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Abstract: The swelling effect in hydrogel bodies or sponge-like porous bodies (SPB) used in a specific
stormwater storage concept of the down-flow type is considered. A macroscopic swelling model
is proposed, in which water is assumed to penetrate into the hydrogel by diffusion described by
diffusion equations together with a free-moving boundary separating the interface between the water
and hydrogel. Such a type of problem belongs to the certain class of problems called Stefan-problems.
The main objective of this contribution is to compare how the theoretical total amount of absorbed
water is modified by the inclusion of swelling, when compared to the previously studied SPB devices
analyzed only for the effect of diffusion. The results can be summarized in terms of the geometrical
dimensions of the storage device and the magnitude of the diffusion coefficient D. The geometrical
variables influence both the maximum possible absorbed volume and the time to reach that volume.
The diffusion coefficient D only influences the rate of volume growth and the time to reach the
maximum volume of stored water. The initial swelling of the hydrogel SPB grows with time (

√
Dt)

until the steady state is reached and the swelling rate approaches zero. In all the cases considered,
the swelling in general increases the maximum possible absorbed water volume by an amount of
14%.

Keywords: stormwater; storage; sponge-like porous media; swelling; hydrogel; modeling; Stefan-
problem

1. Introduction

Urban development causes profound changes in the hydrology of urbanizing areas
(Burns et al., 2012) [1]. Focusing on the quantitative effects, the water balance of urbanizing
catchments is altered by the changes in catchment surface cover and of the corresponding
hydrological abstractions, and by incorporation of new hydraulically efficient conveyance
elements into the urban water system (Silanpää and Koivusalo 2015) [2]. The resulting
outcomes, in the form of reduced infiltration and evapotranspiration, and accelerated
removal of surface runoff from the catchment, cause substantial increases in catchment
runoff volumes and peak flows, and thereby contribute to the increased risk of water
ponding or flooding (Konrad 2016) [3].

In the early 1970s, the first step toward remediation of flooding within, and down-
stream of, urban areas was the implementation of flood management reservoirs, in the
form of stormwater ponds storing urban runoff and, thereby, compensating for the loss
of water storage in urbanized catchments. During the last two decades, a new approach
to stormwater management in urban areas gained large following by emphasizing the
need for restoration of the predevelopment catchment hydrology (Fletcher et al., 2015) [4].
To gain quick acceptance of this approach, it was promoted under attractive terms, like Low
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Impact Development (LID), Water Sensitive Design (Fletcher et al., 2015) [4], Sponge Cities
(Zhang et al., 2018) [5], and others.

Restorative measures for catchment hydrology emphasize the importance of infiltra-
tion and evapotranspiration abstractions, to reduce surface runoff from urban landscape,
but this becomes challenging in localities with tight soils and low infiltration rates. Un-
der such circumstances, the need for stormwater storage increases, with the objective of
balancing and redistributing runoff flows. The role of storage in simulated runoff from
an existing urban catchment, and three catchment scenarios with different LID measures,
was elucidated by Khadka et al., (2019) [6] who analyzed the respective simulations with
a calibrated storm water management model (SWMM), applied with a 7-months rainfall
record and three storm events with low frequencies of occurrence. Such analysis revealed
that the catchment scenarios with high storage capacities displayed resilience against
flooding and retained a more natural water cycle.

Stormwater storage in urban catchments can be created at various spatial scales
(Marsalek and Schreier, 2009) [7], starting with the lot scale (or property scale) measures
(LSM), and moving toward the larger scales in the neighborhood, or the whole catchment.
The complexity of storage structures increases with the scale, moving from a simple rain
barrel or green roof on the lot, to e.g., a neighborhood bioretention cell, to a stormwater
management pond at the catchment level. While the capacity of individual lot-level mea-
sures is small, they are used in high numbers and serve as “distributed” storage. In general,
LSMs are the best management measures, of which performance is not prescribed or quan-
tified, but they undoubtedly contribute to positive outcomes with respect to stormwater
management. Furthermore, LSMs are recognized for their educational value leading to
active participation of the public in stormwater management.

In search for new LSMs providing distributed storage of water in urban areas, Lund-
ström et al., (2020) [8] examined the feasibility of creating dynamic storage of rainwater or
stormwater in sponge-like porous bodies (SPB) made of hydrogels. They proposed two
types of such storage structures: (a) down-flow SPB storage (Figure 1a), and (b) up-flow
SPB storage (Figure 1b,c), and demonstrated in numerical experiments that such bodies
could fully absorb, in real time, Swedish design rainfalls of 1 h duration and a return
period of 10 years. At the same time, they cautioned that this theoretical concept requires
further development to advance its Technology Readiness Level and address some practical
aspects.
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Figure 1. Theoretical concepts: (a) down-flow sponge-like porous body (SPB) storage; (b) up-flow 
SPB storage with the pre-installed vertical structures expanding horizontally; and (c) up-flow 
SPB storage with new vertical structures growing up from the ground when absorbing water. 
Note that the SPB storage sketches presented in the figure are intended just to elucidate the 
theoretical concept of such storage, without any aesthetic, practical, or placement considerations. 
The figure is directly copied from [8]. 

2. Materials, Geometry and Model 
2.1. Geometry of the SPBs Studied  

One class of possible materials to consider in this application are specific hydrogels, 
recognizing that such materials can satisfy several demands on the storage device. The 
influx of water into a hydrogel layer must be fast enough to match the influx of rainwater, 
which imposes certain restrictions on the geometry of the device. Lundström et al. [8] 
considered several materials with diffusion coefficients D  ranging from 9 210 m s− to 

8 210 m s− [9–11]. To match the influx of water, a large area of contact between the absorb-
ing material and the water is helpful. Therefore, absorbing material in a grid arrangement 
with water entering into square cells of cross-section b × b and depth H, with a surround-
ing region of absorbing material, was chosen. The whole geometry can then be repre-
sented by a repeating arrangement of square cells of the absorbing material of cross-sec-
tion B B× and height H, according to Figure 2.  
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Figure 1. Theoretical concepts: (a) down-flow sponge-like porous body (SPB) storage; (b) up-flow
SPB storage with the pre-installed vertical structures expanding horizontally; and (c) up-flow SPB
storage with new vertical structures growing up from the ground when absorbing water. Note that
the SPB storage sketches presented in the figure are intended just to elucidate the theoretical concept
of such storage, without any aesthetic, practical, or placement considerations. The figure is directly
copied from [8].

When developing the governing inflow equations for computing the capacity and
rates of filling of SPBs with incoming rainwater, Lundström et al., (2020) [8] assumed that
during the filling process, driven by diffusion only, SPBs would maintain the original
shape. This assumption imposes a limit on the volume of water stored, setting it equal
to the volumetric capacity of the original body. In this follow-up paper, the “no swelling”
assumption was removed.

For an appropriately chosen material of the SPB, water may be transported by dif-
fusion into the SPB, while such a body is swelling, but keeping the intercepted water in
place. The objective of the present study is, therefore, to include the swelling mechanism
in the analysis of SPBs. Focus is set on the first SPB storage variant, down-flow SPB
storage (Figure 1a), in which a relatively large area, such as sections of a roof, parking lot,
playground, or football field, would be covered with material that absorbs the rainwater
directly upon contact. The material then swells in the vertical direction, retaining the water.

2. Materials, Geometry and Model
2.1. Geometry of the SPBs Studied

One class of possible materials to consider in this application are specific hydrogels,
recognizing that such materials can satisfy several demands on the storage device. The in-
flux of water into a hydrogel layer must be fast enough to match the influx of rainwater,
which imposes certain restrictions on the geometry of the device. Lundström et al. [8]
considered several materials with diffusion coefficients D ranging from 10−9 m2/s to
10−8 m2/s [9–11]. To match the influx of water, a large area of contact between the absorb-
ing material and the water is helpful. Therefore, absorbing material in a grid arrangement
with water entering into square cells of cross-section b× b and depth H, with a surrounding
region of absorbing material, was chosen. The whole geometry can then be represented by
a repeating arrangement of square cells of the absorbing material of cross-section B× B
and height H, according to Figure 2.

In Lundström et al. [8] the total volume of absorbed water per square meter was
estimated by varying the geometric parameters B and b, as well as the physical process
parameter D, the diffusion coefficient. The parameter B was varied from 1 m down to
0.01 m, with the corresponding number of cells per square meter varying between 1 and
104. The geometric parameters B and b can be combined into b′ = b/B. The absorbing area
increases with b′, with the theoretical limit of 1. In practice, the actual value of b′ = b/B
should be around 0.5 to maintain a sufficient volume of the absorbing material.
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A macroscopic model of diffusion into swelling bodies had been presented by
Sweijen et al. [12] and adopted in the present paper. In this model the free-boundary
separating the swelling body and the surrounding water is described by an extra boundary
condition and belongs to a certain class of phase change problems referred to as Stefan
problems, see Crank [13].

The outline of the paper is as follows. In Section 2 the governing model equations
with diffusion and swelling are presented. In Section 3 an analytic solution is considered
for a simple 1D geometry; this solution can also be used to describe the initial stages of the
full 2D and 3D geometries. In Section 4 numerical results of the full 2D and 3D geometries
are provided. Here the sensitivity to various parameters is also discussed together with
a verification of the numerical results using the analytic solutions valid initially for short
times. The results are summarized in Section 5.

2.2. Macroscopic Model of Swelling Hydrogel

Following the theory of Sweijen et al., (2017) [12], the flow into absorbing materi-
als, like hydrogels, may be described in a macroscopic model by the diffusion equation,
according to:

∂θ

∂t
= D∇2θ (1)

where θ is the water content within the swelling material and D is the diffusion coeffi-
cient. In general the diffusion coefficient is non-linear depending on θ, but following
Sweijen et al., (2017) [12] it is assumed that D is a material constant independent of loca-
tion and time to simplify the derivations. The water content is restricted to θ0 ≤ θ ≤ θb,
where θb and θ0 are the maximum and initial water content, respectively. Because of the
swelling process, the boundary position xb(s, t) separating the hydrogel and the surround-
ing volume of water ∂Ω(t) (see Figure 3) moves with a velocity vb(s, t) = ∂txb into the
domain of water. The water content on this boundary is always equal to θb, the maximum
porosity of the hydrogel. According to [12] the uptake of water to reach the maximum
content at the boundary is a time-dependent kinetic process in itself. The time scale of
this process is here assumed to be very short, so that the maximum value θb is assumed
to be reached instantaneously. The initial water content in the hydrogel is supposed to be
zero and the water content in the surrounding domain is a constant θ = 1. The boundary
∂Ω(t) of the hydrogel then moves into the region of water. This results in an excess of
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water, ∆Vexcess, inside the hydrogel that has to diffuse into the gel. During a short time, ∆t,
this excess volume is given by

∆Vexcess = −(1− θb)Avb·n∆t (2)

where A is the boundary area and n is the unit normal vector in the direction into the gel.
This amount of excess volume per unit time should then be equal to the diffusional flux
across the moving boundary so that

−D (n·∇)θ|x=xb(t)
= −(1− θb)vb·n (3)

The complete model for the down-flow SPB storage concept can then be summarized
by considering the diffusion Equation (1) and condition (3) in the control volume presented
in Figures 2 and 3, together with the following boundary and initial conditions:

(i) Periodic boundary conditions

θ(−B/2, y, z) =θ(B/2, y, z)
θ(x,−B/2, z) =θ(x, B/2, z)

(4)

(ii) No flux at the bottom and at the top meaning that

∂θ

∂z

∣∣∣∣
z=0,H

= 0 (5)

(iii) The mixed boundary condition (3) is evaluated at the moving interface with initial
position specified by

xb(t = 0) = −b/2 , |yb(t = 0)| ≤ b/2, 0 ≤ z ≤ H
xb(t = 0) = b/2 , |yb(t = 0)| ≤ b/2, 0 ≤ z ≤ H
yb(t = 0) = −b/2 , |xb(t = 0)| ≤ b/2, 0 ≤ z ≤ H
yb(t = 0) = b/2 , |xb(t = 0)| ≤ b/2, 0 ≤ z ≤ H

(6)
Water 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. Geometry of the computational cell: Initial position of free-boundary ∂Ω . 

In the present analysis the boundary, z H=∂Ω , for swelling in the vertical direction at 
the top surface (z = H) is not included. For the cases of greatest interest, i.e., for the largest 
absorption volumes, for which B is small and H an order of magnitude larger than B, the 
swelling volume in this vertical direction is much smaller than in the region along the 
boundary ∂Ω given by (6). An estimate of the vertical swelling volume is given in Section 
4.4. 

The problem stated can then be considered as a typical Stefan problem occurring in 
other types of physical phase change problems as well, like for instance, in the free-bound-
aries of solidification or melting of materials (Crank [13]). Several numerical methods 
have been developed for the analysis of these kinds of problems.  

2.3. 1D Analytical Solution 
To gain insight into and illustrate the physics of the process, let us consider a one-

dimensional problem, which can be solved analytically. This solution can also be used as 
an approximation of the initial growth of the swelling hydrogel when studying the com-
plete problem in the 2D and 3D geometry. Consider the 1D case of an infinite region 

x−∞ < < ∞ , in which there is initially pure water in the region 0x < with 1θ = and a hy-
drogel material in the region 0x > , initially with a zero water content, 0θ = . The diffusion 
Equation (1) then simplifies to 

2

2
D

t x
θ θ∂ ∂

=
∂ ∂

 (7)

valid in both regions. Because of an infinite region a similarity solution is possible of the 
type  

1 2( , ) ( 2 )x t C erf x Dt Cθ = +  (8)

with integration constants 1C and 2C . In the region ( )bx x t−∞ < < there is pure water, with 
( , ) 1x tθ = , and in the region ( )bx t x< < ∞  the solution is given by 

2( , ) 1 ( 2 ))(x t C erf x Dtθ = −  (9)
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In the present analysis the boundary, ∂Ωz=H , for swelling in the vertical direction
at the top surface (z = H) is not included. For the cases of greatest interest, i.e., for the
largest absorption volumes, for which B is small and H an order of magnitude larger than
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B, the swelling volume in this vertical direction is much smaller than in the region along
the boundary ∂Ω given by (6). An estimate of the vertical swelling volume is given in
Section 4.4.

The problem stated can then be considered as a typical Stefan problem occurring in other
types of physical phase change problems as well, like for instance, in the free-boundaries
of solidification or melting of materials (Crank [13]). Several numerical methods have been
developed for the analysis of these kinds of problems.

2.3. 1D Analytical Solution

To gain insight into and illustrate the physics of the process, let us consider a one-
dimensional problem, which can be solved analytically. This solution can also be used
as an approximation of the initial growth of the swelling hydrogel when studying the
complete problem in the 2D and 3D geometry. Consider the 1D case of an infinite region
−∞ < x < ∞, in which there is initially pure water in the region x < 0 with θ = 1
and a hydrogel material in the region x > 0, initially with a zero water content, θ = 0.
The diffusion Equation (1) then simplifies to

∂θ

∂t
= D

∂2θ

∂x2 (7)

valid in both regions. Because of an infinite region a similarity solution is possible of the type

θ(x, t) = C1er f (x/2
√

Dt) + C2 (8)

with integration constants C1 and C2. In the region −∞ < x < xb(t) there is pure water,
with θ(x, t) = 1, and in the region xb(t) < x < ∞ the solution is given by

θ(x, t) = C2(1− er f (x/2
√

Dt)) (9)

fulfilling the boundary condition θ(∞, t) = 0 and the initial condition θ(x, 0) = 0. At the
position of the moving interface x the water concentration is θb, which is a constant. For the
uptake, the only possible solution is then xb(t) = β·2·

√
D t and C2 = θb/(1− er f (β)),

where β is a constant to be determined from the boundary condition (3) at the moving
interface, which becomes

D
∂θ

∂x

∣∣∣∣
x=xb(t)

= (1− θb)
dxb
dt

(10)

The boundary condition (3) gives the equation determining the value of β as a solu-
tion of

1√
π

e−β2

er f (β)− 1
θb = (1− θb)β (11)

The development of the concentration in the hydrogel and the position of the moving
boundary can then be written as

θ(x, t) = θb
er f c(x/2

√
Dt)

er f c(β)

xb(t) = 2β
√

Dt
(12)

The value of β is determined from the numerical solution of Equation (11) and β
therefore only depends on θb. Equation (11) is a transcendental equation and is solved
numerically with the use of the symbolic tool software Maple. As an example, choosing
the value of θb = 0.5 gives a value of β ≈ −0.357. This means that the hydrogel swells
into the pure water with the moving interface position described by xb(t) ≈ −0.357·2

√
Dt.

The water content in the hydrogel is then described by (12), starting from the interface
position and decreasing exponentially into the pure water domain with a developing
boundary layer thickness of the order of

√
Dt.
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As an example, in Figure 4 the development of the water content is plotted as a
function of x at various times. Also note the position of the free boundary interface moving
toward negative x into the domain of pure water. The thickness of the boundary layer
grows as

√
Dt and, therefore, depends on the diffusion coefficient D, which for the case

shown in Figure 4 is D = 1·10−8m2/s.
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In the context of the down-flow SPB geometry in Figure 1, this behavior of develop-
ment of water content is only applicable for short times, for which the boundary layer
thickness is much smaller than the characteristic dimensions of the SPB geometry. For the
solution of the more complicated 3D geometry a numerical solution is required. However,
the analytical results will be used for verification of the numerical solution in the early
stages of the development of water content.

3. Numerical Method

There are many numerical methods for the treatment of free boundary Stefan problems,
for instance the method by Sweijen et al. [12] and others mentioned in the references cited.
Here we consider the use of the commercial software Comsol Multiphysics 5.5, which is
convenient for the present purpose. Comsol is a finite-element-based software with a large
number of interfaces treating different physical applications which can be combined with
ease. For the present problem we have utilized the analogy between the present problem
and the problem in heat transfer with solidification. The heat transfer interface in Comsol,
for the solution of a diffusion-type equation together with the Deformed Geometry in
the Mathematics interface, is then considered. In the discretization of the heat transfer
interface quadratic Lagrange elements are chosen and for the deformed geometry interface
geometry shape functions of order two are considered. For the time stepping a backward
differentiation formula (BDF) is chosen. For the three-dimensional model the predefined
extra fine mesh is chosen with the addition of nine boundary layers near the free boundary
separating the hydrogel region and the pure water region. For the two-dimensional case the
physics-controlled extra fine mesh is adopted. The diffusion equation is solved in the pure
water domain as well as in the hydrogel domain with a weak constrained jump condition
(3) and a specified normal mesh velocity of the free-boundary. Numerical solutions are
obtained in both 2D and 3D.

4. Numerical Results

The case study parameters of the down-flow SPB storage under consideration are
given in Table 1. When compared to the results in [6], smaller values of B are considered.
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The reason for this is that smaller values of B are more interesting when looking for greater
amounts of absorption.

Table 1. Values of parameters for the modeling of the down-flow SPB storage.

Case/
Parameter

D
(m2/s)

b′ B
(m)

Unit
Cells

Down1 1·10−8 0.5 0.1 100
Down2 1·10−8 0.5 0.05 400
Down3 1·10−8 0.5 0.01 104

Before we consider the modification of the results from [8], including the effect of
swelling, we compare, for the purpose of verification of the numerical solution, the wa-
ter content θ at short times for the case Down3 with the analytic solution in Section 2.
In Figure 5 the numerical solution obtained in the region x ∈ [0, B/2], y = 0, z = H/2 is
shown. Comparing with Figure 4 it is seen that there is a qualitative agreement for short
times, which is reasonable since the analytical solution in the application to the full SPB
geometry is expected to be valid only in the region, where the boundary layer thickness√

Dt is much smaller than the characteristic dimensions of the SPB geometry, i.e., B, b,
and H.
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The total water volume absorbed into each cell of the hydrogel is calculated from

V(t) =
∫
Ω

θ(r, t) dV (13)

where Ω is the domain of the hydrogel. Results are found for both 2D and 3D calculations.
Considering the 3D case, some convergence problems are found when the deformation
of the hydrogel becomes too large. The time-dependent solver in Comsol indicates that
a singularity may have been reached. This is not a singularity in the physical model nor
an instability in the time-stepping scheme since an implicit scheme is adopted, but prob-
ably due to an insufficiency in the mesh generated by the deformed geometry interface
in Comsol.

However, considering the size of the unit cells, the greatest absorption is found for
small cells with horizontal dimensions in the order of B, which is much smaller than the
vertical size of the cells, H. A two-dimensional approximation should then be appropriate.
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So, in Figure 6a comparison of the total absorbed water volume per unit square meter
of the hydrogel domain is plotted for three different cases for 2D and 3D, as well as a
comparison with the case with no swelling. It can be seen that the 2D approximation is
quite good and theoretically it is expected that this approximation will improve with a
declining magnitude of the ratio B/H. Therefore, only 2D results are considered from here
on. In Figure 6a, it can be noted that over a time period of 3600 s a difference between the
not swelling and swelling cases is only seen for case Down3, being the most interesting
case since it has the fastest growth toward the limit of the maximum volume of absorbed
water. For case Down3, the maximum amount of water is 75 L per square meter without
swelling, and about 87 L including the effect of swelling, which is an increase of about 14%.
It can be shown that the maximum volume of absorbed water, without swelling, is given
by Vmax = (1− b′2)θb H, which means that for the parameters chosen all cases Down1-3
reach 75 L without swelling. The cases Down1, -2, and -3 differ only by the times they
need to reach this maximum. In Figure 6b the cases Down2 and -3 are plotted for longer
durations, which shows that, without swelling, Down2 and -3 both reach a maximum of
75 L. Reaching the same maximum seems to be also true for the same two cases when
including the effect of swelling, with an increase in the maximum volume of about 14%.
So, the conclusion regarding swelling is that the swelling simply increases the volume of
the hydrogel so that a larger amount of water can be absorbed and that this increase is
universal with a value of approximately 14%.
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Before performing a parameter sensitivity study, verification of the numerical results
is considered. The absorbed volume can be calculated from the analytical results presented
in Section 2. This gives the following analytical result valid initially on a short time scale:

V(t) =
2H b′B θb√

πer f c(β)
(
√

Dt(−4 e−
(B−b)2
16 D t + 4e−β2 − 4

√
πβer f c(β)) +

√
π(B− b)(er f c(

B− b
4
√

D t
)) (14)

An approximate, simpler expression taking the asymptotic limit t→ 0 is

V(t) ∼ 8H b′B θb√
πer f c(β)

(
√

D t(e−β2 −
√

πβer f c(β))) (15)

This expression is valid only as long as the boundary layer thickness
√

Dt is small
compared to the geometrical dimensions of the variables B, b, and H. From (14) the nu-
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merical results are verified for short times, see Figure 8. Initially the volume growth is
then linear in H, b′, and B and grows as

√
Dt, the latter showing the typical dependence of

diffusion processes on time, in general. The linear increase with b′ only applies on a short
time scale, and as will be revealed in the numerical results, for longer times, the effect is
the opposite.
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4.2. Sensitivity Analysis of the Parameter b′

The dependence of absorbed volume on the parameter b′ is presented in Figure 9.
Values around b′ = 0.5 represent a good compromise between a fast initial absorption and
the maximum volume captured, while still maintaining a sufficient volume of the absorbing
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material. As can be seen for short times, the volume captured initially increases with b′ in
agreement with the analytic solution (15). However, larger b′ values result in decreasing
maximum absorbed volumes, as can also be noted from the limit of maximum absorbed
volume without swelling, which is Vmax = (1− b′2)θbH. A comparison of the volumes of
water stored with and without swelling, displayed here, also shows a percentage increase
of 14% in the former case.
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4.3. Sensitivity Analysis of the Diffusion Coefficient

The dependence of the absorbed volume on the diffusion coefficient is presented in
Figure 10a,b for the case Down3. According to the analytic solution in (15), the growth
of the volume captured scales initially as

√
Dt, which seems to be the case also in the

numerical solution. However, the maximum volume captured is the same and does not
depend on the diffusion constant. For smaller diffusion coefficients it only takes longer
times to reach the maximum, as seen in Figure 10b.
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4.4. Swelling in the Vertical Direction

Swelling in the vertical direction on the surface ∂Ωz=H shown in Figure 3 is not
included in the numerical analysis. An estimate of this swelling volume can be done using
the analytic solution in Section 2. The swelling front advances according to Equation (15),
xb(t) = 2β

√
Dt. The swelling volume for a one-unit cell is then

V(t) ≈ −2β
√

Dt·B2(1− b′2)θb (16)

For the parameters of Down3 this yields approximately 1.6 L, which is small in
comparison to the numerical result (87 L) ignoring the swelling in the vertical direction.
As long as H is sufficiently large, the swelling in the vertical direction provides a rather
small contribution to the total absorbed volume.

5. Discussion

The main purpose of the present paper was to investigate how hydrogel swelling
modifies the results of analysis of dynamic stormwater storage in down-flow sponge-like
porous bodies (SPBs), presented by Lundström et al. [8], where only diffusion without
swelling was modeled. In terms of storage filling, it was shown [8] that the down-flow SPB
storage was capable of fully intercepting Swedish design rainfalls of 1-h duration and the
average return period of 10 years. Here, with inclusion of the effect of swelling, the SPB
concept can be improved even further with an increased storage capacity of approximately
14%. From a theoretical point of view further improvements are possible by decreasing
the size of b′ and B, while increasing the value of the diffusion coefficient for speeding up
the process. In practice there are though material and geometrical restrictions to consider.
Experimental work and further model improvements are certainly needed in future work.
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