of meteorological records like means, variances, frequen-
cies, and extreme occurrences. Weather generators are commonly used in water resources
planning and design, and in agricultural, ecosystem, or climate change analysis applica-
tions because meteorological data may lack temporal or spatial coverage for the area of
interest [38]. Several weather generators exist as generally applicable computer programs
that are available for creation of synthetic, site-specific, weather sequences. Examples of
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available weather generators include WGEN [39,40], LARS-WG [41,42], WeaGETS [43],
and MulGETS [44]. Weather generators have been used to generate climate change scenar-
ios [45]. Ensemble climate change projections obtained from GCM simulation results can
be used, in place of measurements, to derive the key statistical properties that underlie the
stochastic formulation inherent in a weather generator [46,47].

The purpose of weather generator models within the framework is to provide weather
forcing to water balance model calculations. Custom weather generators are created,
following the schematic provided on Figure 4, and implemented for each pathway to
facilitate tailoring of the representation to identified climate trends (Additional details of
weather generator formulation and implementation are provided in Appendix A).

Water 2021, 13, x FOR PEER REVIEW 8 of 41 
 

 

programs that are available for creation of synthetic, site-specific, weather sequences. Ex-

amples of available weather generators include WGEN [39,40], LARS-WG [41,42], 

WeaGETS [43], and MulGETS [44]. Weather generators have been used to generate climate 

change scenarios [45]. Ensemble climate change projections obtained from GCM simula-

tion results can be used, in place of measurements, to derive the key statistical properties 

that underlie the stochastic formulation inherent in a weather generator [46,47]. 

The purpose of weather generator models within the framework is to provide 

weather forcing to water balance model calculations. Custom weather generators are cre-

ated, following the schematic provided on Figure 4, and implemented for each pathway 

to facilitate tailoring of the representation to identified climate trends (Additional details 

of weather generator formulation and implementation are provided in Appendix A). 

 

Figure 3. Climate change relative impact analysis framework for watershed-scale water resources. Framework results are 

presented in terms of the probabilistic difference, or Δ (Δ = H1 − H0), for simulated parameter values. Use of Δ values 

allows for isolation of impacts to water resources from future climate trends. 

Figure 3. Climate change relative impact analysis framework for watershed-scale water resources.
Framework results are presented in terms of the probabilistic difference, or ∆ (∆ = H1 − H0), for
simulated parameter values. Use of ∆ values allows for isolation of impacts to water resources from
future climate trends.
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Within the weather generator representation, precipitation is represented with occur-
rence and intensity processes. Daily minimum and maximum temperature are simulated
using a first-order, state-conditional vector autoregression. These processes are simulated
stochastically by selection of values from probability distributions. Values selected from
probability distributions provide the uncertain inputs that produce probabilistic simula-
tions.
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Figure 4. Schematic of weather generator implementation. Weather generators provide for stochastic simulation of precipi-
tation occurrence and intensity and maximum and minimum daily temperature. An alternating state, spell length approach
based on negative binomial distributions provides the precipitation occurrence process representation. Precipitation inten-
sity is represented with daily, wet state precipitation depth sampled from mixed exponential distributions. Simulated air
temperature is conditioned on state and calculated with a first-order vector autoregression.

To isolate impacts to water resources from climate trends, a different weather generator
model is employed in each pathway. The H0 pathway uses a weather generator designed
to reproduce the statistics of historical observations; the PRISM data set provides the
historical observations for this study. The H1 pathway employs a weather generator
customized to simulate the statistical properties of projected future climatic conditions that
are determined through analysis of downscaled, ensemble GCM simulation results in the
“LOCA Archive.”

Table 1 lists the probability distributions type employed for each precipitation process.
Precipitation occurrence is represented with two states: (1) wet state and (2) dry state.
Transition between states is modeled using a spell length approach. The spell length
approach has been used in other weather generators, including LARS-WG [41,42]. Spell-
length models for precipitation occurrence work by sampling wet and dry spell lengths
from separate probability distributions [38]. This approach may also be referred to as an
“alternating renewal process” [38,48].
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Table 1. Precipitation processes and probability distributions.

Precipitation
Process

Distribution
Type

Number of
Parameters

Seasonal
Variation Spatial Variation

Occurrence Negative
Binomial 2 Monthly NA

Intensity Mixed
Exponential 4 1 Monthly Distribution for each grid

cell in gridded data sets 1

1 The mixed exponential distribution is a three-parameter distribution. In this case, the fourth parameter is the
maximum possible precipitation depth truncation value. An untruncated mixed exponential distribution will
provide infrequent non-physical, precipitation depths exceeding 2000 mm.

Negative binomial distributions were selected to represent spell lengths because of
their statistical properties. A negative binomial distribution is useful for discrete data (i.e.,
counts of contiguous days are discrete) when the sample variance exceeds the sample mean
and have been found to produce realistic results in weather generators for representation
of low frequency occurrence of long dry spells [38].

A negative binomial, wet spell length and dry spell length distribution is derived for
each calendar month by fitting this distribution type, using the R package fitdistrplus [49],
to samples of observed spell length extracted from the PRISM data set and the “LOCA
Archive.” Spell length is allocated to the month when the streak of contiguous state days
begins. This permits spell lengths to be longer than the duration of a month or even longer
than a year in duration. For spell length, each grid cell is considered to provide an equally
likely realization of precipitation occurrence for the watershed, and spell length samples
include spell lengths from all grid cells within, or partially within, watershed boundaries.

Precipitation intensity is the total depth of precipitation for each day, or daily precipi-
tation amount. Mixed exponential distributions were selected for this process because of
their statistical properties. The mixed exponential distribution previously provided better
overall representation of daily precipitation depth than the gamma distribution [50–52]
and better representation of the frequencies of extreme precipitation amounts [51].

A mixed exponential distribution for each calendar month and grid cell is fit, using
the R package mixtools [53], to samples of observed daily precipitation depth extracted
from the PRISM data set and the “LOCA Archive.” Use of a different mixed exponential
distribution for each month provides a description of seasonal variation in precipitation.
Different distributions for each grid cell provide a description of spatial variation in
precipitation intensity.

The mixed exponential distributions created for each grid cell require specification
of a maximum truncation value to avoid infrequent sampling of non-physical, extremely
large (exceeding 2000 mm), daily precipitation values. The requirement for truncation
depth specification is a limitation to this approach because a fourth parameter needs to
be derived to effectively define these distributions. However, specification of truncation
depth provides a means to enforce larger magnitude extreme events in the future through
use of a larger truncation depth for future conditions relative to historical conditions.

Maximum and minimum daily temperatures are also simulated by the weather gen-
erators as shown on Figure 4. Maximum and minimum daily temperatures are the two
weather parameters, in addition to precipitation, that are available in downscaled GCM
simulation results. Temperature simulation is conditioned on precipitation occurrence to
provide a proxy for unrepresented processes like cloud cover [54], and temperature is sim-
ulated using the first-order vector autoregression algorithm employed in WGEN [39,40,55].
First-order requires that the statistics of the current day’s values are fully defined by the
values on the previous day [38].

2.2.2. Water Balance Models

Figure 5 provides a highly conceptualized, schematic depiction of the watershed
water balance. The ultimate source of freshwater supply for surface, near-surface, and sub-
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surface flows and storages is precipitation. ET dominates the water balance and controls
the availability of water for soil moisture storage, groundwater recharge, and runoff. The
ET subprocesses of potential evapotranspiration (PET) and actual evapotranspiration (AET)
are normally the first considerations in water budget calculation because of the control of
ET on the water balance. PET is the rate of water loss to the atmosphere in the absence
of water supply limitations. AET is the actual rate of water loss to the atmosphere given
water supply restrictions [14].
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Figure 5. Porous media, terrestrial hydrologic cycle schematic. The watershed water budget, or land-surface processes
balance, and the groundwater water budget combine to provide a full terrestrial hydrologic cycle representation. Precipita-
tion is the ultimate source of natural watershed water and groundwater. Actual evapotranspiration (AET) returns water
vapor to the atmosphere. Recharge is water that flows downwards across the water table from the vadose zone. Runoff is
composed mainly of overland flow and is the water that goes directly to generate stream flow without crossing the water
table of an aquifer.

Precipitation that is not lost to AET may infiltrate into the soil or move across the
ground surface as runoff and travel to a stream. Infiltration is the movement of water from
the land surface into the soil. Soil moisture is the water stored in pore spaces and channels
in the soil beneath the ground surface. Percolation is the movement of water downward
through the soil channels, and water may percolate through the soil and move out of the
bottom of the soil column [14].

Water that percolates through the soil and continues downwards through the un-
saturated zone may eventually reach a water table. Deep percolation water may also be
stored within pore spaces and other storages within the unsaturated zone. The water table
denotes the interface of the zone of saturation and the unsaturated zone. Groundwater is
water that is in the zone of saturation [56]. Recharge is the water that flows downward
through the unsaturated zone and across the water table to join the waters in the zone of
saturation [57].

The framework, see Figure 3, employs two water balance models, one in each calcula-
tion pathway. Any water budget calculation that uses precipitation and PET, calculated
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from location and air temperature, as inputs and produces AET, runoff, and recharge as
outputs can be used within the framework. Two types of water-budget calculations are
used in this study: (1) monthly water balance models and (2) daily continuous simulation,
distributed parameter models.

A Thornthwaite and Mather-style water balance calculation with a monthly time
step [14,15,58–60] is used for the monthly water balance modeling approach (A schematic
of this calculation is provided in Figure S3 for reference). This calculation is a single soil
column water balance that provides homogeneous representation of the watershed. The
method provides an estimate of runoff and deep infiltration out of the bottom of the soil
column for each month. Runoff on a monthly interval represents surface runoff, interflow,
and sub-surface runoff, and it is assumed to be equivalent to the monthly volume of stream
flow generated from the watershed. However, the physical processes of stream flow are not
simulated. Similarly, aquifer recharge in this calculation is attributed to water that leaves
the soil column water as deep percolation. A water table is not simulated or involved in
the monthly water budget calculations, and aquifer recharge is not explicitly simulated.

The Hydrological Simulation Program—FORTRAN (HSPF) is the continuous simu-
lation, distributed parameter model used in this study. HSPF can simulate hydrologic,
and associated water quality, processes on pervious and impervious land surfaces and in
streams and well-mixed impoundments. It is a comprehensive package for simulation of
watershed hydrology and surface water-related considerations at the watershed scale [61].

HSPF provides a heterogeneous representation of the watershed using the concepts of
hydrologic response units (HRUs) and stream segments. Runoff is simulated from HRUs
and includes surface runoff and subsurface interflow; runoff is routed from HRUs to stream
segments and then downstream across stream segments to the basin outlet. Recharge is
attributed to deep percolation which leaves the bottom of the soil column; this quantity
is referred to as inactive groundwater inflow (IGWI). Recharge can also be simulated in
HSPF as water that seeps out of the bottom of a stream, river, or lake and leaves the model.
It should be noted that a water table is not explicitly simulated in HSPF; consequently,
recharge is not explicitly simulated.

2.2.3. Potential Evapotranspiration Calculations

In Figure 3, the outputs from the weather generator models are daily precipitation,
minimum temperature, and maximum temperature. The inputs to the water balance
models are daily precipitation and PET. To complete the linkage between the weather
generator models and the water balance models, PET is calculated from temperature and
study site location.

The Hargreaves equation [62,63] is used to estimate the PET from simulated tempera-
ture and site location for all water balance calculations in this study (Additional details of
the implementation of the Hargreaves equation are provided in Appendix A). Using tem-
perature alone to estimate PET for historical conditions is generally not recommended [64];
however, temperature is the available weather parameter in GCM simulation results for
PET calculation. The Hargreaves equation provides a reasonable estimator for future PET
given the available information.

2.2.4. Framework Results—Relative Probabilistic Time Histories

Monte Carlo techniques provide a probabilistic simulation structure to the framework
where two independent solution pathways are simulated thousands of times. For each
realization, the differences between simulated weather parameters and watershed water
budget components provide results that are aggregated across all realizations to generate
probabilistic time histories of relative impacts. These relative differences and associated
likelihoods are the primary outputs and are labeled as ∆ values in Figure 3; ∆ denotes
the difference, ∆ = H1 − H0, between pathway simulated parameter values. ∆ values are
calculated for each simulated day for weather parameters and for each simulated month
for water balance parameters.
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A probabilistic time history is a time series of probability distributions. As an example,
a monthly water balance model provides results for calculated recharge for every simulated
month and every realization in each pathway. An empirical probability distribution, which
is just a normalized cumulative histogram, is created from the sample of simulated recharge
∆ values for each month. Each realization contributes one recharge ∆ value to the sample,
and the size of the sample is equal to the number of realizations. With a probability
distribution created for each output time, a selected percentile, like the 50th percentile, can
be plotted against simulation time to create a probabilistic time history.

2.2.5. Weak Stationarity—Identification of Climate from Weather

Weak stationarity denotes a constant mean for a time series, suggesting that there
is not a trend across the analysis period [65]. The assumption of weak stationarity is
inherent in calculating Climate Normals. Weak stationarity must be assumed to derive
probability distributions representing precipitation occurrence and intensity from samples
of contiguous days and daily precipitation depths.

Weak stationarity is not expected to be a realistic assumption across many decades.
A relatively short averaging interval of thirty years, or the Climate Normals interval, is
used for the averaging interval to identify a climate description from weather. Use of the
Climate Normals interval produces a stepwise approximation of expected climate trends
across multiple Climate Normals.

“LOCA Archive” simulation results are available for 1950–2099. PRISM weather
data are based on historical observations and are available from 1981–present. The total
framework analysis period for the study site is 1981–2100 as dictated by the intersection
of PRISM data availability, “LOCA Archive” simulation duration, and inclusion of four
complete Climate Normals intervals. This total period is split into the four intervals shown
in Table 2. The first interval, 1981–2010, is the most recent Climate Normals period. This
“Data Interval,” 1981–2010, provides a natural interval for climate comparison between
“LOCA Archive” simulated weather results and PRISM weather data. The next three
Climate Normals (2011–2040, 2041–2070, and 2071–2100) are future, or projection, intervals.

Table 2. Climate Normals intervals.

Period Label Available Data Sets

1981–2010 Data Interval PRISM; “LOCA Archive”
2011–2040 Projection Interval 1 “LOCA Archive”
2041–2070 Projection Interval 2 “LOCA Archive”
2071–2100 Projection Interval 3 “LOCA Archive”

2.2.6. Low Pass Filtering for Time History Smoothing

Daily weather parameters are simulated stochastically within the framework and
drive water budget calculations. Framework outputs will vary each simulated day in
accordance with the stochastically simulated weather inputs. Probabilistic time history
results will become smoother and display fewer high frequency oscillations as the number
of realizations is increased. To provide relatively smooth time history depiction while
limiting the total number of realizations, smoothing is applied to post-process framework
results. This time history smoothing facilitates interpretation of results while limiting the
overall computational burden.

A simple low pass filter using a cutoff frequency, like that used for temperature
time series processing in the WGEN calculation algorithm [39,40], is employed to smooth
result time histories and temperature time series. Specifically, this low pass filter is used
to generate the first-order, vector autoregression representation for daily minimum and
maximum air temperature, to compare observed air temperature time series between data
sets, and to smooth probabilistic result time histories.

For smoothing of oscillations in result time histories, daily simulated values are
aggregated to a monthly time series covering a 30-year period to generate a 360 month-long
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time history. This time series is transformed to the frequency domain using discrete Fourier
transform. The transformed series is multiplied by a rectangular filter created by setting
the first 15 frequency indexes to one and the remaining indexes to zero. The product series
is back transformed to the time domain. This low pass filtering approach maintains the
frequency with a two-year period as well as lower frequencies and generally provides a
smoothed representation of simulation results.

2.2.7. Analysis of Climate Change Projections and Model Uncertainty

Creation of a weather generator requires analysis of the basis data set, which provides
samples of contiguous state days, daily precipitation depth, and day of the year minimum
and maximum temperature. An average value for each of these samples is used in weather
generator formulation, and a weather generator must be formulated for an interval where
weak stationarity is assumed.

Statistical analyses of these samples and the distribution of values within each sample
provides a built-in comparison between historical observations and ensemble GCM results
within overlap periods. Comparison of the distribution of values in and the means of sam-
ples from 1981–2010 between the PRISM and “LOCA Archive” data sets is used to identify
components of structural uncertainty in downscaled, ensemble GCM results. If structural
uncertainties can be identified in framework inputs, the framework representation can be
tweaked to remove these influences from framework results.

Comparison of the distribution of values in and the means of samples collected from
the “LOCA Archive” data set among the future Climate Normals in Table 2 provides a way
to identify projections for future climate change. If ensemble GCM results provide different
descriptive statistical summaries between 30-year analysis intervals and thus provide a
trend, the trend is identified as the climate change projection. Because weak stationarity
is assumed within Climate Normals intervals, identified trends will be represented in a
stepwise fashion with changes between 30-year analysis intervals and consistent averages
within 30-year intervals.

3. Results

Primary outputs of the framework are probabilistic comparisons AET, runoff, and
recharge between pathways. Two different water balance models: (1) monthly water
budget and (2) daily continuous simulation, distributed parameter models are used in
separate framework implementations.

Prior to implementing the water balance models, weather generators are created and
calibrated. Comparative results for simulated weather parameters and climate are available
from the weather generators as secondary results.

3.1. Projected Climate Change Trends and Weather Generator Formulation

Site-specific climate trends are identified from analysis of downscaled, GCM simu-
lation results in the “LOCA Archive.” The weather generators within the framework are
then formulated so that the average differences between the H1 and H0 weather generators
reproduce the identified departures of future climatic conditions from historical conditions.

3.1.1. Site Specific Future Climate Trends

Study site climate trends are identified from “LOCA Archive” results through com-
parison of the distribution of values in, and the means of, samples of contiguous state days,
daily precipitation depth, and day of the year minimum and maximum temperature from
future Climate Normals in Table 2. In terms of temperature, “LOCA Archive” simulated
temperatures show an approximately 1 ◦C increase from one projection interval to the next
so that 2071–2099 is about 3 ◦C warmer on average than 1981–2010 (Figure S4 and Table S2
provide a summary of the differences between average daily minimum and maximum
temperatures for future Climate Normals).
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Figure 6 displays a comparison of empirical distributions of annual precipitation depth
observed in the PRISM 1981–2010 data set and the “LOCA Archive” simulation results.
Distribution of annual precipitation depth from the “LOCA Archive” is almost identical
across all four Climate Normals. The lower whisker in Figure 6 displays a decreasing trend
from 2010 to 2099; however, the means, medians, and interquartile ranges are similar or
consistent across 2010 to 2099. Given the similarity in empirical distributions of annual
precipitation depth across the three future Climate Normals in the “LOCA Archive,”
no significant change in expected annual precipitation is projected for the study site from
2011–2100.
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Figure 6. Observed, empirical distributions of site watershed, annual precipitation depth. The
box plot format provides the interquartile range (1/4 to 3/4 quantiles) in the shaded “box” for the
sample. The median is the horizontal line within the shaded, interquartile range, and the mean is
identified with the green triangle. Whiskers extend out to 1.5 times the interquartile range from the
lower and upper quartile. Extreme values are shown as individual diamonds. The median annual
precipitation depth and interquartile range are almost identical across the four analysis intervals in
the “LOCA Archive.”

Distribution of annual maximum, daily precipitation depths among the four Climate
Normals intervals was examined to identify trends in extreme event occurrence. Extreme
events are low probability phenomena that occur within a discrete period. Figure 7
shows these distributions along with site-specific, estimates of 2-yr, 25-yr, 50-yr, and
100-yr recurrence interval, daily event depth. The recurrence interval estimates are “point”
estimates, and these are compared to the distribution of values from all grid cells completely
or partially within the site watershed (see Figure 1). Overall, comparison of “LOCA
Archive” values among the analysis intervals in Figure 7 suggests no significant change in
expected extreme event magnitude from 2011–2100.

3.1.2. Identified Structural Uncertainty in “LOCA Archive” Simulation Results

Structural uncertainty issues in “LOCA Archive” results are identified through com-
parison between the distribution of values in, and the means of, samples of contiguous
state days, daily precipitation depth, and day of the year minimum and maximum temper-
ature in the PRISM and “LOCA Archive” data sets during 1981–2010. Synthetic drizzle
and underprediction of extreme event precipitation are the focus issues because these are
known issues in downscaled, GCM simulation results. Both issues are evident in “LOCA
Archive” simulation results for the study site.
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Figure 7. Observed, empirical distribution of individual grid cell, annual maximum, daily precipitation depth. A violin
plot combines the box plot format with a kernel density estimator to provide a smoothed depiction of an empirical
distribution [66], in this case the distribution of annual maximum, daily precipitation depth. The horizontal, dashed lines
within the shaded portions of the violin plots identify the three inner quartile thresholds (i.e., 25th, 50th, and 75th percentile
or 1/4, 1/2, and 3/4 quantiles). Daily extreme event magnitude estimates by recurrence interval come from NOAA Atlas
14 [67] 24-h event magnitude estimates that are divided by 1.13, which is a conversion multiplier to convert from daily
extreme values to 24-h extreme values [68].

The distribution of average annual precipitation depth in Figure 6 is similar between
PRISM 1981–2010 and “LOCA Archive” 1981–2010 samples suggesting that on an average
annual basis the two data sets are providing a similar depiction of precipitation for the study
site. However, the combination of relatively longer wet spell durations (see Figure S5),
and thus shorter dry spell durations (see Figure S6), with lower median daily precipitation
amounts (see Figure S7) suggests a synthetic drizzle issue in “LOCA Archive” results.
Relatively longer wet spells and lower daily precipitation depths mean more rainy days
with small amounts of precipitation are simulated than observed.

In terms of extreme events, the “LOCA Archive” median value is approximately equal
to the PRISM 25th percentile value in Figure 7, denoting that the annual maximum daily
precipitation depth in the “LOCA Archive” tends to be significantly smaller than the annual
maximum daily precipitation depth observed for the watershed. Additionally, the “LOCA
Archive” values appear to be biased low as the 75th percentile threshold is always lower in
magnitude than a 2-year recurrence, daily event.

3.1.3. Calibrated Weather Generator Representation

The alternative hypothesis experiment, or H1 pathway, uses a weather generator
formulated to generate a statistical description of projected climate from 2011–2100. The
H1 pathway weather generator is adjusted on a trial-and-error basis to produce average
differences in precipitation and temperature between the pathways that mirror expected
climate trends.

Table 3 describes a weather generator formulation that reproduces the identified
climate trends of an approximately 3 ◦C increase in average temperature and no significant
change to average annual precipitation depth. The average daily precipitation depth
(see Figure S7) is similar between PRISM and “LOCA Archive” data sets; consequently,
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use of spell length distributions derived from the PRISM data set eliminates synthetic
drizzle issues. When “LOCA Archive” derived spell length distributions are used in
conjunction with “LOCA Archive” derived precipitation intensity distributions in the H1
pathway weather generator, the H1 weather generator simulates a 30% increase in average
annual precipitation (the calibration process and additional details of weather generator
conceptualization and formulation are provided in Appendix A).

Table 3. Calibrated weather generator formulation.

Weather
Generator Weather Process 1981–2010 2011–2040 2041–2070 2071–2100

H0

Precip. Occurrence PRISM
(Tables S3 and S4)

PRISM
(Tables S3 and S4)

PRISM
(Tables S3 and S4)

PRISM
(Tables S3 and S4)

Precip. Intensity 1 PRISM
(Tables S6–S9)

PRISM
(Tables S6–S9)

PRISM
(Tables S6–S9)

PRISM
(Tables S6–S9)

Temperature PRISM
(Figure S8)

PRISM
(Figure S8)

PRISM
(Figure S8)

PRISM
(Figure S8)

H1

Precip. Occurrence PRISM
(Tables S3 and S4)

PRISM
(Tables S3 and S4)

PRISM
(Tables S3 and S4)

PRISM
(Tables S3 and S4)

Precip. Intensity 2 PRISM
(Tables S6–S9)

LOCA
(Table S5)

LOCA
(Table S5)

LOCA
(Table S5)

Temperature PRISM
(Figure S8)

LOCA
(Figure S8)

LOCA
(Figure S8)

LOCA
(Figure S8)

1 Truncation depth for the H0 weather generator corresponds to a 100-year recurrence, daily event (Table S10); 2 Truncation depth for the
H1 weather generator corresponds to a 200-year recurrence, daily event (Table S10).

Figure 8 displays probabilistic ∆ values (∆ = H1 − H0) for precipitation and PET from
the calibrated weather generator formulation. Average and median precipitation ∆ time
histories, Figure 8A, are close to zero but the average time history is always positive, and
the median time history is always negative. Having the average and median precipitation
∆ time histories near zero with opposing signs suggests that the comparative weather gen-
erator representation is sufficiently representing no significant trend in precipitation depth
from 2011–2100. Both the average and median precipitation ∆ time histories, however,
display a slight increasing trend from 2011–2100, and the 5th to 95th percentile range is
positively skewed. This positive skew and slight increasing trend are attributed to enforc-
ing the occurrence of larger magnitude extreme events into the calibrated, future weather
generator formulation. PET ∆ time histories, Figure 8B, show an increasing trend across all
three future intervals because of the simulated and projected increase in temperature.

3.2. Monthly Water Balance Modeling

The framework implementation was applied to the site watershed using a monthly
water balance model calculation. In this approach, a hypothetical soil column applies
to the entire watershed. To isolate climate change impacts on water resources, identical
water balance models are used in both pathways and weather forcing is provided by
the calibrated weather generator formulation. The monthly water balance model was
calibrated to site-specific conditions (details of the calibration and additional description of
the monthly water balance model are provided in Appendix B).

The monthly water budget for the site was simulated from 1981–2100 using 10,000
framework realizations where each realization included calculation of water balance results
in each pathway. Results are presented for 2011–2100 because simulation of the “Data
Interval,” 1981–2010, is only used to provide initial watershed conditions for the simulation
of the first, 2011–2040, of three future Climate Normals in Table 2.
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Figure 8. Calibrated weather generator precipitation and PET probabilistic ∆ time histories. (A) Pre-
cipitation probabilistic ∆ time histories show slight increases in precipitation on average due to
climate trends. The 5th to 95th percentile range for precipitation ∆ shows a positive skew. This
positive bias is created by enforcing simulation of larger magnitude extreme events as part of hypoth-
esized climate trends. (B) PET probabilistic ∆ time histories demonstrate consistent PET increases
due to the increasing temperature trend.

Average simulated quantities provide context for relative differences, or ∆ time histo-
ries, that are the primary framework output (Table S11 provides summaries of the average,
actual simulated water budget quantities from the H1 and the H0 pathways.). The simu-
lated average annual precipitation depth from 2011–2100 is 629 mm. The AET proportion
of total precipitation is 89% for future Climate Normals intervals. Runoff accounts for less
than 5% of gross precipitation on average; recharge is estimated to be approximately 7% of
gross precipitation.

Actionable outputs from the framework are the probabilistic relative, or ∆, time
histories of AET, runoff, and recharge. Figure 9 displays simulated AET, runoff, and
recharge ∆ time histories. In Figure 9A, average and median AET ∆s remain close to zero
across the future intervals denoting minimal expected change to AET for typical conditions.
As with the precipitation ∆ time histories in Figure 8, the average time history values are
positive and the median time history values are negative.

The site is a hot, semi-arid environment. Consequently, average conditions provide
an excess of monthly PET relative to precipitation (P), or P − PET < 0. Because there is
typically excess evaporative capacity, AET will only increase to the extent that precipitation
increases so that additional water is available for evaporation and transpiration. The
variability, identified as the width of the 5th to 95th percentile range in Figure 9A, in AET
∆ values increases across the future intervals due to the interplay of increased PET, a small
increasing trend in average annual precipitation (see Figure 8), and a positive bias in the
skew of the precipitation ∆, 5th to 95th percentile range. As identified earlier, the increasing
trend in average annual precipitation and positive shift in the 5th to 95th percentile range
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are attributed to enforcement of larger magnitude extreme events in the representation of
future climate.
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Figure 9. Monthly water balance modeling framework analysis—∆ time histories. (A) AET is rela-
tively unchanged for average conditions but maximum values increase due to increase in maximum
precipitation values and water availability. (B) Runoff displays essentially no change on average
but shows a slight positive bias for the 95th percentile. (C) Recharge also shows minimal increase
on average and slight positive bias for the 5th to 95th percentile range due to simulation of larger
magnitude extreme events in future climate.

Because site parameterization is unchanged and mean AET ∆ values are approximately
constant and near zero across 2011–2100, runoff and recharge are also expected to remain
effectively unchanged. In Figure 9B,C, average and median ∆ time history values remain
essentially zero across 2011–2100, which denotes no change in or impact to expected runoff
and recharge from climate change for the site. The expected variability (denoted by the
spread of the 5th to 95th percentile range) of future runoff and recharge is muted and
much less than the variability expected for future AET. The positive bias of the 5th to 95th
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percentile range in Figure 9B,C suggests that infrequent increases in water availability are
expected from extreme events.

3.3. Daily, Continuous Simulation, Distributed Parameter Water Balance Modeling

The framework implementation was also applied to the site using the HSPF water
balance model. The HSPF model provides a heterogenous representation of the watershed
as shown in Figure 10 where the watershed is divided into 12 HRUs and five stream
segments. Runoff is routed from HRUs to stream reaches and routed through the stream
reaches from upstream (i.e., Reach #1) to the watershed outlet at the end of Reach #5.
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Figure 10. HSPF model configuration for Dolan Creek watershed. The watershed is represented with 12 hydrologic response
units (HRUs). Dolan Creek is divided into five stream segments or reaches, RCHRES. Reaches #1–#4 are dry streambed
areas that are considered to be losing reaches based on the Hydrologic Soil Type mapping from SSURGO [25]. Reach #5
provides the watershed outlet and is simulated as a gaining reach; it is assumed that no seepage or recharge occurs from
this stream segment.

Because of the heterogeneity provided by 12 HRUs and five stream segments, the
attribution of recharge and runoff is complex relative to the monthly water balance model.
Deep percolation to inactive groundwater in the previous portion of each HRU and seepage
that leaves the model from four of the five stream reaches are attributed to recharge. Runoff
from the entire watershed is the outflow stream discharge simulated at the watershed
outlet. Weather forcing is provided by the calibrated weather generator formulation, and
the HSPF model was calibrated to site-specific conditions (details of the calibration are
provided in Appendix B).

Simulated average annual precipitation depth from 2011–2100 is 631 mm (Table S12
provides summaries of the average, actual simulated water budget quantities.). Average
annual precipitation depths are slightly different, 631 and 629 mm, between the two frame-
work implementations with different types of water balance models even though the same
weather generators are used in both frameworks because the HSPF model implementa-
tion breaks the total watershed area into 12 HRUs and the precipitation applied to each
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HRU is comprised of the area-weighted average of grid cells (see Figure 1) in the HRU.
The calculated AET proportion of the water budget is about 78% on average; runoff is
2% of gross precipitation, and recharge is 20% of precipitation on average. The relative
proportions of precipitation for average simulated, cumulative AET, runoff, and recharge
are approximately constant across all future Climate Normals. This suggests no change, on
average, to the future water budget from projected climate trends.

Meaningful outputs from the framework are the probabilistic relative, or ∆, time
histories of AET, runoff, and recharge. Figure 11 displays these AET, runoff, and recharge
∆ time histories. In Figure 11A, average and median AET ∆s remain close to zero across
the future intervals denoting minimal expected change to AET. There is a slight increasing
trend for both average and median ∆ values with increasing simulation time associated
with the slight trend toward increased average precipitation in Figure 8.
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Figure 11. Monthly water balance modeling framework analysis ∆ time histories. (A) AET is rela-
tively unchanged for average conditions but maximum values increase due to increase in maximum
precipitation values and corresponding increase in water availability. (B) Runoff displays minimal
change on average but shows a slight positive bias for the 95th percentile. (C) Recharge shows a
slight increasing trend on average and slight positive bias for the 5th to 95th percentile range due to
simulation of larger magnitude extreme events in future conditions.
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Average and median runoff ∆ time history values, in Figure 11B, remain close to zero
across 2011–2100, denoting no expected change or impact to runoff from climate change
for the site. Additionally, the expected variability (denoted by the spread of the 5th to 95th
percentile range) of future runoff is muted and much less than the variability expected for
future AET.

Figure 11C shows a slight increasing trend and positive bias in average and median
∆ time history values denoting a prediction for a slight increase in recharge. This figure
also presents a positive bias in the skew of the recharge ∆, 5th to 95th percentile range.
The slight trend toward increased average precipitation in Figure 8 is responsible for
the slight increasing trends and positive bias in recharge ∆ time histories. Precipitation
trends are attributed to the simulation of relatively larger extreme events in the future, and
precipitation trend and bias appear to be split between AET and recharge ∆ time histories
in Figure 11. The positive bias in the recharge and runoff 5th to 95th percentile ranges
suggest that infrequent increases in water availability are expected from extreme events.

4. Discussion

Risk includes probability and consequences. Consequences are relative changes to
watershed water availability. The primary actionable outputs are probabilistic time histories
of simulated relative changes in water budget components. These time histories provide
identification of likelihood per consequence magnitude across simulation time.

A framework implementation is presented for the Dolan Creek Watershed in west-
central Texas. This site is a small, semi-arid watershed in karst terrain. The first imple-
mentation step is to identify projected future climate for the site. The “LOCA Archive”
of ensemble, downscaled, GCM simulation results provided estimates of future climatic
conditions for this study. Only two emissions scenarios, RCP4.5 and RCP8.5, are included
in the GCM simulations in the “LOCA Archive.” Inclusion of multiple emissions scenar-
ios provides for characterization of scenario uncertainty in framework formulation. If
more emissions scenarios were included in the ensemble GCM results, then the range
of possible future conditions and the relative likelihood of future conditions would be
better constrained. Unfortunately, the limited number of emissions scenarios suggests
that the possible range of future conditions may not be completely captured in “LOCA
Archive” results.

After identification of future climate trends, comparative weather generator models
are formulated to reproduce the average differences expected between historical conditions
and future climate. Because of structural uncertainty issues in downscaled GCM results
and capability limitations inherent in the stochastic weather generator formulation, a
trial-and-error calibration approach provides customization of the H1 pathway weather
generator model to represent future climate.

Identical water balance models isolate relative impacts to water budget components
from hypothesized variations in long-term, average weather. Two separate framework
implementations were created; each implementation uses a different type of water balance
model. The two water balance model types are: (1) monthly water balance and (2) daily,
continuous simulation, distributed parameter.

Both model types suggest limited change on average to AET, runoff, and recharge
from projected climate trends, but each model type predicts a different partitioning of
precipitation into AET, runoff, and recharge. These differences occur because each type
represents the physical processes of water movement in different ways and uses a different
calculation time interval. The monthly water balance model simulates a homogeneous
watershed with a monthly time step. The continuous simulation, distributed parameter
(i.e., the HSPF) model provides a heterogenous watershed representation and uses a daily
calculation time step.

Figure 12 displays the average water budget break-out by component under hypoth-
esized climate trends from 2071–2100 for both model types. The monthly water balance
model produces relatively larger estimates of AET because it uses a monthly calculation
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time step. If P − PET is determined monthly, it is expected that precipitation (P) will
generally be less than PET (see Figure S3 for an example calculation). When P − PET < 0,
AET is approximately equal to precipitation, which means that water availability is zero
and there is no water for runoff and recharge. A monthly calculation will tend to attribute
a greater proportion of precipitation to AET than a daily calculation.
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Figure 12. Water balance model type, water budget comparison from 2071-2100. (A) The monthly water budget calculation
likely overestimates AET because of monthly calculation of precipitation (P) less PET (P − PET). (B) The continuous
simulation, distributed parameter model calculates daily P − PET which produces less AET and more water availability for
the month because a daily comparison can have multiple days within a month where P > PET even if PET > P for the month.

The continuous simulation, distributed parameter model produces a recharge estimate
that is three times the value estimated by the monthly water balance model and a runoff
estimate that is about one-third the monthly water balance model estimate. The relative
increase in recharge, and corresponding decline in runoff, occurs because recharge and
runoff are defined and simulated differently in the two model types. The continuous
simulation, distributed parameter model calculates recharge as the sum of deep percolation
in pervious areas and seepage from losing stream reaches. This approach attributes runoff
from headwaters HRUs that travels to stream reaches and then seeps through the stream
bed to groundwater as recharge. The monthly water balance model is homogeneous and
cannot represent complex flow routing within the watershed. Given the representational
differences between model types, analysis of changes to water availability provides a more
robust comparison between model types than analysis of recharge and runoff changes.

5. Conclusions

A systemic change impact analysis framework for water resources at the watershed-
scale is presented and implemented to examine the water availability impacts from future
climate change for a site in west-central Texas. The site is a small watershed, classified as
hot semi-arid (BSh) for current and future conditions.

The weather parameter comparison inherent in framework formulation identified
future climate trends for the study site of a 3+ ◦C increase in average temperature and
no significant trend in annual precipitation depth from 2010–2100. It also provided for
identification of structural uncertainty issues of synthetic drizzle and underprediction of
extreme event intensity in downscaled, GCM results.

Trail-and-error weather generator model calibration removed the influence of these
structural uncertainty concerns from the framework representation. Comparative weather
generator results depict certain increase in potential evapotranspiration from 2011–2100
driven by the 3 ◦C increase in average temperature and minimal change in the distribution
of annual average precipitation from 2011–2100.
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Impacts to water budget components from future climate trends are examined with
two different types of water budget model. Both types provide projections of minimal
change on average to AET, runoff, and aquifer recharge and of infrequent increases in
water availability driven by an expectation for increased extreme event intensity in the
future. Each type of model estimates different magnitudes for runoff and recharge because
these processes are represented differently and at different scales.

Framework results provide consequences and likelihood for consequences. Conse-
quences are changes in water availability. Infrequent, low probability increases in water
availability are predicted for the study site. For average future conditions, the projected
change is an increase in PET driven by an increase in future temperature. The complex,
rugged, and harsh study environment limits estimated impacts to water resources for
normal conditions. For this type of semi-arid environment, PET on an annual basis is
expected, and is simulated, to exceed precipitation. The excess of evaporative capacity
limits AET magnitude because AET is limited by the supply of water, which is not changing
on average.

Future work will involve application of the framework to sites with different character-
istics and to examine different systemic changes. In terms of site characteristics, a site with
a projected change in climate classification from current conditions to future conditions
and a porous media environment with relatively thick soil cover and only gaining stream
reaches would provide for testing of the framework on a different environment. This type
of site would be more amenable to representation with the conceptual watershed water
balance processes shown in Figure 5 and for making equivalent comparisons between
results from the two water balance model types.

The framework can be adapted to analyze systemic change produced by evolution in
the physical characteristics of the watershed. When the focus of implementation changes to
watershed characteristics like economic development or vegetation assemblages, identical
weather forcing is used in both pathways and different water balance models are used
in each pathway. In this type of scenario, the H0 pathway water balance model would
represent existing watershed conditions and the H1 pathway water balance model would
represent hypothesized, alternative conditions. The H1 pathway water balance model can
also be represented as evolving across simulation time.
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Appendix A. Weather Generators and Potential Evaporation Calculation

The purpose of weather generators within the framework (see Figure 3) is to gener-
ate weather-forcing parameters for each simulated day. Precipitation is represented with
occurrence and intensity processes; these processes are simulated stochastically by sam-
pling of values from probability distributions that describe either historical observations or
ensemble GCM simulation results. Maximum and minimum daily temperatures are also
simulated by the weather generators. Figure 4 provides a weather generator schematic that
identifies the configuration of and steps within a weather generator simulation. A brief
discussion of the probability distributions used to represent the processes of precipitation
occurrence and intensity, the simulation methodology for temperature, weather generator
calibration, and an overview of the potential evapotranspiration calculation method is
included in this appendix.

Appendix A.1. Precipitation Occurrence

Precipitation occurrence is represented with alternating spells of wet and dry days.
Negative binomial distributions were fit to the collection of spell lengths for each state and
each month. Equation (A1) provides the probability mass function (PMF) for the negative
binomial distribution.

f (r; k, p) =
(

r + x− 1
x

)
pr(1− p)x (A1)

r = number of successes
x = number of failures
p = probability of a success

Seasonal variation is accounted for in the representation of precipitation occurrence
by deriving a negative binomial distribution for each month. Tables S3 and S4 provide defi-
nition of the negative binomial distributions used in the weather generators in this paper.

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://prism.oregonstate.edu/explorer/
https://prism.oregonstate.edu/explorer/
https://prism.oregonstate.edu/explorer/
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Appendix A.2. Precipitation Intensity

Precipitation intensity is represented with mixed exponential distributions. A mixed
exponential distribution is the probability mixture of two one-parameter exponential
distributions. Equation (A2) provides the probability density function (PDF) for the mixed
exponential distribution.

f (x) =
α

µ1
exp

[
−x
µ1

]
+

1− α

µ2
exp

[
−x
µ2

]
(A2)

α = mixing weight
µ1 = mean of distribution 1
x = value for which to find probability density
µ2 = mean of distribution 2

Seasonal and spatial variation are accounted for in the representation of precipitation
intensity. Seasonality was addressed by creating a different mixed exponential distribution
for precipitation depth for each month. Monthly, mixed exponential distributions were fit
to collections of observed daily precipitation depths and to daily precipitation depths from
the “LOCA Archive.”

PRISM precipitation depth observations and simulated precipitation depths from the
“LOCA Archive” are calculated and distributed for a regular network of cells. Time series
of precipitation depths are provided for each cell in the network and the cells provide
representation of spatial variation across the site watershed for daily precipitation depth.
Mixed exponential distributions for precipitation depth were derived for each grid cell
and each month. This requires fitting of 264 distributions for the “LOCA Archive” data set
(22 grid cells in the site watershed and 12 months).

Appendix A.2.1. Spatial Variation in Precipitation Intensity

Use of distributions for each grid cell in Figure 1 provides for a spatially varying
representation of precipitation intensity. Attempts were made to reduce the number of
distributions required for the precipitation intensity process represention by grouping grid
cells into larger contiguous regions based on similar descriptive statistics.

As part of examining grid cell-aggregation possibilities, four regions were identified
from the gridded PRISM data for each month using the K-Means clustering algorithm.
The K-Means algorithm clusters data in separate samples of equal variance to minimize
the inertia criterion, and inertia is a Euclidian distance-based criteria which is a sum of
squared errors where the errors are distances between member locations and the cluster
centroid location [70]. Member locations (or point coordinates) for the cluster were derived
from the grid cell mean, median, variance, skewness, and kurtosis of daily precipitation
depth. These five precipitation depth statistics were transformed into three values using
principal component analysis (PCA). Use of three transformed coordinates to identify
each grid cell for the clustering analysis allows for visualization of the identified clusters
(e.g., point clusters where points have coordinates in more than three dimensions are
difficult to visualize). PCA provides for dimensionality reduction; in this case, reducing
the five statistics to three transformed variables. The dimensionality reduction in PCA
is accomplished through decomposition of the base data set into successive orthogonal
components that explain a maximum amount of the variance of the data set [70].

Spatial variation in precipitation amount is simplified from 44 grid cells, fully or
partially within the watershed, to four regions for the PRISM 1981–2010 data set because of
the K-Means cluster analysis. Figure A1 provides an example of the regionalization for the
month of February. After cluster numbers were assigned using the K-Means algorithms,
the clusters were manually cleaned to make contiguous regions from the clusters and to
set the region identifier to be 1 for the northeast region, 2 for the southeast region, 3 for
the southwest region, and 4 for the northwest region. Manual cleaning generally involved
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relabeling 14 of 210, or 6.7%, of PRISM cells. The maximum number of grid cells relabeled
for region continuity was 26, or 12.4%, in August.
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Figure A1. PRISM grid cell regionalization example for February 1981–2010. (A) K-Means clustering with four clusters
was used to identify watershed regions. Point coordinates for clustering were three PCA-transformed variables from grid
cell mean, median, variance, skewness, and kurtosis of daily precipitation depth. (B) A manual cleaning process was used
to produce contiguous regions. Region labels were assigned so that 1 is northeast, 2 is southeast, 3 is southwest, and 4 is
northwest. Grid cells were renumbered from 0–209 for the manual cleaning.

An attempt was also made to aggregate the “LOCA Archive” grid cells into four
regions, analogous to the regions identified for the PRISM grid cells. Unfortunately,
the aggregation of “LOCA Archive” grid cells into larger regions was not sufficiently
successful for use in weather generator implementation. Aggregation or grouping of
“LOCA Archive” grid cells was relatively unsuccessful because the “LOCA Archive”
provides minimal spatial variation, at the scale of the site watershed, relative to the PRISM
data set. As derivation of the PRISM data set involves spatial interpolation and regression,
it makes sense that systematic regionalization could be obtained for the study area using the
PRISM gridded data. Downscaling, used to create the “LOCA Archive” results, employs
different methods than PRISM and so it is not surprising that the same regional groupings
do not apply to both. As a result of these regional differences, each LOCA grid cell is treated
as a region for the three projection intervals, or future Climate Normals: (1) 2011–2040,
(2) 2041–2070, and (3) 2071–2100. Table S5 provides definitions of the mixed exponential
distributions fit to each LOCA grid cell for each month and Climate Normals interval.
Tables S6–S9 provide definition of mixed exponential distributions fit to the four PRISM
regions for 1981–2010.

Appendix A.2.2. Maximum Precipitation Depth Truncation

Mixed exponential distributions were selected a priori to represent the daily precipita-
tion intensity process because mixed exponential distributions provide a better representa-
tion of low frequency extreme precipitation events. The maximum likelihood estimation,
distribution fitting algorithm used to fit a theoretical, mixed exponential distribution to
samples of daily precipitation depth (see Tables S5–S9) focuses on producing a theoretical
distribution whose mean reproduces the sample mean. In weather generator implementa-
tion, mixed exponential distributions need to be truncated with an estimate of a maximum
value to avoid infrequent sampling of extremely large, wet day precipitation depths (e.g.,
daily values exceeding 2000 mm).

Changes to the truncation depth used for mixed exponential distributions provides a
direct means to control the simulated maximum extreme event depth. Truncation imple-
mentation is somewhat complicated using mixed exponential distributions for each month
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to represent seasonality. If all months are truncated at the same maximum value, then it
will be more likely to obtain this maximum value multiple times during a simulation year.
To address this concern, multipliers are used to set the monthly truncation values. These
multipliers are identified and defined in Table S10 where the multiplier is the selected
extreme event depth to be used as the truncation threshold divided by the observed maxi-
mum daily precipitation depth in the PRISM 1981–2010 data set of 200.7 mm. Table S13
provides the implementation of multipliers with the observed monthly maximum depths
for the PRISM data set and the “LOCA Archive” of ensemble simulation results.

Appendix A.3. Minimum and Maximum Air Temperature

Air temperature is conditioned on precipitation state and calculated during stochastic
simulation using the methods employed in WGEN [39,40,55]. This representation for
non-precipitation variables is a first-order vector autoregression.

The conditional formulation is presented in Equations (A3)–(A8). The day of the year
mean, µ, and standard deviation, σ, in Equation (A3) for each state were determined using
Fourier series smoothing, or low pass filtering, of the day of the year mean and standard
deviation series derived from data and from the “LOCA Archive.” In the low pass filter
implementation, the lowest five frequencies were retained which correspond to periods of
366, 183, 122, 91.5, and 73.2 days. The resultant, smoothed series will contain some seasonal
variability at the 3-month frequency and lower but higher frequency variations are filtered
or attenuated.

The smoothed mean series was subtracted from the original data series, and the
smoothed standard deviation series was used to normalize the result to produce Z-scaled
residual elements. Residual elements are used to calculate the M0, Equation (A7), and
M1, Equation (A8), matrices which are used to calculate the A, Equation (A5), and B,
Equation (A6), matrices [39,40].

Tk(t) =
{

µk,0(t) + σk,0(t)zk(t) i f day t is dry
µk,1(t) + σk,1(t)zk(t) i f day t is wet

(A3)

T = non-precipitation weather variables, vector of k values
k = number of non-precipitation weather variables
0 = dry day state
1 = wet day state
t = index for day of the year
µ = mean temperature for day of the year t
σ = standard deviation for day of the year t
z = white noise or variance term, Equation (A4)

z(t) = [A]z(t− 1) + [B]ε(t) (A4)

t − 1 = previous day
A = k × k matrix, see Equation (A5)
B = k × k matrix, see Equation (A6)
ε = k-dimensional vector of independent standard normal variables, white-noise forcing

A = M1M−1
0 (A5)

M0 = lag 0 covariance matrix, see Equation (A7)
M1 = lag 1 covariance matrix see Equation (A8)

BBT = M0 −M1M−1
0 MT

1 (A6)
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M0 =

[
1 ρ0(1, 2)

ρ0(2, 1) 1

]
(A7)

ρ0 = lag 0 cross-correlation coefficient between variables j, k

M1 =

[
ρ1(1, 1) ρ1(1, 2)
ρ1(2, 1) ρ1(2, 2)

]
(A8)

ρ1 = lag 1 cross-correlation coefficient between variables j, k

Appendix A.4. Site Watershed Precipitation Depth for Water Budget Calculations

A single value of precipitation depth is calculated for the entire watershed for water
budget calculations. Site watershed precipitation depth is determined using area weighting
of the grid cells that are completely or partially within the watershed boundaries. Table S14
provides the areas for each PRISM grid cell within or partially within the watershed
boundary on Figure 1. Table S15 provides the equivalent table for the LOCA grid cells.

Appendix A.5. Weather Generator Calibration

A trial-and-error, manual calibration approach is used in conjunction with three
scenarios to identify the appropriate mitigating measures and representation to reproduce
the identified climate variations in comparative weather generator output. The goal
of the calibration is to obtain an H1 pathway weather generator formulation that will
provide a comparison of simulated weather parameters that yields: (1) A relatively constant
increase in daily average temperature of at least 3 ◦C across 2011–2100; (2) similar, or
relatively constant, annual average precipitation depths for each projection interval; and
(3) a maximum daily precipitation depth simulated across 2011–2100 that is similar to or
greater than the 100-year recurrence, daily event depth in Table A1. The three scenarios are
described in Table S16.

The variations in the scenarios only apply to the alternative hypothesis, H1, pathway
for simulated values during 2011–2100. During 1981–2010, both pathways use precipitation
intensity and occurrence representations based on the PRISM 1981–2010 data set.

Table A1. Point precipitation depth estimates for the study site from Perica et al. [67].

Average Recurrence Interval (years)

2 10 25 50 100 200 500 1000

24-h Precipitation Depth (mm) 85.9 144.0 189.0 228.6 274.3 330.2 414.0 487.7
Daily Precipitation Depth (mm) 76.0 127.4 167.3 202.3 242.7 292.2 366.4 431.6

Appendix A.6. Calculation of Potential Evapotranspiration

The Hargreaves equation in its 1985 form is provided in Equation (A9) and pro-
vides a calculation for reference crop evapotranspiration (ETo). A crop coefficient (Kc
in Equation (A15)) can be used to estimate the potential evapotranspiration for different
vegetation than the reference crop which is usually short, actively growing grass [64].

ETo = 0.0023 Ra(TC + 17.8) TR0.5 (A9)

ETo = reference crop evapotranspiration
Ra = extraterrestrial radiation, Equation (A11)
TC = daily temperature in degrees Celsius
TR = daily temperature range, Equation (A10)

TR = Tmax − Tmin (A10)

Tmax = mean monthly maximum temperature
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Tmin = mean monthly minimum temperature

Ra = 15.392 dr(ωs sin ϕ sin δ + cos ϕ cos δ sin ωs) (A11)

dr = relative distance between earth and sun, Equation (A12)
ωs = sunset hour angle in radians, Equation (A13)
ϕ = latitude of the site
δ = solar declination in radians, Equation (A14)

dr = 1 + 0.033 cos
(

2π

365
J
)

(A12)

J = Julian day number

ωs = cos−1(− tan ϕ tan δ) (A13)

δ = 0.4093 sin
(

2π

365
J − 1.405

)
(A14)

PET = KcETo (A15)

Appendix B. Water Balance Models and Site Calibration

The framework employs two water balance models, one in each pathway. For analysis
of climate change impacts to water resources, the water balance models should be identical
and only the input weather parameter forcing should vary between the pathways. This
allows isolation of impacts to water resources from variations in average weather.

Any water budget calculation that uses precipitation and potential evapotranspiration
(PET), calculated from location and air temperature, as inputs and produces actual evapo-
transpiration (AET), runoff, and recharge as outputs can be used within the framework.
Two types of water-budget calculations are used within the framework in this study: (1)
monthly water-balance models and (2) continuous simulation models. Water balance mod-
els are calibrated to site-specific conditions prior to inclusion in the framework formulation.

Appendix B.1. Additional Study Site Details

The 471 km2 Dolan Creek Watershed in Val Verde County, TX, USA is the study site.
Dolan Creek is the primary stream in the watershed and provides the surface outlet from
the watershed. As shown on Figures S1 and S2, it is ephemeral with the exception of the
downstream-most reach where a number of springs, including Dolan Springs, provide
flow to the stream throughout the year.

The study site is in a remote region of Texas at the intersection of the Edwards Plateau
and Chihuahuan Desert biological regions. This region has little economic development
and there are no paved roads within the watershed. Vegetation across the study site is
predominately dry land scrub or shrublands. Common shrub types include creosote,
juniper, and mesquite. Stands of trees, mainly oaks and sycamore, may be found adjacent
to perennial rivers and streams.

Beck et al. [26] provide global maps of Köppen-Geiger climate classifications at 1-km
resolution for current conditions and for projected future conditions under climate change.
The study area is mapped in the hot, semi-arid category (BSh) under both current and future
conditions. This suggests limited change to vegetation communities across 2011–2100.

USGS Gauge 08449100 is located on Dolan Creek near the watershed outlet and the
confluence of Dolan Creek and Devils River, see Figure S2. This stream gauging station
has been in operation since November 2011. A probabilistic, day of the year discharge
plot is provided for USGS Gauge 08449100 Dolan Creek on Figure A2. In this figure, the
interquartile (25th percentile to 75th percentile) and lower quartile (0th percentile to 25th
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percentile) ranges suggest a relatively consistent discharge across the year. The consistent
flow pattern is attributed to the dominance of spring discharge from Dolan Springs and
YR-70-01-701 on the Dolan Creek discharge hydrograph.
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Figure A2. Dolan Creek, USGS 089449100, Gauge Day of the Year Discharge (17 November 2011 through 6 November 2019).
Lower quartile and interquartile ranges are relatively flat and consistent width bands even for only eight years of data. This
suggests that spring discharge is an important component of the Dolan Creek gauge record. Dolan Springs, upstream of the
gauge, provides a significant portion of the year around flow.

The study area is in karst terrain. In terms of surficial geology, Dolan Creek watershed
is at the southwestern margin of the Edwards Plateau, a resistant carbonate upland of nearly
flat-lying limestone and dolostone with thin soils, caprock mesas and dry arroyos [24].
Dolan Springs and four other mapped springs, in or near the site watershed, are located
associated with the outcrop of the Fort Terrett limestone of the Edwards Formation. Segovia
limestone conformably overlies the Fort Terrett limestone; most of the watershed has
Segovia limestone of the Edwards Formation mapped at the surface except for a few
ridgetops mapped as Buda limestone of the Edwards Formation. Conduits and caves are
present in the Segovia limestone above the contact with the Fort Terrett limestone.

Table S17 provides a listing of the pertinent hydrologic soil properties for the water-
shed from SSURGO [25]. “Hydrologic Soil Group” provides a descriptor of the expected
amount of infiltration for four soil types: A, B, C, and D. Hydrologic Soil Group B is not
present at the study site. Hydrologic Soil Group A, 7% of the watershed, occurs in the
stream valleys and dry stream beds and provides for rapid infiltration rates. The majority
of the watershed, approximately 92% coverage, is characterized as Hydrologic Soil Group
D, see Figures S1 and S2, which provides very slow infiltration and rapid surface runoff.
Hydrologic Soil Group D denotes almost impervious regions.

The “Available Water Supply” category in Table S17 provides an estimate of the
volume of water that can be stored in the soil. For this category, centimeters (cm) represent
a length/depth measurement that can be converted to volume through multiplying by
surface area. “Available Water Supply” represents the pore space in the soil that could
be filled with water at saturation. If 40% pore space is assumed, then over 92% of the
watershed is characterized by very thin, less than 10 cm (1/0.4 = 2.5; 2.5 × 4 cm = 10 cm)
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deep, soil. For reference, it is common to have 50–100 cm deep soil in areas that support
significant vegetation. Water storage is available in the soil column primarily in the dry
stream beds and valley bottoms where the “Available Water Supply” is between 10 and
23 cm.

“Depth to Restrictive Layer” provides the final soil property listed in Table S17. At
this site, the “Depth to Restrictive Layer” provides an estimate for the depth to bedrock.
The difference between the “Depth to Restrictive Layer” estimate and the estimate soil
depth, which can be calculated from the “Available Water Supply,” can be considered the
depth of regolith.

In summary, the ridgetops and valley/mesa sides (92–93% of total watershed area)
have low water storage capacity, shallow bedrock, and high runoff potential while the
streambeds and valley bottoms (7–8% of total watershed area) provide high infiltration
rates, relatively deep bedrock, and near surface water storage capacity. Most of the water-
shed (92% from Table S17) is naturally impervious with shallow to no soil due to the rocky
nature of the mesa-dominated landscape. However, the site watershed is in karst terrain
and valley bottom-areas exhibit enhanced secondary porosity from limestone dissolution.
This secondary porosity creates the relatively large storage capacity and elevated perme-
ability which produces the rapid infiltration rates for the valley bottom and dry stream
bed locations.

Karst is a topography formed by the dissolution of soluble rocks like limestone and is
characterized by underground drainage systems including caves and springs combined
with river systems that divert into and out of the underground drainage system in a
complex, interrelated system of flow pathways and water storage areas that cannot be
neatly divided into traditional surface water and groundwater categories. Given the karstic
nature of the site, the idealized water cycle, water budget processes shown on Figure 5
are probably simplistic in comparison with actual subsurface conduit- and channel-based
flow patterns.

The working hypothesis for water balance modeling of the site watershed is that the
Fort Terrett limestone is relatively impermeable and spring discharge occurs at or associated
with the contact of the Fort Terrett and overlying material. The overlying material is the
Segovia limestone in which numerous conduits and caves are evident in the mesa sides
above the stream valleys. It is likely that conduits and caves provide transitory sub-surface
storages and discrete flow pathways to route precipitation through the site water budget. It
is possible that there is not an “aquifer” directly associated with the site watershed in which
case there would not technically be “recharge” but just perched water tables, interflow,
and solution conduit runoff that feeds regional springs, streams, and rivers. Because the
locations of the conduits and caves and actual sub-surface flow patterns are unknown, the
conceptualized water budget processes in Figure 5 are enforced on the system as the only
means to generate water balance estimates.

Appendix B.2. Monthly Water Balance Model

In this paper, a watershed water balance model is defined and described in accordance
with Alley [15] and Dunne and Leopold [14]. Water balance models are bookkeeping type
procedural models that estimate the balance between incoming water to the watershed
from precipitation and snowmelt and outflowing water from the watershed related to the
processes of evapotranspiration, stream flow, and groundwater recharge. A Thornthwaite
and Mather-style water balance calculation is used for monthly water balance model
calculations. The calculation approach follows that presented by Dunne and Leopold [14]
with two exceptions. First, a loss from detention storage to aquifer recharge is tacked on
to the calculation procedure as shown in Figure S3 (see calculation #13). Second, tables
provide a lookup for the calculation of soil moisture (SM) from accumulated potential
water loss (APWL) in the standard Thornthwaite and Mather calculation approach. Here,
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Equation (A16) which was derived from these tables by Westenbroek et al. [71] is used in
place of lookup tables.

SM = 10(log10 Wc− ( |APWL|∗ Sl∗Wc
p)) (A16)

SM = soil moisture in inches
Wc = available water capacity of soil, inches
APWL = accumulated potential water loss, inches
Sl = slope coefficient for Thornthwaite and Mather tables = −1.03678439421169 from
Westenbroek et al. [71]
p = exponent for Thornthwaite and Mather tables = 0.478769194198665 from Westenbroek
et al. [71]

The purpose of the Thornthwaite and Mather-style water balance calculation is to
transform precipitation and PET for a watershed to the hydrologic cycle components of
actual AET, runoff, and aquifer recharge. This water balance calculation technically only
applies to a uniform soil column that is assumed to represent the entire watershed. The
calculated runoff (see #11 in Figure S3) is assumed to be equivalent to the monthly volume
of stream flow generated from the watershed. However, the physical processes of stream
flow are not simulated. Similarly, aquifer recharge is assumed to be the water that leaves
the soil column water balance and does not go toward the stream flow generation as
estimated with calculation #13 in Figure S3. Aquifer recharge is the water that flows across
the water table to join the waters in the saturated zone of an aquifer [57]. A water table is
not simulated or involved in the calculations depicted on Figure S3 and so aquifer recharge
is not simulated, either, but it is attributed to the deep infiltration.

Calibration

The primary inputs to the water balance calculation are monthly precipitation and PET.
Monthly PET is calculated from temperature using the approach detailed in Appendix A,
Appendix A.6 to first generate PET for a reference crop (ETo). ETo is then adjusted using
two calibration coefficients to generate the PET value used in water balance calculations.
The two calibration coefficients are a simple crop coefficient (Kc see Equation (A15) in
Appendix A) and a reduction in PET, relative to the PET calculated from temperature, for
rainy days (Rrd in calculation #3 of Figure S3).

In addition to the weather parameter inputs, this water balance calculation requires a
maximum soil-water capacity value for the soil column (Wc see Equation (A16)), a runoff
coefficient (CRO in calculation #11 of Figure S3) that provides for estimation of the monthly
runoff from the total available for runoff each month and a recharge coefficient (CRe in
calculation #13 of Figure S3) that generates the estimate of monthly recharge from the
monthly detention volume. Wc was calculated as the area-average total available water
supply from Table S17. CRO and CRe were estimated using a manual calibration approach.

The manual calibration process involved matching the cumulative, simulated monthly
runoff to the cumulative, discharge at the Dolan Creek Gauge during 2015–2018. PRISM
data were used for the temperature and precipitation inputs. The best fit of calculated
discharge to observed discharge was judged using subjective visual examination and by
comparison of the monthly root mean square error (RMSE).

Figure A3 presents the match of simulated runoff to observed discharge on a cu-
mulative monthly basis, and Table A2 provides the calibration results for the calibration
parameters CRO, CRe, Kc, and Rrd. The RMSE value of 1 mm per month provided in Table A2
should be viewed in context of a minimum monthly runoff of 1.5 mm, a maximum monthly
runoff of 6.8 mm, and a cumulative total runoff of 125.6 mm from the gauge record during
2015–2018. If the RMSE is normalized by the range in monthly runoff values observed
in the gauge record for 2015–2018, then the normalized root mean square error (NRMSE)
is 19%.
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Figure A3. Monthly water balance model—calibrated match of simulated runoff to observed gauge
discharge. The monthly water balance calculation approach will only provide a reasonable match of
cumulative gauge discharge to water balance runoff, and runoff includes spring discharge in this
simulation. It is assumed that the spring shed is within the watershed footprint and that subsurface
runoff and interflow from within the watershed provides spring discharge. Also, note the limited
months with positive P − PET.

Table A2. Water balance calculation inputs and results.

Parameter Calculated Value Calibrated Value

Wc (mm) 18.1 NA
CRO (%) NA 2.5
CRe (%) NA 3.8

Kc NA 0.73
Rrd NA 0.25

RMSE (mm) NA 1.01

Table A3 provides the estimated water budget for the calibration simulation. AET
is estimated to be about 85% of total water inflow to the watershed from precipitation.
Watershed runoff, which is used as a surrogate for stream flow generation, is calculated as
4.5% of precipitation. This highlights that the observed annual average volume of water
measured by the stream gauge is equivalent to between 4% and 5% of the average volume
of precipitation that falls on the surface of the watershed during a year.

It should be noted that a significant portion of the discharge in the gauge record
comes from spring discharge and that it is not known how the spring discharge should
be characterized in terms of subsurface runoff, interflow, and discharge from saturated
groundwater. Here, it is assumed that all stream flow is generated by subsurface runoff,
interflow, and surface water runoff (calculation #11 in Figure S3) from the site watershed.
This is equivalent to assuming that the spring sheds are within the watershed footprint and
that subsurface runoff and interflow provide all spring discharge. Recharge (calculated as
#13 in Figure S3) is estimated as 6.7% of the total precipitation.
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Table A3. Water budget from calibration simulation, 2015–2018.

Hydrologic Cycle Component Depth across
Watershed (mm)

Percentage of
Precipitation (%)

Precipitation 2789 100.0
Actual Evapotranspiration (AET) 2367 84.8

Runoff (RO), assumed equal to stream flow
generation 126 4.5

Recharge (Re) 186 6.7
Change in soil moisture and detention storage in

the watershed 111 4.0

One approach toward improving the fit between calculated and observed discharge
would be to use monthly values in place of each of the constant coefficient values (CRO,
CRe, Kc, and Rrd) that were used as calibration parameters. However, the purpose of the
calibrated water balance model is to provide a screening-level analysis and a transfer
function for estimating relative changes in AET, runoff, and recharge from changes to
precipitation and temperature. The calibrated water balance model presented in Figure A3
and Table A2 can provide a first cut estimate of these relative changes without additional
improvement or augmentation.

Appendix B.3. Continuous Simulation, Distributed Parameter Model

The Hydrological Simulation Program—FORTRAN (HSPF) is the continuous simula-
tion, water balance model used in this study. HSPF works on the concepts of hydrologic
response units (HRUs), or sub-basins, and stream segments. HRUs represent relatively
homogenous property, sub-watershed areas. Each HRU is divided into a pervious com-
ponent, called a PERLND segment, and an impervious component, called an IMPLND
segment. Stream reaches, called RCHRES components, are represented with the “reservoir”
ordinary differential equation and routing is used to represent flow from upstream seg-
ments to downstream segments. The routing algorithm provides for multiple exits from
each RCHRES structure; each exit can be used to direct water to a different destination.
The default behavior is to utilize one exit that sends water downstream to the next reach.

Impervious land, IMPLND, regions in an HSPF model only represent the processes of
AET and surface runoff. Because the land is impervious, there is no infiltration. Without
infiltration there can be no percolation and no recharge. Soil column processes are not
simulated for IMPLND areas.

In contrast, pervious land, PERLND, regions have a soil column with upper and lower
zones. Surface runoff is the rainfall that is left over after infiltration, interception, ET during
the storm, and surface depression storage. Infiltration occurs from the land surface into
the upper zone and percolation is simulated from the upper to the lower zone. AET is
calculated from both soil zones. Interflow is simulated as a loss from the lower soil zone
which provides for delayed runoff to streams.

mHSP2 is the HSPF-variant used for continuous simulation water balance modeling. It
is one component of the pyHS2MF6 integrated hydrologic model [72]. mHSP2 was used for
this study because the author had full access to the source code and is intimately familiar
with the source code. Access and knowledge of the source code facilitates the minor
modifications required to have mHSP2 function as an integrated part of the simulation
framework.

Calibration

The site watershed was divided into 12 HRUs to facilitate routing of water from
the headwaters to the watershed outlet. Figure 10 displays the HRU delineation; each
HRU contains a pervious land, PERLND, and an impervious land, IMPLND, component.
The percentage of impervious area was estimated using the NLCD2016 land cover map-
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ping [73,74]. Dolan Creek is split into five reaches, each represented with a RCHRES
structure, as shown on Figure 10.

The streams are ephemeral, and the stream valleys are designated as regions of high
infiltration. The one area where streams are perennial and where the stream valleys are
discharge points is the outcrop of the Fort Terrett limestone shown on Figures S1 and S2.
The contact of the Fort Terrett with the overlying rocks is associated with spring discharge,
as evidenced by the location of the five springs in Figure S2. Mesa tops and sides, which
comprise the study watershed area that is not stream valley, are runoff generating areas.

The working hypothesis for continuous simulation water balance modeling is that
the stream valleys, where the Fort Terrett is not present at the surface, are regions of
high infiltration because of enhanced secondary porosity. Consequently, Reaches #1–#4 in
Figure 10 are losing reaches. For these losing reaches, RCHRES outflow exit number two
is used to remove water from the stream reach and send it to saturated groundwater as
focused recharge. In contrast, RCHRES outflow exit number one routes stream water to
the next stream segment downstream for all stream reaches in the model.

The Fort Terrett outcrop is relatively impermeable; subsurface runoff and groundwater
piles up on top of it and discharges at mapped springs and generally along the contact
of the Fort Terrett and overlying rocks. Reach #5 in Figure 10 is the only RCHRES that
has Fort Terrett mapped in the valley bottom. Consequently, Reach #5 does not have
an outflow exit number two. Spring discharge provides baseflow for Dolan Creek in
this short perennial reach, i.e., Reach #5, just upstream of the Dolan Creek Gauge. This
spring discharge and baseflow enters the model from an external inflow time series. The
25th percentile day of year discharge values for USGS Gauge 08449100, see the boundary
between the interquartile and lower quartile ranges in Figure A2, provide an estimate
of baseflow for Dolan Creek. The 25th percentile day of the year discharge values are
Fourier smoothed using the approach discussed in Section 2.2.6 to provide a generic
depiction of expected baseflow that contains seasonal variations for use in simulation of
future conditions. All baseflow is provided by spring discharge from Dolan Springs and
YR-70-01-701 in Figure S2.

AET is calculated for each HRU and stream segment in the model. For a stream
segment, AET is the evaporation from the water surface. In the pervious portion of an
HRU, AET is calculated from the upper soil zone, the lower soil zone, interflow, and
depression storage. AET is only calculated from depression storage for the impervious
portions of the HRU.

Runoff is simulated for each HRU. The simulated runoff is discharged to the nearest
stream segment and then routed downstream along the reaches. During the routing
along the stream reaches, water may be lost to evaporation (i.e., AET) and to recharge.
Consequently, the runoff from the study watershed is the outflow discharge from Reach #5.
This provides the equivalent representation to runoff in the monthly water balance model.

Both distributed and focused recharge mechanisms are explicitly represented in the
HSPF model. Distributed recharge is attributed to inactive groundwater inflow (IGWI)
which is the water that infiltrates into the pervious portion of an HRU and then percolates
across both soil zones and out of the bottom of the soil column. Focused recharge is
simulated using a specified RCHRES outflow exit (exit number two) for Reaches #1–#4.
These are hypothesized to be the losing reaches in the model and so only these four stream
segments can produce focused recharge. Total recharge simulated for the site watershed is
the sum of the IGWI values for each HRU (i.e., distributed recharge) and the sum of losses
to groundwater from outflow exit number 2 for Reaches #1–#4 (i.e., focused recharge).
Given the thin soil column and high runoff rates for most of the watershed in Table S17,
focused recharge provides the majority of recharge.

Watershed parameters were estimated, or calibrated, using automated calibration
techniques with the USGS Dolan Creek gauge record as the calibration targets. Figure A4
provides a comparison of the calibrated, standalone HSPF model output to the gauge record.
Simulated discharge provides a reasonably good match to flows observed at the gauge.
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