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Abstract: Over the last three decades, the increasing development of smart water meter trials and
the rise of demand management has fostered the collection of water demand data at increasingly
higher spatial and temporal resolutions. Counting these new datasets and more traditional aggregate
water demand data, the literature is rich with heterogeneous urban water demand datasets. They are
characterized by heterogeneous spatial scales—from urban districts, to households or individual wa-
ter fixtures—and temporal sampling frequencies—from seasonal/monthly up to sub-daily (minutes
or seconds). Motivated by the need of tracking the existing datasets in this rapidly evolving field of
investigation, this manuscript is the first comprehensive review effort of the state-of-the-art urban
water demand datasets. This paper contributes a review of 92 water demand datasets and 120 related
peer-review publications compiled in the last 45 years. The reviewed datasets are classified and
analyzed according to the following criteria: spatial scale, temporal scale, and dataset accessibility.
This research effort builds an updated catalog of the existing water demand datasets to facilitate
future research efforts end encourage the publication of open-access datasets in water demand
modelling and management research.

Keywords: urban water consumption; water demand data; water data accessibility; data resolution;
smart meter

1. Introduction

Population growth, urbanization, and climate change are expected to increase the
stress on freshwater resources and the burden over urban water systems [1–3]. Adaptive
planning and management strategies are thus needed to address seasonal or prolonged
water scarcity in drought-prone areas and meet water demands with reduced operational
expenditure, overall increasing the resilience of critical urban water network infrastructure
systems [4].

In the last decades, demand-side management has increasingly emerged as a key
approach to complement traditional water supply operations [5]. Different water demand
management strategies (WDMS) have been proposed in the literature to foster water
conservation and more efficient water demands [6,7]. These include technological, financial,
legislative, maintenance, and educational interventions [8]. The rise of demand-side water
management has motivated the development of more and more sophisticated technologies
and mathematical models to monitor, characterize, and predict water demands at different
spatial and temporal scales, and capture the existing relationships between water demand
and its potential climatic and socio-demographic determinants [9–11].

At the coarser urban and suburban scales, the state-of-the-art literature is rich with
studies focused on improving the efficiency of water distribution network (WDN) opera-
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tions (e.g., [12–14]). In these studies, water demands are often considered as a stationary
or seasonal input to the hydraulic model of the WDN, with a spatial level of aggregation
referred to the city or the district scale. Such spatial scales are typically relevant for infras-
tructure planning, WDN design, and WDN partitioning. More recently, various techniques
for water demand forecasting have also been proposed in the literature. They include
regression analysis, time series analysis, and techniques based on black box models, in-
cluding different Artificial Neural Network architectures (e.g., [15]). Demand prediction
models have been developed at different spatial and temporal scales, with the majority of
the studies focusing on urban and suburban scales, and temporal resolutions spanning
from hourly to monthly intervals (e.g., [16–18]). A disruptive phase in the development of
water demand studies is represented by the advent of smart metering technologies [8,19].
The development of smart meters allowed gathering water demand data with an unprece-
dented level of spatiotemporal detail. Water demand data became potentially available at
the spatial scale of individual households and data logging intervals of a few seconds [20].
While understanding the full range of potential benefits of smart meters for water utilities
and customers is still a topic for active discussion [21], the variety of studies in the literature
based upon smart meter data demonstrates the diversity of data-driven opportunities that
high-resolution smart meter data opened up in the context of water demand modelling and
management. These include, e.g., water demand profiling and customer segmentation [22],
post meter leak detection and water loss management [23], end use studies for fixture-
level water demand breakdown and detailed demand forecasting [24], and behavioral
studies [25].

The continuously increasing amount of smart meter trials and demand modelling and
management studies since the middle of the 1990s [8] suggests that several high-resolution
water demand datasets have been recently compiled. The availability of high-resolution
datasets opens up several opportunities for advanced applications, including the devel-
opment of water end use disaggregation algorithms and machine learning techniques for
user profiling. Such applications could benefit from open datasets to enhance compar-
ative applications, benchmarking, and facilitate the development of general algorithms
trained on combined datasets with water consumption data from different sources and
locations. High-resolution datasets, considered in combination with the more traditional
water demand datasets gathered at coarser spatial and temporal resolutions would repre-
sent a valuable resource for researchers and scientific efforts targeting the development
and validation of mathematical models of water demand at different spatial and temporal
scales, or the development of advanced smart metering analytics.

Yet, information and metadata on individual water demand datasets are scattered
in the literature, and to the authors’ knowledge, a comprehensive review of the existing
datasets is still missing. Existing data are frequently difficult to access or use, and existing
literature reviews on urban water consumption focus on demand modelling or other data-
driven applications, rather than on analyzing the heterogeneity of existing datasets, their
spatial and temporal scales, and accessibility. Motivated by the recent development and
availability of datasets gathered with increasingly high spatial and temporal resolution,
the aim of this paper is to gather information on the datasets to identify current trends
and gaps and help future data-driven research, along with research benchmarking and
reproducibility.

This review contributes the first effort of classification and analysis of 92 water de-
mand datasets and 120 related peer-review publications that have been compiled in the last
45 years to monitor urban water consumption data at different spatial and temporal scales
and provide data for water demand modelling and management studies. We characterize
the reviewed datasets according to their heterogeneous spatial and temporal scales, and
investigate their accessibility. Moreover, since digital disruption has transformed the elec-
tricity industry earlier and some lessons learned may apply also in the water or multi-utility
sectors [26], we additionally explore similarities and differences between the reviewed sub-
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set of high-resolution water demand datasets and 57 comparable high-resolution electricity
demand data.

We thus analyze the reviewed datasets and publications to address these five research
questions (see Figure 1):

Q1. How are the existing urban water demand datasets distributed across different spatial
scales?

Q2. How are the existing urban water demand datasets distributed across different tem-
poral scales?

Q3. What are the main domains of application of the reviewed datasets, within water
demand modelling and management studies?

Q4. What is the access policy for the reviewed datasets?
Q5. Is there any synergy with comparable datasets in the electricity sector?

1. WATER DEMAND DATASETS - SPATIAL SCALES

Q1: How are water demand datasets
distributed across different spatial scales?

CITY         DISTRICT       HOUSEHOLD      END USE

2. WATER DEMAN DATASETS - TEMPORAL SCALES

1s            5m       10m       30m      1h      1 d

Q3: What are the main domains of application
of the reviewed datasets, within water demand
modelling and management studies?

3. DATASET ACCESSIBILITY

Q4: What is the access policy for the reviewed datasets? 
. 

OPEN RESTRICTED NOT 
AVAILABLE

4. WATER-ENERGY NEXUS
Q5: Is there any synergy with datasets in the electricity 
sector? 

Q2: How are water demand datasets
distributed across different temporal scales?

Figure 1. State-of-the-art water demand datasets review: summary of the research questions and
multi-stage analysis.

The ultimate goal of this review is to compile an updated catalog of the existing
water demand datasets and facilitate future research efforts in this rapidly evolving field of
investigation. Researchers performing water demand studies could refer to this review to
identify data readily available in formats, spatial scales, and temporal scales that suit their
research needs. This review will finally also help identifying water demand datasets that
are accessible free of charge, in the attempt to promote further publication of open-access
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datasets to foster reproducible research, benchmarking, and the development/validation
of existing software tools to generate reliable and realistic synthetic data [27–29].

The paper is structured as follows. The dataset review methods and the considered
spatial and temporal scales are presented in Section 2; an overview of the dataset search
outcomes is presented in Section 3; Sections 4–6 analyzes the reviewed datasets in terms of
(i) spatial scales, (ii) temporal scales, and (iii) accessibility; Section 7 analyzes similarities
and synergies between some of the reviewed water demand datasets and alike electricity
demand datasets; finally, Section 8 draws some final remarks and directions for follow-up
research.

2. Datasets Review Methods

To address the research questions formulated in Figure 1, we searched for water
demand datasets collected at different spatial and temporal scales and referenced in
the peer-reviewed scientific literature on water demand modelling and management.
We searched on different web search engines and scientific databases, namely, Google
Scholar (https://scholar.google.com/), Mendeley (https://mendeley.com/), Mendeley
Data (https://data.mendeley.com/), and data.world (https://data.world/datasets/). We
followed the following 3-step procedure:

1. We searched for the following combinations of keywords on Google Scholar and
Mendeley: Water demand/Water consumption/Household water demand/Residential
end use water/Residential water consumption/Residential water demand/Water
demand data/Water demand dataset/Water demand data set/Water demand forecast-
ing/Water demand city/Water demand district/Water end-use/Water consumption
patterns/Domestic water use/Urban water demand/Water use behavior/District
water demand.

2. We searched for the following combinations of keywords on Mendeley Data and
filtered the obtained results to include only two data types, i.e., “Dataset” and
“Data Repositories”: Water demand/Water consumption/Household water con-
sumption/End use water consumption/Urban water consumption/Urban water
demand/District water demand/Water supply demand.

3. We searched for open datasets in data.world, an online catalog for data and analy-
sis. We restricted our research to datasets included in the data topic “water” and
selected only datasets mentioned in peer-reviewed articles. More specifically, we
searched for the following combinations of keywords: Water demand/Water con-
sumption/Residential water consumption/Domestic water demand/Demand man-
agement.

In addition to the datasets retrieved with the above search, we included in this review
other high-resolution datasets retrived from two articles strongly focused on residential
water demand, i.e., [30,31].

After compiling an inventory with the datasets and related publications retrieved with
the above search methods, we reviewed, classified, and critically analyzed the inventory
according to three main criteria: (i) spatial scale (Section 4), (ii) temporal scale (Section 5),
and dataset accessibility/access policy (Section 6).

Spatial and Temporal Scales of Interest

Depending on the spatial scale of interest, different metering and monitoring tools
for water consumption data gathering can be adopted. For instance, end use metering
usually requires ad hoc, customized, solutions [20,32], while household or district water
consumption can be monitored with commercial flow meters [33]. Datasets collected at
different spatial scales will thus represent different levels of aggregation of water demand
and will possibly have implications on data privacy and ownership (e.g., water utilities vs
individual water consumers). Numerous benefits can derive from high-resolution data,
both for water utilities and water consumers [21]. Such data enable, for instance, accurate
modelling of water demand patterns, peaks, and anomalies (e.g., leaks) [28]. However,

https://scholar.google.com/
https://mendeley.com/
https://data.mendeley.com/
https://data.world/datasets/
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large and high-resolution data implies also several potential drawbacks, e.g., privacy
concerns, need for cloud resources for data storage and new skills for data analytics [34].
We identified four scales of interest for urban water consumption monitoring and analysis,
from the coarser to the finer:

• City. We refer to a city as an urban centre with its own government and administration.
The city scale can be composed of multiple districts and it includes the whole water
distribution network.

• District. A district is a component of an urban center. The district spatial scale refers to
a group of residential buildings in one or more municipalities. In many cases, districts
coincide with the water network district meter areas (DMAs), i.e., sub-regions of a
water network delimited by closing boundary valves. In the case of small cities or
villages, the district and city scale can coincide.

• Household. The household scale implies a single dwelling, or a single-family residential
building connected to an individual water meter. In this category we also include
multi-family homes, when connected to one water meter. Depending on the type
of household, its water consumption can be attributed to indoor usage only or both
indoor and outdoor usage.

• End use. The end use scale refers to an individual water fixture within a single apart-
ment/household. End uses can refer to indoor (e.g., shower, dishwasher, toilet, etc.)
or outdoor uses (e.g., garden, swimming pool, etc.).

In this review, we keep into account the spatial scale dependencies of the reviewed
datasets and classify them according to the three suburban scales included in the city level:
District, Household, and End Use. In the literature, the spatial scale of interest is related to
the type of application that requires water demand datasets (WDDs). WDDs at the district
scale, for instance, are mainly used to investigate water network partitioning [35,36], com-
pute water balances [37], assess the hydraulic performance of the network system [38], and
perform leakage identification and localization [39,40]. The level of aggregation of these
WDDs depends on the network configuration and/or DMA design, and often refers to wa-
ter demands at network nodes [41,42]. At the household scale, WDDs represent domestic
water demands and are primarily used to build descriptive and predictive models of water
demand, estimate demand peak timing and magnitude to inform water network opera-
tions, and inform conservation campaigns and demand management interventions [43,44].
Finally, at end use scale, WDDs are used to improve our understanding of residential
water consumption behaviors, develop disaggregation models to estimate the share of
household water consumption of individual fixtures, develop customized water demand
management strategies and billing reports, and overall increase customer engagement and
help water utilities and customers promote efficient water usage [45,46]. In keeping with
the different spatial and temporal scales considered in this study, this review includes both
water consumption data retrieved with digital water meters and data measured with low
resolution meters or retrieved from water bills [47–49]. Furthermore, when a dataset or
publication considers multiple spatial scales, we classify it according to the finest level of
data granularity.

Beside the spatial dimension, we also explore how datasets differ in terms of temporal
scale (or time sampling frequency). Previous literature has shown that water demand data
gathered at monthly or quarterly resolution is mainly used to inform strategic regional plan-
ning and to calculate water bills [11], while a number of additional applications, including
post-meter leak detection and water end use disaggregation can be enabled by sub-daily
data (e.g., recorded with a time sampling frequency of 1 h or a few minutes/seconds) [28].
Here, we characterize the datasets collected at the district, household, and end use scales
according to their time sampling resolution, with primary focus on daily and sub-daily
frequencies. We consider datasets to have a low resolution when they include data with
a daily or lower time sampling frequencies (e.g., monthly). In turn, we consider as high
resolution datasets those gathered with a sub-daily frequency (e.g., hourly, 1 min, 10 s).
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3. Overview of Dataset Search Outcome

As an outcome of the dataset search explained above, we retrieved information on
92 unique datasets referenced in 120 scientific works, which in the last 45 years contributed
to the literature on water demand modelling and management. The complete catalogue of
the datasets and publications reviewed in this study is publicly available at [50]. We have
also stored it in a public GitHub repository where pull requests can be submitted, so that
our dataset collection can be collaboratively updated as more datasets become available
(the repository is accessible at https://github.com/AnnaDiMauro/WDDreview).

A general overview of the reviewed datasets (Figure 2) suggests that, first, the majority
of the reviewed datasets contain water consumption data at high spatial resolutions (i.e.,
end use and household). Second, the temporal distribution of the reviewed publications
(Figure 3) is skewed to the right, with a major increase of household and end use studies
after 2010. This is likely due to the increasing development of smart meter technologies
during the period 2011–2015 [8], following the pioneering studies and prototypes that first
appeared in the 1990s (the first end use study reviewed dates back to the 1991–1995 interval
in Figure 3).

Finally the worldwide geographical distribution of the reviewed publications (Figure 4)
shows an uneven spatial distribution, with more than 50% of the reviewed studies located
either in the USA or Europe: 28% USA, 25% EU, 17% Australia and New Zealand, 13%
United Kingdom, 9% Asia, 6% Canada, 2% Africa.

A more detailed analysis on the distribution of the reviewed datasets across spatial
and temporal scales, along with a critical analysis on their accessibility, are presented in the
next sections.

Figure 2. Distribution of the 92 reviewed datasets across three spatial scales, i.e., district, household,
and end use.

https://github.com/AnnaDiMauro/WDDreview
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Figure 3. Five–year count of the 120 scientific publications reviewed in this study and
referencing the 92 reviewed datasets.

Figure 4. Geographical distribution of the 120 publications reviewed in this study.

4. Dataset Spatial Scales

To answer the first research question reported in Figure 1, we here investigate the
distribution of the 92 reviewed datasets across different spatial resolutions, along with
their implications for demand modeling and management.

As already reported in Figure 2, we identify only 20 datasets at the district scale.
Water demand data collected at this scale relate to specific areas of a water distribution
network. They are primarily used to monitor aggregate water demand patterns in the
network, or to provide input information to simulation models of water distribution
systems. Among these datasets, it is worth highlighting the presence of comprehensive,
multi-network datasets, such as the WDSRD database for research applications [51]. This
dataset includes data for over 40 different distribution networks, collected by the ASCE
Task Committee on Research Databases for Water Distribution Systems for the water
distribution system community to develop and test new algorithms for network design,
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analysis, and operations. A typical problem that requires such type of data is the optimal
sensor placement in a partitioned water distribution network [52]. This problem, consisting
of finding the optimal sensor location that minimizes the economic costs, while maximizing
the amount of information required for network operations and diagnosis, still represents
an open challenge for utilities and researchers [53,54]. The datasets classified in the district
spatial scale are generally gathered by water utilities for ad hoc analysis on specific case
studies within their controlled water network facilities. As the data ownership belongs
to water utilities, such data is generally not released to the public, but only released
to researchers under non-disclosing agreements. If demand data come from individual
household-scale water meters, privacy-protection schemes, e.g., data anonymization, are
usually required before data are actually shared.

The majority of the reviewed datasets was collected at the household (31 datasets)
or end use (41 datasets) scale. Datasets as such high spatial resolutions have been emerg-
ing in the literature in the last 20–30 years, driven by the increasing scientific interest
towards smart water metering technology. Smart meters can be defined as digital sensors
able to measure, store, and transmit water use data at the household level and with a
sub-daily temporal sampling resolution, down to a few seconds [28,55]. Mining smart
meter information with advanced data analytics is enabling new opportunities also for
developing automatic tools to estimate the water consumption of individual fixtures in
a household [56,57], quantify the impact of individual and collective human behaviors
on residential water consumption and water conservation [58], and acquire a better un-
derstanding on which socio-demographic determinants primarily drive residential water
consumption in different geographical contexts [59,60]. Water data at the household/end
use scale are of great interest for behavioral studies and provide key information for
fostering water conservation, designing water tariffs, promoting more sustainable uses
of resource, characterizing water demand during peak hours, and improving demand
forecasting and management capabilities [61]. These topics have been already extensively
reviewed in the literature, and several comprehensive reviews analyzed the usage and
benefits of smart metering for data collection and detailed water demand modelling and
management [8,21,62,63].

We report a detailed summary of the metadata of the datasets identified at the district,
household and end use scales in Tables 1 (district), 2 (household) and 3 (end use), sorted in
chronological order. These metadata include the year when the dataset first appeared in
the literature, its size (number of districts/households), time series length, time sampling
resolution, access policy (classified in Open (O), Restricted (R), Not Available (NA)), and
main goals and dataset applications in the related publications. When a dataset is found to
be open access, we include the link to the repository where it is stored at the time of this
review.

Some common features and trends can be identified from the information reported
in the three tables. First, there is an inverse correlation between the dataset size (or the
time series length) and the time sampling resolution. Datasets comprising hundreds or
thousands of homes (e.g., [48,49,64–66]) generally include data collected with a monthly or
daily time sampling resolution, while datasets with a sub-daily time sampling resolution
only include a few units or tens of homes (e.g., [67–69]). This may be attributed to the
experimental extent of most high-resolution studies, their usually short-term duration,
and the costs of deploying large-scale smart metering systems. Second, while datasets
collected at the district scale have been primarily used for WDN optimization, WDN design,
understanding the effects of socio-economic determinants on aggregate water demand,
and leak detection, we identify four categories of state-of-the-art studies that have used, so
far, datasets at the household scale listed in Table 2. These four categories, defined based on
the scope of the listed studies, are: water demand forecasting, water demand pattern recog-
nition, water conservation and customer awareness, and water end use disaggregation.
The problem of water demand forecasting has been investigated for decades with different
modelling techniques. Several recent applications exploit Artificial Neural Networks and
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other machine learning techniques to predict future water demands [44,66,70] and use
this information to optimize water network operations or design water use efficiency
programs [49,71–73]. Eight studies can be included in this category, among those listed in
Table 2. A second category of studies (e.g., [31,74–76]) exploited household-scale water
demand data combined with pattern recognition techniques to inform effective water
allocation and reduce water demand to enhance urban water service infrastructure. Other
9 studies from those in Table 2 can be included in this category. Third, 11 datasets among
those in Table 2 were gathered as part of water conservation and customer awareness
research efforts and projects, including [65,77–79]. These studies investigate the potential of
smart meter technologies, often coupled with data analytics and digital platforms, for data
communication to water consumers, to increase users’ awareness on water consumption
and sustainable water usage behaviors. Finally, 3 household-scale datasets were primarily
used for water demand disaggregation to estimate water use at individual fixture levels
with a non-intrusive approach, i.e., coupling the data from a single-point smart meter with
a disaggregation algorithm and avoiding the installation of several intrusive sensors to
directly monitor the water consumption of each end use [64,80,81].

Water end use disaggregation can be identified as the link between WDDs at the
household and the end use level. Since intrusive smart meter installations at the end use
level turn out to be costly and unlikely acceptable and/or accepted by water consumers,
thus non-viable for large-scale deployments, non-intrusive techniques represent a valid
solution. Yet, non-intrusive end use disaggregation algorithms require ground truth
data collected at the fixture level, at least for a limited time span, for algorithm training,
validation, and performance assessment. For this reason, the majority of the reviewed
WDDs classified in the end use spatial scale (see Table 3) has been used to develop and train
different end use disaggregation algorithms, including machine learning-based algorithms
(see, for instance, [67,68,82,83]). Differently from the WDDs at the household scales, end
use datasets feature a short time series duration (a few days or weeks) and a high time
sampling resolution, with data collected primarily with a sampling frequency of 5–10 s.
These datasets, mainly collected in the last 10 years, usually include samples collected in
two heterogeneous periods (e.g., summer and winter) to account for the seasonal variations
of some end uses, e.g., outdoor water demand for irrigation. Whereas developing and
testing end use disaggregation methods remains the main purpose of collecting water
demand data at the end use level, some of the WDDs listed in Table 3 have been also
used to evaluate water consumer behaviors and attitudes toward individual residential
water uses (e.g., [84,85]), or test the effectiveness of water conservation strategies based on
appliance retrofit and efficiency upgrades [86,87], customized tariffs [88], and awareness
campaigns [89,90].
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Table 1. Metadata of the 20 reviewed datasets at the district scale. Different goals and applications are considered (see last column): WDNO = Water Distribution Network Optimization;
SD = socio-economic studies; DMAD = District Meter Areas Design; LD = Leak detection.

Dataset Name Authors Year Location Dataset Size Time Series Lenght Time Sampling
Resolution

Access
Policy

Goal and
Applications

/ Cassuto, A, et al. [91] 1979 United States 1 districts 5 years (January
1970–December 1975) 1 month R SD

/ Billings, R.B., et al. [47] 1989 United States 3 districts in Tucson Arizona 1974 and 1980 1 month R WDNO

/ Russac, D.A.V., et al.[92] 1991 United Kingdom 1 district in Potters Bar 3 months (1 April–30 June 1989) day R WDNO

/ Molino, B., et al. [93] 1991 Italy 2 districts in Naples 3 year 1 s R WDNO

/ Alvisi, S., et al. [94] 2003 Italy 8 districts in Castelfranco Emilia 1 year (2000) 1 min R WDNO

/ Gato, S., et al. [95] 2005 Australia 1 district in East Doncaster 10 years (April 1991–April 2001) 1 day R WDNO

/ Worthington, A.C., et al. [96] 2009 Australia 1 district in Queensland local
govermenets 10 years (1994 to 2004) 1 month R WDNO

/ Mounce, S.R., et al. [41] 2010 United Kingdom 146 DMAs 1 year (2008) 30 min R DMAD

/ Gato-Trinidad, S., et al .[97] 2011 Australia 5 districts in Greater Melbourne 1 year 5 min R WDNO

/ Bakker, M., et al. [98] 2013 Netherland 6 DMAs 5 years (2006 to 2011) 15 min R WDNO

/ Jolly, M.D., et al. [99] and
Hernandez, E., et al. [51]

2014;
2016 United States

First release: 12-district model
Network Second release: more
than 40-district model Network

/ / O [51] DMAD and
WDNO

/ Boracchi, G., et al. [100] 2014 Spain 10 Districts 82 days 10 min R LD

/ Ji, G., et al. [101] 2014 China 1 DMA 1 years 1 h R WDN optimization

/ Avni, N., et al. [102] 2015 Israel / 19 year (1994–2012) 1 month R WDNO

/ Vries, D., et al. [103] 2016 Netherlands 6 DMAs 1 year (2013–2014) 5 min R LD

/ Gargano, R., et al. [29] 2016 Italy 4 DMA in Piedimonte San
Germano 50 days 1 min R WDNO

/ Leyli-Abadi, M., et al. [104] 2017 France 1 district in Paris 3 months (January–March 2014) 1 h R WDNO

/ Quesnel, K.J., et al. [105] 2017 United States 20 districts 10 years (2005-2015) 2 months R SD

/ Di Nardo, A., et al. [106] 2019 Italy DMAs in Castellammare 1 year (May 2016–2017) / R DMAD

/ Smolak, K., et al. [107] 2020 Poland 28 DMAs 51 days (21 January–12 March
2018) 10 min R WDNO
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Table 2. Metadata of the 31 reviewed datasets at the household scale. Different goals and applications are considered (see last column): WEUD = Water End Use Disaggregation; WCCA =
Water Conservation and Customer Awareness; WDF = Water Demand Forecasting; WDPR = Water Deman Pattern Recognition.

Dataset
Name Authors Year Location Dataset Size Time Series Lenght Time Sampling

Resolution
Access
Policy

Goal and
Applications

/ Danielson, L.E. [108] 1979 United States 261 houses 5 year (May 1969–
December 1974) 1 day NA WDF

Concord,
New
Hamp-
shire

Hamilton, L.C. [109] 1982 United States 431 houses 6 years (1975–1981) 1 month NA WCCA

/ Buchberger, S.G.,
and Wells, G.J. [110] 1996 United States 4 houses 1 year (July 1993–June 1994) 1 s R WDPR

Ohio Guercio, R., et al. [111] 2001 Italy 85 houses 2 weeks in January 2001;
2 weeks in April 2001 1 m R WDPR

/ Silva-Araya, W.F., et al. [112] 2002 Porto Rico 4 houses 1 week 10 s R WDPR

DWUS Loh, M., and Coghlan, P. [71] 2003 Australia 1 phase: 120 houses; 2 phase:
124 houses

1 phase: 20 months (November
1998–June 2000); 2 phase: 14
months (September
2000–November 2001)

/ R WDF

/ Buchberger, S.G., et al. [113] 2003 United States 21 houses 7 months (April–October 1998) 1 s R WDPR

/ Moughton, L.J., et al. [114] 2007 United States 21 houses 36 week (March–November
1997) 1 s R WDPR

/ Kenney, D.S., et al. [48] 2008 United States 10,000 houses 5 years (2000–2005) 1 month R WCCA

/ Magini, R., et al. [115] 2008 Italy 82 houses 2 years 1 s R WDPR

/ Umapathi, S., et al. [116] 2013 Australia 20 houses 12 months (between April
2010–November 2011) 1 m R WDPR

/ Cole, G., and Stewart, R.A. [64] 2013 Australia 2884 houses 1 year (1 July 2008–30 June 2009) 1 day R WEUD

/ Tanverakul, S.A., and Lee, J. [65] 2013 United States 1000 houses 3 years (October 2008–December
2011) 1 month R WCCA

/ Cardell-Oliver, R. [80] 2013 Australia 11,000 houses 35,000 days 1 h R WCCA

SmartH2O
project Rizzoli et al. [77] 2014 Switzerland and

Spain / / 1 h O [117] WCCA
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Table 2. Cont.

Dataset
Name Authors Year Location Dataset Size Time Series Lenght Time Sampling

Resolution
Access
Policy

Goal and
Applications

/ Joo, J.C., et al. [74] 2015 Korea 80 houses 1 year (January–December 2011) 30 m R WCCA

/ Loureiro, D., et al. [75] 2015 Portugal 311 houses 4 months (January–April 2009) 1 day R WCCA

/ Shan, Y., et al. [118] 2015 Greece and Poland 77 houses from Greece; 41 from
Poland

2 months (November–December
2014) / R WCCA

/ Liu, A., et al. [78] 2016 Australia 68 houses November 2012; January 2012 1 day R WEUD

/ Makwiza, C., and Jacobs, H. E. [119] 2016 Africa 6 houses January 2009; December 2014 1 Month R WDF

/ Lee, J. [76] 2016 United States 1000 houses 10 years (2002–2011) 1 month R WDPR

/ March, H., et al. [120] 2017 Spain 98,228 houses 5 years (2011–2016) 15 m R WCCA

/ Leyli-Abadi, M., et al. [104] 2017 France 1000 houses 3 months (1 January–31 March
2014) 1 h R WDF

/ Cominola, A., et al. [22] 2018 United States 1107 houses 191 days (28 June–8 December
2015) 1 h R WCCA/WDPR

iWIDGET
dataset Kossieris,P. et al. [121] 2018 Greece 11 houses 1 to 2 year (2014–2016) 15 min R WDPR

/ Duerr, I., et al. [66] 2018 Florida 973 houses 137 months 1 month R WDF

/ Xenochristou, M., et al. [44] 2018 United Kingdom 2000 houses 3 years (October
2014–September 2017) 15 min and 30 min R WDF

/ Chen, Y.J., et al. [122] 2019 Nepal 1500 houses 1 year (2014–2015) 30 m R WEUD

/ Randall, T., and Koech, R. [123] 2019 Australia 158 houses 6 months (1 August 2015–31
January 2016) 1 h R WCCA

/ Rees, P., et al. [49] 2020 United Kingdom 19,238 houses 9 years (2006–2015) 1 day O [124] WDF

/ Pesantez, J.E., et al. [70] 2020 Unites States 100 houses 12 months since January 2017 1 h R WDF
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Table 3. Metadata of the 41 reviewed datasets at the end use scale. Different goals and applications are considered (see last column): WEUD = Water End Use Disaggregation; WCCA =
Water Conservation and Customer Awareness.

Dataset
Name Authors Year Location Dataset Size Time Series Lenght Time Sampling

Resolution
Access
Policy

Goal and
Applications

/ Butler, D. [125] 1993 United Kingdom 300 homes 7 days ( 13 December–20
December 1987) / NA WEUD

/ Edwards, K., and Martin, L. [126] 1995 United Kingdom 100 houses 1 year (October 1993–
September 1994) 15 m NA WEUD

/ DeOreo, W. B. et al. [127] 1996 United Kingdom 16 houses 3 weeks (between
June–September 1994) 10 s NA WEUD

REUWS Mayer P.W., et al. [55] 1999 United States 1188 houses 1 month (2 weeks in summer
and winter) 10 s R WEUD

SHWCS Mayer, P.W., et al. [128] 2000 United States 37 houses 2 weeks 10 s R WCCA

EBMUD Mayer, P.W., et al. [129] 2003 United States 33 houses 2 weeks 10 s R WCCA

/ Mayer P, et al. [130] 2004 United States 26 houses 2 weeks / R WCCA

REUMS Roberts, P. [131] 2005 Australia 100 houses 2 weeks in February 2004; 2
weeks in August 2004 5 s R WCCA

Weep Heinrich, M. [86] 2007 New Zeland 12 houses 8 months 10 s R WEUD

/ Kim, S.H., et al. [132] 2007 Korea 145 houses 3 year (December 2002–February
2006) 1 h R WEUD

Gold
Coast Willis, R., et al. [84] 2009 Australia 151 houses 14 days (Winter 2007–2008) 10 s R WEUD

/ Froehlich, J.E.,et al. [133] 2009 United States 10 houses / / R WEUD

AWUS Heinrich, M., and Roberti, H. [134] 2010 New Zeland 51 houses
4 weeks (between
February–March); 5 weeks
(between Jun–Jul)

10 s R WEUD

SEQ First
read Beal, C.D., et al. [135] 2011 Australia 1500 houses First read 2 weeks (14 June–28

June 2010) 5 s R WEUD

SEQ
End-use
dataset

Beal, C., et al. [85] 2011 Australia 252 houses

First read 2 weeks (14 June–28
June 2010); Second read 2 weeks
(1 December 2010-21 February
2011); Third read (1 June–June
15)

5 s O [136] WEUD
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Table 3. Cont.

Dataset
Name Authors Year Location Dataset Size Time Series Lenght Time Sampling

Resolution
Access
Policy

Goal and
Applications

/ Gato-Trinidad, S., et al. [88] 2011 Australia 13 houses 3 weeks in February 2004 and in
August 2004 5 s R WCCA

/ Otaki, Y., et al. [137] 2011 Thailand 63 houses in Chiang Mai and 59
in Khon Kaen 1 month / R WEUD

/ Srinivasan, V., et al. [67] 2011 United States 2 houses 7 days 7 s R WEUD

/ Suero, F. J., et al. [87] 2012 United States 96 houses 3 year (2000–2003) 10 s R WEUD

MCW MidCoast Water. [138] 2012 Australia 141 houses
2 to 5 weeks between
December/January and
June/August

1 m R WCCA

/ Lee, D.J., et al. [139] 2012 Korea 146 households 4 years (2002–2006) 10 min R WEUD

/ Borg, M., et al. [140] 2013 United States 3 houses 1 week / R WCCA

/ Neunteufel, R., et al. [141] 2014 Austria 4 houses 2 year (2010–2012) 10 s R WEUD

/ Gurung, T. R.,et al. [142] 2015 Australia 130 households 7 different periods of 2 weeks
between 2010–2013 5 s R WEUD

/ Rathnayaka, K., et al. [143] 2015 Australia 337 houses 2 weeks in Winter 2010 and
Summer 2012 5 s R WEUD

/ Nguyen, K.A., et al. [144] 2015 Australia 500 homes 3 years (2010–2012) 5 s R WEUD

/ Makonin, S., et al. [145] 2016 Canada 1 house 2 years (2012–2014) 1 m O [146] WEUD

REU II
2016 William B DeOreo, et al. [147] 2016 United States 762 houses 3 years (2010–2013) 10 s R WEUD

/ Kozlovskiy, I., et al. [68] 2016 United States 1 house 21 days (17 April–8 May 2016) 1 s R WEUD

2 Data
sets:
HWU
study
and
MHOW
study

Liu, A., et al. [90] 2017 Australia HWU study: 68 households;
MHOW study: 120 households

HWU study: May–September
2013 MHOW study:
January–December 2014

1 m R WCCA

/ Carranza J.C.I., et al. [148] 2017 Spain 300 houses 9 years since 2008 / R WEUD

/ Vitter, J.S., and Webber, M. [69] 2018 United States 1 house 3 week 7 s O [149] WEUD
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Table 3. Cont.

Dataset
Name Authors Year Location Dataset Size Time Series Lenght Time Sampling

Resolution
Access
Policy

Goal and
Applications

/ Kofinas, D.T. et al. [150] 2018 Greece 16 house 13 months since February 2015 30 s O [151] WEUD

/ Clifford, E., et al. [152] 2018 Ireland Dataset 1: 745 houses Dataset 2:
1200 houses / Dataset 1: 1s Datset

2: 15 m R WEUD

/ Nguyen, K.A., et al. [79] 2018 Australia 1000 houses

Winter 2010 (14–28 June).
Summer 2010-2011 (1 December
2010–21 February 2011). Winter
2011( 1–15 June)

5 s R WEUD

/ Omaghomi, T., et al. [153] 2020 United States 1038 houses 14 days 10 s R WEUD

/ Meyer, B.E., et al. [81] 2020 Africa 63 houses 247 days 15 s R WEUD

/ Pacheco, C.J.B., [154] 2020 Unites States 5 houses 1 month 4 s R WEUD

/ Di Mauro, A., et al. [155] 2020 Italy 1 house 8 months (March–October 2019) 1 s

O
(website
under
construc-
tion)

WEUD

/ Meyer, B.E., et al. [81] 2020 Africa 63 houses 247 days 15 s R WEUD
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5. Dataset Temporal Scales

In this section, we address Q2 (see Figure 1) by analyzing the temporal scale of the
92 reviewed WDDs, i.e., we investigate which time sampling resolutions characterize the
datasets spatially gathered at the district, household, and end use scales.

As defined in Section 2, water demand data can be recorded with a low resolution
characterized by daily or monthly time sampling frequency, or with high resolution, when
sub-daily measurements are recorded. The sampling represents a limiting factor for the
type of analysis that can be performed [28,115]. Considering the 92 WDDs included in this
review, the datasets gathered at the district scale mainly include data collected with a low
temporal resolution. These data, recorded with a daily, and more often, monthly, or coarser
temporal resolution, consist of measures obtained from billing reports, or periodic meter
observations. This is consistent with the main needs of the studies using such datasets
for, e.g., the estimation of aggregate water demand for water network design, the res-
olution of optimal sensor placement problems, and the optimization of water network
operations. Only some exceptions include data with a time sampling resolution of 15 min
(e.g., [94,100,107]). In turn, the household and end use datasets include data gathered with
higher time sampling resolution. The classification of these datasets based on their time
sampling resolution (Figure 5) reveals that the majority of the end use-scale datasets contain
data gathered with a sub-minute resolution, while most of the household-scale datasets
contain data recorded with a time frequency of 15 min to 1 day.
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Figure 5. Dataset count for different time sampling frequencies. Only the reviewed datasets gathered
at the household (gray) and end use scale (orange) are included.

The distribution of the end use datasets in Figure 5 is an empirical validation of
the findings of a previous study by Cominola et al. [28], which demonstrated that only
data gathered with time sampling resolutions of a few seconds or, at most, 1 min, can be
used to accurately estimate the contribution, peak, and time of use of individual water
fixtures, especially when multiple end uses are active. Besides facilitating accurate end
use disaggregation [67–69,156–158], such high resolution data also allow a detailed char-
acterization of consumer behaviors [77,155,159,160], and the design of customized water
demand strategies [88,123,142,161,162].

Conversely, the distribution of the household-scale datasets in Figure 5 confirms
that data sampled with lower frequency suffice for water demand pattern analysis at the
household level, i.e., with no detailed end-use analysis. Sub-daily resolution still allow
extracting water use patterns and recurring routines [28,66,76], identify anomalies [163],
and forecast water demand [49,104].
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Cross-correlating information on the time sampling resolution with the metadata
previously described in Tables 2 and 3, a trade-off between the time sampling resolution
and the size of a dataset emerges.

6. Data Accessibility

Open and free access to scientific datasets can provide valuable support to more
reproducible and reusable research [164]. The availability of benchmark datasets acces-
sible by different researchers worldwide would, for instance, help minimize redundant
experiments, facilitate benchmarked numerical results on common datasets, and foster
reproducibility and incremental research—which in turn drive innovation [165,166]. Yet,
data accessibility presents significant challenges in many research fields, due to data
ownership, sharing limitations, privacy concerns, technical data management, and secu-
rity risks [167]. Furthermore, currently available data often lack a standardized format
or organized database structure [167,168], or they might not be explicitly referenced in
scientific publications, and thus, can be hard to track. Considering the literature on ur-
ban water demand modelling and management, WDDs are usually collected as part of
large-scale scientific projects carried out by research groups or water utilities at the na-
tional and international level [77,86,99,169], or from spatially-constrained experimental
settings deployed with the main purpose of creating open-access datasets to be shared for
research activities [24,135,145,170].

Here, we aim to answer to Q4 (see Figure 1) and distinguish three main categories
of data accessibility to categorize the revised water consumption datasets, namely open,
restricted, and not available:

• Open WDDs are those available in the literature and downloadable from the web free
of charge (when available, the link to each dataset classified as open is reported in
Tables 1–3).

• Restricted datasets are those WDDs that are available online either only for purchase,
or by privately contacting authors/water utilities that own/have direct access to the
data.

• Not available WDDs are those used and/or cited in the literature (primarily in papers
published in the 1970s/80s/90s), but with no information on how to access them.

For the datasets reviewed in this paper, a trade-off emerges between dataset creation
and data availability. While there is an increasing amount of water demand data collected
at different spatial and temporal scales and related publications (see Figure 3), we found
that data sets accessibility is mostly restricted. The datasets we reviewed at the district
scale are usually provided by water utilities for specific projects or case studies. As they are
owned by water utilities and only released to scientists with non-disclosure agreements for
the duration of the relative project, their accessibility is usually restricted or not available.
Conversely, the datasets reviewed at the household and end use scales include at least some
open and many accessible, but restricted, datasets. Data anonymization, access restriction,
or access control filters are usually implemented to protect water consumers privacy [171].
While for many years synthetic household and end use data generation methods have been
developed because of limited data availability (e.g., [27,172]), there is an increasing trend
of open and restricted household/end use datasets, visible from the number of datasets
and access type over time in Figures 6 and 7. The sample of datasets and studies suggests
that digital technologies and experimental research are two factors that can foster data
availability. Indeed, the majority of the datasets that we classified with Restricted or Open
access, have been collected as part of experimental smart meter trials. In such a context,
data are often collected from a sample of volunteer households and are made available by
design as part of the research, thus they are not prevented from further usage by utility
regulations or ownership rights. Figures 6 and 7 are discussed in detail in the following
sections.
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Figure 6. Household scale dataset count and accessibility over time.

Figure 7. End use scale dataset count and accessibility over time.

6.1. Household-Scale Datasets Accessibility

At the household scale (see Figure 6), there is a more than linear increase in dataset
creation. While the few datasets gathered between 1975 and 1995 are not available, almost
all those created between 1996 and the time of this review are accessible with restrictions.
This may be motivated by the utilities’ and researchers’ need to protect sensitive customer
data, even if they are usually anonymized, or by the interest to control the access to a
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potentially high-value asset constituted by a limited resource (household/smart meter
data, in this case). Only a few datasets gathered in the last 10 years are openly accessible to
the scientific community and the public. We found that this limited set of data is usually
composed of datasets delivered as outputs of specific research projects in the European
area, e.g., the EU-funded SmartH2O project [77] and the studies in London and the Thames
Valley [49,173].

6.2. End Use-Scale Dataset Accessibility

Consistently with the household-scale datasets, the majority of end use-scale datasets
has restricted access. Yet, some open end use datasets exist since the end of the 1990s.
As reported in Figure 7, it also seems that the last 5 years have witnessed an increase of open-
access datasets, compared to the total amount of end use datasets. While datasets collected
at the household scale are usually owned by utilities, end use datasets are usually collected
by researchers as part of experimental research efforts and smart meter/end use studies.
This is one of the reasons why more end use-scale datasets are open access, compared
with household-scale datasets. According to the experience of the authors, even those
datasets declared open are not often easy to access (e.g., download link is broken, website
is not updated), but some encouraging preliminary publications, e.g., ([24,170]) suggest
that further detailed high-resolution open datasets, collected in controlled environments
and provided with groud truth end use labels, will be soon available for research.

All the 41 end use-scale datasets reviewed in this paper have been referenced in at
least one peer-reviewed publication on water demand analysis or end use disaggregation.
However, a detailed analysis of the usage frequency of the different end use datasets (see
Figure 8) reveals that, after excluding those datasets with no identification name and used
only for ad hoc individual case studies and trial applications (“no name ” datasets in
Figure 8), only two datasets were used in more than 5 publications, namely the SEQ and
the GOLD COAST datasets. The SEQ dataset has been dominating the scientific scene of
the last years and contains the largest collection of sub-minute resolution data estimated
for different water end uses. It is the output of a residential end-use study carried out in
Australia, i.e., the South East Queensland Residential End Use Study (SEQREUS) [135]. The
SEQREUS project aimed to quantify and characterise the main water end uses in a sample
of 250 single homes. The SEQ dataset contains water demand with a resolution of 5 sec
obtained through the installation of smart meters at the household level. Moreover, end use
water demand estimations were achieved using a mixed disaggregation method combining
information on the smart metering equipment, household stock inventory surveys, and
flow trace analysis [127,144]. Three separate water end use analysis occurred during the
SEQREUS project. The first reading campaigns were conducted in the winter (14–28 June
2010); the second one was carried out in the summer (1 December 2010–21 February 2011);
the third one in winter 2011 (1–15 June). The SEQ dataset has been so far used in the
scientific community to investigate pattern recognition of water usage [174], assess the
impact of user awarness on water conservation [89], develop end use disaggregation
algorithms [175], and develop demand side management programs [83]. Similarly, the
GOLD COAST dataset includes data from the Gold Coast Watersaver End Use Project that
was conducted in winter 2008 [84]. It includes data for 151 homes located in the Gold Coast,
Australia. The project aimed to explore the degree of influence of household socioeconomic
features on end uses. The GOLD COAST dataset contains water demand with a time
sampling resolution of 10 seconds, obtained with high-resolution water meters and data
loggers to enable the identification of heterogeneous water end uses.
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Figure 8. Usage frequency of different reviewed end use datasets. Each dataset is labelled with its
name. The “no name” category includes datasets with no identification name and used only for ad
hoc individual case studies and trial applications.

7. Nexus Considerations: Outlook and Comparison with Datasets in the
Electricity Sector

Motivated by the strong link between water and energy flows in the urban
metabolism [176], as well as by the digital transformation of both the water and the
energy industry, coordinated actions that account for the water-energy nexus are receiving
increasing attention to archive sustainable resource management [177,178] and foster the
development of integrated multi-utility services driven by digital transformation [26]. An
increasing number of research studies investigated water and electricity correlations to
perform customer segmentation analysis and end use classification of residential water-
electricity demand data [22,69,145,179]. Most of these studies and other research efforts
on water end use disaggregation and water demand profiling were inspired by previous
advances in the electricity sector. With a more advanced and consolidated development
of smart metering and Internet of Things (IoT) technologies in the electricity sector, high-
resolution household and end use electricity datasets became available earlier than similar
datasets in the water sector. Indeed, smart meter developments in the water and electricity
sectors followed so far two different timelines and speeds of deployment. They also present
some technological differences affecting data gathering. The dependence of smart water
meters on their battery, for instance, limits their operating life and their data streaming
frequency, while electricity meters are fed by a power source by design.

Yet, we recognize some similarities, e.g., also in the electricity sector the availability of
end use datasets was pushed by research efforts on building, training, and testing different
end use disaggregation algorithms [180,181]. Moreover, while traditional energy system
modelling focuses on the national/international scale to assist utilities and authorities in
managing the electricity grid, smart electricity metering at the building level is aimed at
improving users’ awareness and promoting sustainable behaviours and energy savings
possibilities [182,183], similarly to water conservation and demand management in the
water sector. Also, similarly to the water sector, the temporal scale for electricity demand
data gathering is strictly related to the spatial scale. Daily or monthly electricity data are
usually required for demand modelling at national scale, while sub-daily resolution is
usually adopted for smart metering at building scale. At this fine scale, both water and
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electricity data are used to enhance the efficiency of consumer behaviors, improve demand
forecasting, foster money/resources-saving opportunities, investigate different customer
segments, and potentially design customized billing schemes [184,185].

Acknowledging that water and electricity demand modelling and management
present both differences and synergies, here we address the research question Q5 listed
in Figure 1. We cross-compare the accessibility of water and electricity datasets to assess
differences and similarities in data availability, while we do not aim to compare tools
for water/electricity modelling. Adopting similar research criteria to those explained in
the dataset review methods (Section 2), we retrieved 57 electricity datasets gathered at
the household or end use scale. Complete information on these datasets is reported in
Supplementary Tables S1 and S2.

We then compared them with the water datasets discussed in the previous section on
data accessibility. The outcome of this comparison is represented in Figure 9. The figure
reveals that, first, there is a slight majority of electricity datasets gathered at the end use
level. This is consistent with what emerges from the reviewed water datasets. Second, the
bar plot in Figure 9 shows that most of the electricity end use datasets we retrieved are
mainly open. It is worth noting that this might have been facilitated by the availability of
low cost and easy-to-install devices, such as smart sockets and Wi-Fi smart plugs, which
allow direct end use data gathering [186]. Moreover, the community of researchers working
on electricity Non-Intrusive Load Monitoring (NILM) has been very active and open in the
last years. The availability of many open end use datasets has been pushed by the need of
benchmarking the increasing amount of NILM algorithms on common datasets [187–189],
as well as by individual initiatives of some researchers making available data retrieved
from their household, or an experimental site equipped with appliance-level sensors,
e.g., [145]. Overall, we consider the research efforts in household and end use electricity
data collection and analysis as precursors of the trend that is developing in the water
sector during the last years. We expect that further developments in the water sector
will help fill the gap between available open electricity and water data at the household
and end use scales. Similar research will also foster the portability of algorithms and data
analytics originally developed for electricity application to water or combined water-energy
applications [190,191].

0 5 10 15 20 25 30 35

END USE Electricity

END USE Water

HOUSEHOLD Electricity

HOUSEHOLD Water

NUMBER OF DATASETS

OPEN RESTRICTED NOT AVAILABLE

Figure 9. Comparison between water and electricity dataset accessibility at the household and end
use scales.
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8. Discussion and Conclusions

In the last decades, demand-side water management emerged as a key strategy to
pursue efficient water demands and complement supply-side interventions to enhance the
overall resilience of urban water systems. The rise of demand-side water management,
coupled with the development of digital water metering technologies, has fostered the
collection of water demand data at increasingly higher spatial and temporal resolutions.
The availability of water demand data at the spatial scale of individual households or
end uses, and with a time sampling resolution of a few seconds or minutes, opened up
unprecedented opportunities to improve our understanding of water consumer behaviors
and modelling water demand. As a consequence of this transformative process, the
literature is now rich with urban water demand datasets collected over time with different
spatial and temporal resolutions, and archived with different levels of accessibility.

In this paper, we reviewed 92 water demand datasets and 120 related peer-review
publications compiled over the last 45 years. We analyzed the datasets and classified them
according to their spatial scale, temporal scale, and level of accessibility. Moreover, we
analyzed their domains of application within water demand modelling and management
studies, and compared them with similar datasets in the electricity sector. As a result of this
review and classification effort, we can summarize the following takeaways and address
the research questions introduced in Figure 1.

Q1. How are the existing urban water demand datasets distributed across different
spatial scales? We found that the majority of the reviewed datasets was collected at the
household (31 datasets) or end use scale (41 datasets). Only 20 datasets were identified
at the district scale. This is likely due to the increasing number of water demand studies
that developed after the advent of digital water meters. Moreover, the datasets gathered
at the district scale are usually owned by water utilities, which make them available to
researchers usually only temporarily and for ad hoc case study analyses.

Q2. How are the existing urban water demand datasets distributed across different
temporal scales? Focusing on the finest spatial scales analyzed, i.e., the household and
end use scales, we found that most of the analyzed datasets contain data sampled with a
time frequency in the range of 1 s to 1 day. Yet, differences exist: most of the end use-scale
datasets contain data gathered with a sub-minute resolution, while household-scale data
are characterized by time sampling resolutions of 15 min to 1 day. This is primarily due to
the high temporal resolution required by residential water end use disaggregation models.

Q3. What are the main domains of application of the reviewed studies, within wa-
ter demand modelling and management studies? Our review reveals that the datasets
reviewed at district level are mainly used to estimate aggregate demand patterns used in
water distribution networks models to investigate water network partitioning, hydraulic
performance, network anomalies, and leakage detection. Household-scale datasets have
been primarily used to develop data-driven models for water demand forecasting, as well
as for explorative analysis to identify water demand determinants. Consistently with our
findings for Q2, end use datasets are primarily gathered to develop, train, and validate
end use disaggregation algorithms. Both household and end use datasets have also been
used to inform water conservation/demand management programs and monitor their
effectiveness to change water demand patterns.

Q4. What is the access policy for the reviewed data sets? Most of the reviewed datasets
are not open access. Usually, they have a restricted access, i.e., are available for purchase,
or can only be obtained by contacting the researchers or water utilities that compiled and
own the dataset. However, some households- and end use-scale datasets became openly
available, primarily in the last 5 years. This is an encouraging signal for future data sharing
and research reproducibility.

Q5. Is there any synergy with comparable datasets in the electricity sector? Similarities
exist in the spatial and temporal scales of interest for both the water and the electricity sector,
and the amount of reviewed datasets is comparable. Yet, the datasets in these two domains
are still very different for what regard their accessibility. Open access datasets are more
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easily available in the electricity sector, primarily because of the extensive research efforts
developed in the last three decades on the problem of electricity end-use disaggregation.

Overall, this paper can provide researchers in the water demand modelling and man-
agement sector with useful information to identify data readily available in formats and
spatial and temporal scales that suit their research needs. We also identify a roadmap of
priorities to enable a complete disclosure of the information value of urban water demand
datasets. First, the scientific community would benefit from increased accessibility to
open data. We acknowledge that water demand data are sensitive and anonymization
and privacy-protection measures need to be undertaken before they can be made openly
available. Sharing high-resolution data, consumer data, and sensitive digital data imply
potential risks for the privacy and security of private or personal information. Sensi-
tive datasets could potentially be used by third parties for profit and intimidation, or to
intrusively track private activities [168]. In response to privacy and security concerns,
data protection regulations such as the General Data Protection Regulation (GDPR) imple-
mented by the EU in 2018 and other policies initiated after it in other countries worldwide
should be established at the regulatory level [192]. When guaranteed in compliance with
privacy protection and data security frameworks, an increasing availability of open access
datasets would guarantee better reproducible research, create opportunities for research
benchmarking, and foster more transparent and possibly collaborative development and
validation of analytic tools.

Second, this review is focused solely on water demand datasets, with primary focus on
the household and the end use scales, and only a general overview of possible applications
at different temporal and spatial resolutions is provided. Future work could look at system-
atically reviewing the different goals of existing urban water demand studies at different
suburban and urban scales, including those focused on outdoor water use [193], urban
landscape water conservation [194], economics and price influences [91], socioeconomic
factors and drivers of water demand [195], and metropolitan water planning [196]. Espe-
cially these last categories of studies and applications entail cross-domain analysis which
combine water consumption data with data from other sources (e.g., socio-economics,
climate, behavioral data). Beside requiring proper analytic tools for data analysis, proper
data management and sharing frameworks and protocols should be designed to facilitate
data fusion among private/public water utilities and the other stakeholders involved in
these inter-sectoral studies.

Third, the reviewed datasets are unevenly geographically spread worldwide (some
geographical hot spots in USA, Europe, and Australia were identified) and come with
different spatial and temporal resolutions. Research efforts aimed at quantitatively com-
paring water demand data (water consumption volumes, peaks, patterns) gathered across
different scales and geographical contexts would advance the generalization of water
demand models and contribute to upscale the findings from currently localized water
demand studies. In addition, important aspects related to the use of water consumption
data from different meters include data standardization and meter accuracy. Data from
various sources need a standardized format to facilitate and improve the use of WDDs
and increase data portability, interoperability, and overall data quality [197,198]. Moreover,
future research could focus on assessing and comparing datasets in the catalogue we have
built in this work in terms of measurement precision and accuracy.

Finally, we expect that the current challenges posed to the resilience of interconnected
critical infrastructure will foster efforts aimed at overcoming data silos and encourage the
development and transfer of multi-sectoral analytic tools to inform resilience planning
across sectors (e.g., smart electricity grids, green infrastructure), and scales [26].

Supplementary Materials: The complete catalog with the 92 state-of-the-art water demand datasets
and 120 publications reviewed in this paper is available on Zenodo (https://doi.org/10.5281/zenodo.
4390460 [50]) and in this public GitHub repository: https://github.com/AnnaDiMauro/WDDreview.
The complete list and metadata of the additional 57 electricity datasets at the end use and household
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scales that we reviewed in this paper is reported in Supplementary Tables S1 (end use scale) and S2
(household scale). The following are available online at https://www.mdpi.com/2073-4441/13/1/36/s1.
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