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Abstract: Climatic conditions and vegetation cover influence water flux in a dike, and potentially
the dike stability. A comprehensive numerical simulation is computationally too expensive to be
used for the near real-time analysis of a dike network. Therefore, this study investigates a random
forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal
macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical
simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features
that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target
variable. The data set before 2018 is split into training and testing sets to build and train the RF. The
predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before
2018). However, the trained model shows lower performance for data in the evaluation set (after
2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate
can be used to determine dike stability for conditions similar to the training data, which could be
used to identify vulnerable locations in a dike network for further examination.

Keywords: machine learning; random forest; slope stability; numerical simulation; climate;
vegetation

1. Introduction

Dikes and embankments are important geo-structures that provide protection against
inundation or flooding [1]. In the Netherlands, dikes form a large part of the existing
flood defence systems, with a total length of about 18,000 km, of which 14,000 km are
regional (secondary) dikes. Therefore, the continuous assessment of dikes is one of the
main challenges that civil works managers and geotechnical engineers are dealing with in
the Netherlands [2–4]. This is primarily due to the fact that the failure of these geo-
structures, like other engineered and natural slopes, may have significant economic, social
and environmental consequences [5]. Therefore, the timely analysis and prediction of
stability of these slopes allow decision makers to adopt appropriate measures to minimise
the risk of slope failure in hazard-prone areas.

Rainfall-induced slope failure typically happens due to the reduction of the matric
suction near the slope surface and/or elevated ground water level that leads to an increase
in pore water pressure (pwp) and a decrease in effective stress. Hence, the reduction of the
shear resistance of the soil, and an increase in the weight of the slope, increase shear stress
on the soil. Depending on the type of slope and the scale of the analysis, different methods
are used for slope stability assessment.

In the context of natural slopes, where landslide forecasting is the main goal, these
methods target both spatial and temporal forecasting. They range from data-driven ap-
proaches such as statistics-based methods which are typically used for regional to global
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slope stability analysis [6,7], to simplified physics-based methods often used on a local
scale (e.g., infinite slope analysis [8–10]) and advanced numerical analysis methods such as
the finite element method (FEM) at the site-specific scale [11].

For engineered slopes, physics-based numerical and analytical methods prevail due
to the higher accuracy of these approaches, and the typical high consequence of their
failure. Physics-based models, however, require a broad range of geotechnical and hydro-
geomechanical in situ data for the accurate estimation of the state of individual slopes.
Although in situ data are typically available for the analysis of engineered slopes, practically
speaking, it is impossible to have accurate slope data with very high spatial and temporal
resolutions and coverage. This results in considerable uncertainty on the inputs and
outputs of numerical models for analysing slope stability. Moreover, analysing the transient
stability of slopes is usually computationally expensive, such that real-time simulations
are virtually impossible, especially if incorporating climatic data or calibrated to observed
data. Therefore, an efficient approach for slope stability prediction can provide a quick
estimation of the slope condition and hence speed up the assessment process. Data-driven
approaches, such as machine learning (ML), have the potential to fulfil this purpose. ML
algorithms have been used at the regional scale to estimate slope stability. The majority of
work on landslide susceptibility mapping uses variants of ML algorithms (e.g., [12–21]). In
these studies, historical slope failures were linked with associated pre-disposing factors
such as terrain features, landcover, and shallow lithology to derive a pattern (model) that
link these factors to the occurrence of landslides.

In recent years, static susceptibility maps have been combined with dynamic data for
forecasting rainfall-induced landslides (e.g., [22–26]). For instance, Segoni et al. [27] used a
susceptibility model, constructed using random forest (RF) classification, rainfall measure-
ments and empirical rainfall thresholds to predict potential rainfall-induced landslides in
northern Italy. A similar approach has been used for landslide ‘now-casting’ at the global
level [25].

Recently, several studies have employed data-driven methods for evaluating the
stability of slopes [28]. Wei et al. [29] used historical rainfall records and pwp measurements
from a slope in Hong Kong to train ML-based prediction models. Chakraborty and
Goswami [30] estimated the factor of safety (FoS) of 110 slopes with different geometric
and shear strength parameters using ML. They compared the obtained results with a finite
element (FE) model, and an acceptable rate of accuracy was observed for the predicted FoS.
Pei et al. [31] used RF and regression tree predictive models in soil-landscape modeling for
predicting the depth of the failure plane on a regional basis. They developed a classification
for detecting the safe and hazardous slopes by means of FoS calculations. Qi et al. [32] used
different ML classification algorithms including RF (with the highest accuracy among all
models) to forecast the slope stability for 148 slopes, using geometric characteristics (slope
angle and height) and soil parameters (cohesion, internal friction angle and unit weight).
While these studies were successful in identifying vulnerable slopes, temporal changes
in the FoS were not identified. Among the different algorithms used in predicting slope
stability conditions, ensemble tree-based methods such as RF classifiers and regressors
proved to be promising [6,7,32,33]. These methods are known to be robust against over-
fitting, in which case the model performs well on training data, but performs poorly on the
test set. Moreover, as the number of trees increases, the generalisation error (a measure
for the algorithm accuracy in predicting target values/class for previously unseen data)
converges to a limit [34].

While static slope parameters (e.g., layering, cohesion, internal friction angle and unit
weight) can be measured, a high degree of accuracy at the regional scale is challenging,
and temporal changes (e.g., degree of saturation, suction, bulk density) are generally
neither known nor feasible to measure at the regional scale, without cost-prohibitive
extensive monitoring. Continuous analysis and prediction of dike stability (and any
other slope stability), however, is not possible without proper physical inspection and
monitoring. This is because the slope failure is a time-dependent process that causes the
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deterioration or damage of slope components and ultimately leads to failure [3]. Periodic
inspections are often used to assess the overall condition of dike systems, and detect
vulnerable areas, which generally use surface conditions, e.g., cracks and vegetation, to
imply the dike condition. Dike inspection procedures, regulations and processes (e.g.,
frequency and criteria) vary between countries [1]. There are in situ monitoring systems,
such as electrical resistivity tomography, by which the dike condition can be assessed
through, for instance, crack openings and water infiltration [35]. In the Netherlands, the
current monitoring methods of dikes usually consist of infrequent (typically twice per
year for regional dikes [36]) ground-based visual inspections, which rely highly on expert
judgement. Thanks to (low cost or free) satellite images that have become available in
recent years, there is a potential to use large (global) data sets to inspect slopes from space.
For instance, vegetation indices (VIs) are accessible through both optical and radar remote
sensing, and surface displacement can be measured with the interferometric synthetic
aperture radar (InSAR) techniques [37,38]. InSAR deformation/displacement analysis
techniques provide surface deformation with high spatial and temporal resolution, e.g.,
5 m by 20 m at every 6 day repeat cycle for the Sentinel-1 satellite [39]. InSAR techniques
have been shown to be able to quantify the movements of unstable slopes, and it has been
shown to be highly effective in mapping slow landslides [40].

Our recent studies [36,41] show that transient surface displacement and vegetation
condition have strong correlations with the slope FoS, due to their correlation with the
moisture content of the slope. In those numerical studies, the meteorological data combined
with soil parameters were used as input for the model to estimate the change in FoS and the
non-linear hydro-mechanical behaviour of a dike under various weather and vegetation
conditions. The results were qualitatively validated using in situ data from an instrumented
dike [42]. The same temporal signature and strong correlation in key parameters were
observed in the real dike. As both the transient surface displacement and vegetation
condition are observable features, they can be used for dike inspection, and for calculating
the FoS to predict the macro stability of dikes.

In this study, we present a proof-of-concept that a data-driven approach can be used to
emulate expensive numerical simulations, to calculate the factor of safety of dikes utilising
only Earth observation (EO) data. First, the slope surface parameters most closely related
to the FoS are identified. These parameters, together with results from a detailed numerical
model, are then used to train an RF regression model to predict the slope stability state.
Results of the prediction models are validated with the calculated FoS from the numerical
simulations to evaluate the performance of the data-driven method. The factor of safety (or
other measures of safety) are not measurable quantities, and even dike failure would also
be a single data point, i.e., the factor of safety would be known to be below 1. Therefore,
the step towards validation of the method with field data has not been made. However,
numerical models have been substantially validated (e.g., [43]); therefore, such a model
is used here to trial our proof-of-concept model. This research aims to investigate if data-
driven methods can be applied to assess a dike condition using EO data, which is not
currently used in monitoring vegetation covered dikes. To the authors’ knowledge, this
is the first time that data-driven methods have been applied to dike stability calculations,
only considering parameters which can be obtained from EO and the first time in which
vegetation and climatic conditions have been considered. Therefore, one illustrative case
study is utilised to show the application of this methodology, highlighting its potential
strengths and limitations.

2. Method

Recently, an integrated crop-geotechnical model has been proposed by the authors
of this paper for the numerical simulation of dikes and dike FoS to account for hydro-
meteorological conditions and the influence of vegetation [36,41]. Here, the same model is
used to provide detailed hydro-geomechanical and safety analysis of an idealised dike in
order to create a 10-year-long time series of synthetic data of the dike behaviour. These
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results are analysed to identify the observable features of the model that have the strongest
influence on FoS. As the intention here is to estimate the transient FoS from the dike surface,
only superficial transient features are investigated. The features are used to train an RF
algorithm to predict the stability/safety of the dike.

2.1. Integrated Crop-Geotechnical Model

Commonly used geotechnical models (e.g., PLAXIS [44]) do not simulate the dynamic
effects of vegetation on water flux (evaporation and influx) and therefore do not consider
the influence that vegetation may have on land–atmosphere interactions and slope stability.
Crop models, however, have been used to simulate the interaction of vegetation and the
upper soil layers (e.g., LINGRA [45]). In recent research [36], the two models (LINGRA
and PLAXIS) were coupled together to assess the effect of variable climatic and vegetation
conditions on dike stability. As evaporation-induced cracks alter the water balance in a
dike by increasing flow through the cracks and at the same time reducing the shear strength
of the root zone, the model was further modified to include the effect of surface cracks [41].
Here, it is assumed that the cracks do not seal (close) in the wet periods, but only expand
during unprecedented dry conditions. For example, if a crack is developed when root zone
soil moisture (SMrz) is 0.2 (cm3 water cm−3 soil), it will expand when SM drops below
0.2. However, the crack area does not change if SM reverts above 0.2. The key inputs
and outputs of the model are shown in Figure 1, where LAI is the leaf area index, Acrack
is the percentage of the crack area and GWL is the ground water level. The outputs are
explained further in Section 3.1. In this paper, a 2D model of a vegetated dike is built using
the integrated crop-geotechnical model and used to provide synthetic data.

Meteorological data

Coupled crop-geotechnical model

LAI Acrack SMrz GWL

Soil parameters

Displacement FoS

Outputs

Inputs

Model

Figure 1. Flow chart of numerical modelling procedure [46].

2.2. Machine Learning Method

The synthetic data set, from the integrated crop-geotechnical model, is used to build
and train an RF algorithm to predict the safety/stability condition (i.e., FoS) of the vegetated
dike. The main idea here is to estimate the stability of the dike, without repeating expensive
numerical simulations, using data that can be potentially observed without physical con-
tact measurements. The general procedure for the ML model in this research is shown in
Figure 2. The input features of the RF model include rain and temperature values obtained
from the meteorological data, as well as LAI and displacement, which are readily observ-
able using remote sensing. The chosen parameters are also those with the highest impact
on the target value, i.e., the FoS. For instance, rain and air temperature have a higher
influence on FoS rather than other meteorological parameters used in the numerical study.
In addition, the importance of Acrack as an input feature is investigated, as it is in theory
observable from the dike surface, but there are no methods to do so yet available. The
target (output) variables of the RF model are the FoS values predicted by the numerical
model. The temporal resolution is 1 day for all of the features; LAI, di f [LAI] and Acrack
are averaged over the surface. Displacement is retrieved for one location (one point) on the
surface. The target value, FoS, is considered for the whole dike geometry.
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Remotely observable

Rain Temperature LAI Displacement Acrack

Random Forest regression

FoS
Output

Inputs

Model

Figure 2. Flow chart of machine learning (ML) procedure.

2.2.1. Random Forest Algorithm

The random forest (RF) method, which was introduced by Breiman [34], is an ensemble
learning method used for classification and regression. The RF algorithm is based on an
ensemble of decision trees (DT) for classification or regression trees (RT) for regression.
In this study, we use RTs, since the target outputs are quantities (not classes) that need
to be predicted. The Python library ‘Scikit-learn’ [47] has been used here for the RF
regression analysis.

The RF is a series of tree-like graphs, as shown schematically in Figure 3. A deci-
sion/regression tree (DT/RT) is a set of decision boundaries (yes/no questions or thresh-
olds) regarding every feature in the training data that eventually leads to a predicted
class or value for classification or regression, respectively. For regression, this threshold is
obtained by scanning through all the values of that feature in the training data and finding
the threshold (called the optimal threshold here) that results in the minimum sum of square
of the difference between the predicted target value and the actual target value. A root
node is the entry node on top of the RT, where a first decision boundary is set by asking if
the first selected feature (can be any feature in the context of random forest) is less than or
greater than an optimal threshold. This action divides the data into smaller subsets, where
the action is repeated for other features (intermediate nodes) and the tree is expanded until
the decision is made about the target value in the last node (leaf node). More information
on DTs can be found in [48].

�������
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Figure 3. Basic structure of RF regressor: x = {x1, x2, ...} are features, n is the number of trees, l is the target
value (after [49]).
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For regression, RF builds a number of regression trees (N) and the final predicted
values are obtained by the aggregation of the results of all individual trees. The random
forests regression predictor is described by the following equation [50]:

l(x) = ∑N
n=1 ln(x)

N
(1)

where l is the output, in this case the FoS, x is the input vectors for the RF model, n denotes
the tree number and N is the number of regression trees in the forest.

Compared to other tree-based algorithms, e.g., those constructed based on boosting
(e.g., XGboost), RF is less affected by noise and can generalise better. This improves the
stability and accuracy of the model, reduces variance and helps to avoid over-fitting. In
addition, RF has fewer parameters (known as hyper-parameters) to tune, and it is easier to
visualise and understand. Hastie et al. [51] show that RFs do remarkably well, with very
little tuning required compared to other tree-based models. One of the limitations of RF
regressors, similar to many other ML algorithms, is that they are not able to extrapolate. In
other words, the range of predictions an RF can make is bound by the highest and lowest
target and feature values in the training set.

2.2.2. Building and Training the RF Model

The data set, including features and corresponding target values, is divided into
training and test sets. During training, each tree in the RF ‘sees’ the answers, and can learn
how to predict the target from the features. The RF model learns the relationship between
features and the target in training. When testing, the RF is asked to make predictions based
on features in a test set. Finally, the model performance is evaluated by comparing the
predicted target values and actual values in the test set.

The RF building and learning algorithm has several hyper-parameters (HPs) that have
to be defined by the user. For example, the number of observations drawn randomly for
each tree, the number of features drawn randomly for each split (branch), the splitting rule,
the minimum number of samples that a node must contain, and the number of trees must
be defined.

The basic steps for forming a RF algorithm are (after [51]):

• A section of training data (with replacement) is selected. This is made up of a number
of samples (the full set of observable features associated with each time point).

• For each selection, a regression tree is constructed, constrained by the user-defined
hyper-parameters. At each node, a threshold is determined for a single (randomly
selected) feature. The data are then partitioned until a best estimate of the output
is calculated.

• The target value from every decision tree is predicted.
• Voting of predicted results is conducted to achieve the terminal predicted results. In a

regression RF, voting means using the mean value of results.

In ML, tuning refers to the task of finding the optimal HPs from candidate hyper-
parameters for a considered data set [52], that results in best performance. Here, k-fold
cross validation [53] is used, as it is one of the most common methods of hyper-parameter
tuning. The data in the training set are randomly divided into K roughly equal-sized
groups. For the kth group, the model is then trained over the remaining K − 1 groups.
Then, the prediction error of the fitted model on the kth group is calculated. This iteration
is repeated K times and the prediction errors are averaged. This cross-validation procedure
provides more reliable results as the variance of the estimation is reduced [51].

2.2.3. Feature Importance

It is useful to know the relative importance or relevance of each feature (input variable)
to the predicted response (target variable). This helps the user to understand the important
drivers for RF to reach its prediction.
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In each tree from an RF model, every node implements a condition on a single feature.
In other words, that feature is used to make a decision on how to divide the data set
into two separate sets (e.g., feature x1 in Figure 3) which have similar responses. The
features for nodes in regression trees are selected based on variance reduction in ‘impurity’.
Impurity is a measure of how badly the target data (here FoS) at a given node fits the built
model. During the training of a regression tree, it can be computed how much each feature
decreases the impurity by variance reduction in a tree. For a forest, the ‘impurity’ decrease
from each feature can be averaged across the forest and the features are ranked according
to this measure. In this study, the RF regressor calculates variance reduction using the
mean squared error (MSE) to measure the quality of a split (selecting the optimal value) in
intermediate nodes [47].

2.3. Case Study
2.3.1. Numerical Model

An example dike geometry is used in the numerical study which, to a large extent,
resembles a regional (secondary) dike in Amsterdam, the Netherlands [2]. The same
example dike is also used in [36,41,42]. This dike (Figure 4) has a relatively steep slope on
the left-hand side and a gentle slope on the right-hand side and is permanently covered by
grass. The dike body has the width of 41 m with a maximum height of 2 m. The dike is
founded on a 2.5 m foundation layer of organic clay material, underlain by an impermeable
material, represented as an impermeable boundary in Figure 4. The soil surface boundary
and the left and right boundaries of the model dike are assumed to be permeable. The
vegetation extends over the entire surface of the dike, and is assumed to have a fixed root
depth of 40 cm, indicated in green in Figure 4. The dike is subjected to climate-driven forces
acting on the surface, i.e., the precipitation, air temperature, wind and solar radiation.

A

Dike Body

H=2m

h=2.5m

L=41m

Soil surface

Bottom of root zone

Base boundary

Root zone
B

Figure 4. Example dike simulation geometry.

Since the objective of this study is to link climatic data to dike safety, a 10-year meteo-
rological data set from 2009 to 2019 is used. The data were obtained from the The Royal
Netherlands Meteorological Institute (KNMI) station at Schiphol Airport (Amsterdam)
with global (WGS84) coordinates of (Latitude: 52.31, Longitude: 4.78). In Figure 5a–d,
the precipitation, average air temperature, wind speed and solar radiation for the 10-year
study period are shown.

The soil and vegetation input parameters for the model are listed in Table 1. The
following parameters are used in the crop sub-model. The volumetric water content at
the field capacity (θ f c(intact)) is the maximum water storage capacity of the root zone at a
suction of 10 kPa or pF = 2 [54] for the soil at initial (intact) conditions. The volumetric
water content at the wilting point (θwp) is the water content below which plant water uptake
ceases and wilting starts. The critical volumetric water content (θcr) is the threshold below
which transpiration is reduced due to water stress. The maximum drainage rate (DRATE)
of the subsoil is the rate above which the drainage from the root zone to lower layers is
limited. The vegetation parameters of the crop sub-model include: the specific leaf area
(SLA), which is the leaf area over leaf mass; the remaining LAI after mowing (CLAI); and
the critical leaf area (LAICR), the value beyond which death due to self-shading occurs [55].
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The values used for the soil and vegetation in the crop sub-model are based on reported
values by [45].
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Figure 5. Daily values of inputs for the crop model from 2009 to 2019 (a) Precipitation; (b) Average temperature; (c) Average
wind speed; (d) Radiation.

Table 1. Input parameters for non-cracked soil in the integrated model.

Model Component Parameters Value

C
ro

p
su

b-
m

od
el

Soil

θ f c(intact) 0.29 (cm3water cm−3soil)
θwp 0.12 (cm3water cm−3soil)
θcr 0.005 (cm3water cm−3soil)
DRATE 50 (mm day−1)

Vegetation
SLA 0.025 (m2 g−1)
CLAI 0.8 (m2 leaf m−2ground)
LAICR 4 (m2 leaf m−2 ground)

G
eo

te
ch

ni
ca

ls
ub

-m
od

el Constitutive model

Root zone Dike body

Saturated unit weight (γsat) 20 (kN m−3) 12 (kN m−3)
Intact friction angle (φintact) 23◦ 23◦

Minimum friction angle (φmin) 4.5◦ -
Intact cohesion (cintact) 2 (kPa) 2 (kPa)
Minimum cohesion (cmin) 0.6 (kPa) -
Dilatancy angle (ψ) 0 ◦ 0 ◦

Young’s modulus (E) 10 (MPa) 20 (MPa)
Poisson’s ratio (ν) 0.3 0.2
Initial void ratio (eintact) 0.67 1.2

Hydraulic model

Permeability (ksat) 0.14 (m day−1) 0.03 (m day−1)
Scale parameter α 1.47 (m−1) 1.38 (m−1)
Fitting parameter n 1.97 1.32
Fitting parameter m 0.87 −1.24
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The soil constitutive model parameters (for the Mohr–Coulomb material model),
required for the geotechnical sub-model, are based on the soil properties available in the
PLAXIS library [44] for the root zone (silty clay) and for the dike body and foundation
(organic clay). The selected values for the (Mohr–Coulomb) soil parameters are typical
values for materials in the example dike, but are not to be generalised for real cases. The
shear strength parameters (c and φ) of the root zone are reduced linearly in response to
the growth of the crack area Acrack. The minimum values of the shear strength parameters
are used when the crack area reaches the value Acrackmax. The hydraulic parameters of the
root zone are obtained from an optimisation code used to couple the two sub-models [36].
Since the impact of soil cracking is considered in the root zone, the hydraulic properties of
the root zone are updated during the analysis for cracked soil.

2.3.2. RF Model

The RFs are built and trained on the synthetic data set generated using the integrated
crop-geotechnical model of the example dike. The predictive performance of RF regression
is investigated in two scenarios.

• Real-time assessment (RFrta): the dike safety (FoS) is assessed in real time based on
the observable data. The features are selected from the same day on which the FoS is
estimated by the RF model.

• Short-term prediction (RFstp): the dike safety is calculated for some days in the
future. This time lag gives dike managers enough time to take necessary actions
before the occurrence of potential catastrophic events. All features except rainfall and
temperature are for some days prior to the day that FoS is estimated. Rainfall and
temperature correspond to the day on which FoS is calculated by the RF model.

In both scenarios, three data sets are formed from the 10-year synthetic data. The data
before 2018 will be used for training and testing the RF models: 80% of data are randomly
selected as a training set and the remaining 20% as a test set. The data after 2018 are used
for independent evaluation of the trained and tested model to check the performance of
the trained model on data that it has never ‘experienced’. This set is called the evaluation
set, and is useful to explore the generalisation of the model.

RF Model Hyper-Parameters Tuning

To choose the best HPs for the two RF regressors, a 10-fold cross validation (10-CV)
was performed on the corresponding training data. The impact of three different values
of K (5, 10 and 15) was tested for the RFrta model. As the influence of the K within this
range was found to be negligible, 10-CV was selected for all RF models. The HPs tuned
here are as follows: (i) The number of trees in the forest (n-estimator); (ii) The maximum
depth of the trees, which is the maximum number of splits until the leaf node; (iii) The
min-samples-split which represents the minimum number of samples (observations) in a
node which undergoes splitting, this can vary between considering at least one sample at
each node to considering all of the samples at each node. When this parameter is increased,
each tree in the forest becoming more constrained as it has to consider more samples at
each node; (iv) The min-samples-leaf parameter specifies the minimum number of samples
required to be at a leaf node. The considered candidates for each hyper-parameter are
listed in Table 2; the chosen candidates are within the reasonable range that usually use the
RF models.

Table 2. List of candidate values for hyper-parameters for all RF models.

Parameter Tested Value

n-estimator [10, 50, 100, 200, 300, 500, 700, 1000, 1500, 2000]
max tree-depth [10, 30, 50, 70, 100, 150, 200]
min-samples-split [2, 3, 4, 5, 8, 10]
min-samples-leaf [1, 2, 3, 4, 5]
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3. Results and Discussion
3.1. Integrated Crop-Geotechnical Model Simulations

The outputs of the numerical simulations using the integrated crop-geotechnical model
are shown in Figure 6. The temporal variation in the crack area is shown in Figure 6a. As
mentioned in Section 2.1, it is assumed that cracks do not seal, and that crack formation
is therefore irreversible. Most cracking occurs in the first year (2009) after the analysis
starts. During wet periods in 2009 (May–August), the crack size remains constant until
the next drier period in June 2009. Then, again in the summer of the next two years,
the soil experiences the next drier condition, and as a result, cracks expand. The time
between cracking events gets longer as the crack expands, only in conditions drier than
the previously experienced ones. After 6 years, there is almost no additional cracking
until summer 2018, when the driest conditions occurred and Acrack reached the maximum
value in the studied period. Temporal variations of LAI are shown in Figure 6b. The
sudden decrease in LAI on mid-June and mid-August every year is due to mowing
events, indicated by vertical dashed lines. These were introduced into the crop model
based on the mowing schedule of regional dikes in the Netherlands [36]. In Figure
6c, the change of vegetation growth (di f [LAI]) in a time window of 15 days is plotted,
where di f [LAI] = LAIt − LAIt-15 (t is the event day). The presence of cracks is seen to
decrease the change of vegetation growth after mowing (demonstrated by the di f [LAI]),
because less water is available in the root zone. Vegetation can re-grow between mowing
events when a substantial amount of rainfall happens in this period (e.g., summer 2014);
however, di f [LAI] is almost zero when there is a dry period between mowing events (e.g.,
summer 2018).

The ground water level (GWL) measured relative to the base boundary at point A
(see Figure 4) is shown in Figure 6e. During wet periods, the water level in the example
dike increases, when the soil moisture in the root zone SMrz reaches the field capacity.
As the spring starts and SMrz reduces, the GWLA typically decreases and reaches the
minimum value in July 2018 when the SMrz has the lowest value during the studied period.
Figure 6f shows the magnitude of the surface displacement at point A (|UA|), which follows
a pattern similar to GWLA in Figure 6e. The seasonal cycle in |UA| is caused by variations
in SMrz and GWLA; in the winter period, the magnitude of displacement increases, while
in the summer, it reduces. A slight accumulation of |UA| over time is seen due to plastic
displacement and growing cracks due to shrinkage behaviour in the root zone. Finally,
the temporal variation of FoS is shown in Figure 6g, which is the result of the combined
effect of rainfall, change in LAI and crack area variation from 2009–2019. The maximum
crack area, and therefore the minimum shear strength parameter (cohesion and friction
angle), lead to a minimum FoS in August 2018 when there is a heavy rainfall event and
very low LAI (almost bare soil), due to an extremely dry summer. The results show that
the vegetation and dike condition are responsive to the climate condition and there is a
similar temporal signature in all the plotted results.
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Figure 6. Time series outputs from the coupled model for 10 years; (a) crack area percentage (Acrack); (b) Leaf Area Index
(LAI); (c) rate of LAI change over 15 days (di f [LAI]); (d) average soil moisture in the root zone (SMrz); (e) ground water
level at point A (GWLA); (f) magnitude of total displacement at point A (|UA|); (g) Factor of Safety (FoS).

3.2. Correlation between Potential Features and the Factor of Safety

Figure 7 shows the correlation between pairs of FoS and selected features considering
a time lag for the simulation data. A positive time lag means that the selected parameters
leads the FoS (either positive or negative correlation).
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i

Figure 7. Lag correlation between FoS and (a) root zone saturation (Satrz); (b) magnitude of total displacement (|UA|); (c)
ground water level at point A (GWLA); (d) LAI; (e) rate of LAI change over 15 days (di f [LAI]); (f) temperature (TMP); (g)
crack area (Acrack), (h) rain; (i) cumulative rainfall during the last 65 days.

As shown in Figure 7a, the root zone saturation Satrz is negatively correlated with the
FoS, with the highest correlation at the same day that FoS is calculated. A higher amount
of water in the root zone causes a higher pwp, thereby lowering the effective stress and
then lowering the stability of the whole dike. This correlation is not strong, since if the root
zone experiences very dry conditions, the cracks expand (explained in Section 3.1), which
decreases FoS. Although Satrz is a good potential indicator for variation of FoS in time, it is
not easily observable. Root zone soil moisture could be inferred from surface soil moisture,
but cannot be monitored from space unless very long wavelengths are used, which will
not be available in the near future [56].

There is a negative correlation between FoS and |UA| and GWLA represented in
Figure 7b,c, respectively. This trend can be seen from the temporal variations in Figure 6e,g.
The temporal variation of surface displacement is linked to the variation of water level
in the dike. Shrinkage/swelling behaviour of the soil is due to the available water in the
soil or ground water level variations, which both affect the dike safety by altering effective
stress. Displacement is observable remotely; however, GWL is not, and due to the existing
link between these two parameters, monitored displacement can be best used as a feature.

Displacement can be measured with InSAR techniques, currently with a resolution
that it cannot be assigned to a specific location on a dike. However, the displacement of the
entire dike is highly correlated, as demonstrated by comparing the displacement of two
points (point A and point B) in Figure 8. Therefore, having the displacement of any point
on a slope is useful.
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Figure 8. Lag correlation between magnitude of surface displacement at points A and B.

There is a weak lagged correlation between FoS and LAI or rate of LAI change over
15 days (di f [LAI]), shown in Figure 7d,e. The overall correlation is low because vegetation
growth is affected by multiple factors including Satrz, available energy, and mowing. The
presence of vegetation influences stability through water balance. When rainfall occurs,
vegetation reduces the amount of water that reaches the dike body; the lower pwp (higher
suction) causes higher FoS. On the other hand, as cracks expand, vegetation growth is
lower compared to uncracked areas. In rainfall events, preferential flows reach the soil
body (more pwp) and shear strength reduces. These factors together lead to a reduction
in FoS.

It was also shown that crack presence affected the di f [LAI]. Evapotranspiration from
the root zone increases due to the crack growth and less water is available for the grass
to grow, thereby di f [LAI] is reduced as crack area increases. LAI can easily be monitored
using space-borne instruments.

Temperature has a weak correlation with FoS (Figure 7f) due to the indirect relation
it has on dike stability. In the growing seasons, air temperature is high and vegetation
grows. Without rainfall, this causes soil drying, which results in soil cracking and reduction
of the LAI. In addition, the air temperature influences the evapotranspiration demand,
which influences the Satrz variations, already discussed above. The temperature is most
strongly correlated with FoS at the maximum time lag considered (30 days) before the FoS.
Temperature is measured via existing weather stations, and does not have significant local
variations. Therefore, temperature can be used as a feature for an indirect way of assessing
the FoS.

The strong negative correlation between crack area and dike safety, shown in Figure 7g,
is the consequence of reduction in the shear strength, and preferential flows through the
cracks that cause an increase in pwp in the dike body, thereby lowering effective stress and
FoS. While the maximum correlation is with a zero time lag, a positive time lag retains a
high correlation. Although Acrack has a strong correlation with FoS, it is impractical with
current methods to measure the crack area.

Rainfall has a negative correlation with FoS mostly with 1 day lag, maxr = −0.24
(Figure 7h), indicating that rain causes a change in FoS after one day, with a low correlation
outside of a single day. To consider the effect of antecedent rainfall on dike stability, the
correlation between cumulative rainfall with the different time windows and FoS was
tested and a 65-day window (Rain.cu-65) (Figure 7i) was found to have the strongest
correlation with FoS.

3.3. RF Regression

The results from the previous section are used to build a predictive model. Firstly,
an RF is built, tuned and tested using easily observable features available at the time
where the output (FoS) is required, i.e., a real-time assessment (RFrta and RFrta,Rain-1d). This
analysis is then extended utilising crack area as an important feature, which is not, at this
present time, considered observable (RFrta,Acr). Secondly, an RF is built, tuned and tested
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using easily observable features available 15 days prior to when the FoS is required, i.e.,
a short-term assessment (RFstp,15d). This analysis is then extended in two ways, using
the same additional feature (RFstp,15d,Acr) and reducing the time period of the short-term
prediction to 5 days (RFstp,5d).

For all the RF models that have been built and used in this study, the tuned values for
HPs are listed in Table 3.

Table 3. Tuned hyper-parameters for constructed RF models.

RF Model n-Estimator Max Tree-Depth Min-Samples-Split Min-Samples-Leaf

RFrta 700 200 2 1
RFrta,Rain-1d 700 70 2 1
RFrta,Acr 2000 200 2 1
RFstp,15d 700 30 2 1
RFstp,15d,Acr 1500 30 2 1
RFstp,5d 1000 100 2 1

3.3.1. Feature Selection

The feature selection was based on the available EO data that have high spatial/temporal
resolutions and relatively good precision, and a good correlation with the FoS.

Soil moisture and ground water level influence dike safety strongly [41,42], but they
are difficult to observe without ground-based monitoring. Therefore, the selected features
for FoS prediction in this study are LAI, di f [LAI], displacement, daily rainfall, cumulative
rainfall and temperature.

For the short-term predictions, data related to the slope for the days before the FoS
is needed are selected and meteorological data (cumulative rainfall and temperature) are
used on the event day, as reliable short term meteorological predictions are available.

To avoid a complex model and over-fitting, uncorrelated features should be used as
inputs. Therefore, the selected features are tested to examine if they are highly correlated
or not. In Figure 9, the correlations between the selected features for all RF regressors
are plotted. The features are not highly correlated and can therefore be used as candi-
date features to build the models for real-time assessment (Figure 9a) and short-term
prediction (Figure 9b,c).
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Figure 9. Correlation between features for (a) real-time assessment, (b,c) short-term prediction RF models with 15 days and
5 days lag, respectively.

3.3.2. Real-Time Assessment

The RFrta model is built and trained based on the selected hyper-parameters and
features. The feature importance values constitute the relative predictive power of the
features and are shown in Table 4, where surface displacement (|UA|) is seen to have the
highest importance, 0.42. It is also shown in Section 3.2 that |UA| has a strong correlation
with FoS. Cumulative rainfall during the last 65 days (Rain.cu-65) has the second highest
importance, with a feature importance of 0.22, and LAI at the event day has a lower
importance of 0.17. The feature importance of both vegetation growth over the past 15 days
(di f [LAI]) and temperature (TMP) are low, 0.1 and 0.07 respectively. The displacement
is the most direct proxy for the water effect within the dike, whereas the rainfall amount
and amount of vegetation and temperature influence the water flux, therefore it is logical
that they have a lower importance. The rate of vegetation growth is influenced by various
climatic variables, and was seen previously [41] to have a different response at different
times of the year, therefore it is reasonable for it to have the lowest importance.

Table 4. Feature importance for real-time assessment RF models.

RF Model Acrack |UA| Rain.cu-65 LAI di f [LAI] T MP Rain-1d

RFrta - 0.42 0.22 0.17 0.1 0.07 -
RFrta,Rain-1d - 0.40 0.21 0.16 0.09 0.06 0.06
RFrta,Acr 0.47 0.25 0.11 0.07 0.04 0.03 -

Figure 10a,b show the predicted FoS versus the numerically calculated FoS for the test
set and the evaluation set, respectively. The points in these two plots are colourised based
on Acrack. The coefficient of correlation (R) between the predicted and calculated FoS in
the test data set is 0.94 and RMSE = 0.05. It is clear that the model performs well on the
unseen data (test set) that is within its training sample space (Figure 10a). However, when
it comes to the evaluation set, the model performance deteriorates (Figure 10b); R = 0.31
and RMSE = 0.1. The latter value is considered a high error, since the range of calculated
FoS in 2018 is from (almost) 0.8 to 1.4 (although both the R and RMSE are affected by the
lower range of values). The variation of predicted and calculated FoS in 2018 is shown by
the left-hand side y-axis and the dashed and dotted lines, and precipitation in the same
period is shown by the right-hand side y-axis and starts in Figure 10c. The low performance
of the RFrta on the evaluation set can be explained based on the latter figure; until further
crack growth takes place, the predicted FoS is very close to the calculated FoS (before 22
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July 2018) (R = 0.82; RMSE = 0.04). This is also reflected on Figure 10b by orange markers
close to the diagonal line. Once cracks start growing after 22 July 2018, the predicted FoS
deviates from the calculated FoS (red markers on Figure 10b). This is particularly clear on
the day with the heaviest precipitation in September 2018 (see Figure 10c), which causes a
large drop in calculated FoS. The (red) markers with the highest distance from the diagonal
line correspond to rainy days after crack growth in July 2018. The RFrta cannot capture the
response to the heavy rainfall which occurs in this period.

As explained in Section 3.1, when cracks grow, the calculated FoS is affected by
Acrack and precipitation events (drop in FoS in August 2018). This shows that the model
could not generalise (extrapolate) well on the training data before 2018. This is mainly
attributed to the combination of rainfall intensity and unprecedented crack area. In order
to investigate the effect of rainfall intensity on the same day that FoS is calculated, this
parameter also included as a feature in building the next predictive model, RFrta,Rain-1d.
The feature importance of this model is similar to RFrta (Table 4), except that the added
feature (Rain-1d) has a very low impact on generally predicting FoS. Since the general
results of these two models are almost the same, only the time series plot is shown in
Figure 10d. The R value between the predicted and calculated FoS in the test data set is 0.96
and RMSE = 0.05 for RFrta,Rain-1d, and in the evaluation data set, R = 0.32 and RMSE = 0.10.
Using Rain-1d, the performance of the predictive models improves on days with heavy
rainfall, e.g., in April and October 2018, where example results are emphasised with the
blue box around them. In these periods, the predicted FoS using RFrta,Rain-1d is responsive
to significant rainfall events, where the predicted FoS drops, following the trends in the
calculated results, which is significant for predicting unsafe situations.
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(d)

Figure 10. RFrta model performance, over (a) testing data set and (b) evaluation data set, and (c) time series of calculated
and predicted FoS in the evaluation data set; (d) time series of calculated and predicted FoS in the evaluation data set using
RFrta,Rain-1d .

In an attempt to improve RF performance, a new model (RFrta,Acr) is built using Acrack
as a feature, along with other features. The feature importance is shown in
Table 4. Acrack has the highest importance among the other features (0.47). UA has the
second highest feature importance (0.25) and then it is followed by other features. The
importance order of the observable features follows RFrta.

In Figure 11a,b, the predicted FoS from the testing and evaluation data set using
the RFrta,Acr model is plotted against the calculated FoS in the corresponding data set,
respectively. The R value between the predicted and calculated FoS in the test data set
increased to 0.98 and the RMSE decreased to 0.03 (in respect to R = 0.96 and RMSE = 0.05 for
RFrta). For the evaluation data set, R = 0.56 and the RMSE = 0.07, an improvement compared
to the RFrta model performance over the evaluation data set (year 2018). According to the
time series plot (Figure 11c), the overall performance of RFrta,Acr is improved compared to
RFrta. Yet, the predicted values over-estimate the FoS after the crack expands on 22 July
2018, mostly due to the unprecedented low values, as explained before. In addition,
the RFrta,Acr model has a significantly smaller response to the heavy rainfall events in
August–September 2018 than observed. According to Table 4, Rain.cu-65 has relatively
low influence (feature importance = 0.11) on the FoS prediction. This causes a deviation
in the predicted FoS for results after crack growth from the calculated FoS (red points in
Figure 11c). However, when there is no heavy rainfall, e.g., in October 2018, RFrta,Acr
performs well.

In total, when including the crack area as an input feature, in addition to those in the
previous model, the model performance improves. It remains a difficult to observe feature,
but warrants further investigation given its importance.

Results of this section show that the built RF models have low accuracy after the new
trend takes place after growing cracks in summer 2018, because the RF model is not trained
for the maximum crack area period. If an RF algorithm was trained over more diverse data
of different cases, the RF models may have better performance.
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Figure 11. RFrta,Acr model performance, over (a) the testing data set and (b) the evaluation data set; and (c) time series of
predicted and calculated FoS in the evaluation data set (year 2018).

3.3.3. Short Term Prediction

In this section, it is investigated whether an RF algorithm can give a short-term forecast
for the dike safety. The used features are the same as before but for an earlier time. LAI,
di f [LAI] and |UA| are selected 15 days before the event day. It is known that these have a
lower correlation (see Figure 7), however this gives sufficient time to undertake further
inspection and take action. To enhance RF performance, the meteorological data are used
based on the event day, assuming that the climate data are predicted from different climate
models which are quite reliable. The time of 15 days is selected as a period, where both the
meteorological predictions may be reasonably accurate and which gives the dike managers
enough time to take emergency inspection and remedial actions.

In Table 5, the feature importance for short-term prediction (15d) is shown. Like the
previous analysis of RFrta, |UA|, 15 days before the event day (i.e., |UA-15|), it has the
maximum effect on FoS prediction, with the feature importance of 0.32. This is because,
even with a 15-day lag, the correlation between displacement and FoS is relatively strong,
−0.44 (Figure 7f). Rain.cu-65 places in the second rank with the feature importance of 0.23,
which does not have the 15 days lag, and the data up to the event day are used, considering
the earlier assumption of meteorological data for the next 15 days. LAI-15 has the feature
importance of 0.22. The feature importance of di f [LAI-15] and TMP have the least impact
on the FoS prediction, like the previous analysis in Section 3.3.2, since these two features
have a very low correlation with FoS (Figure 7e,f).
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Table 5. Feature importance for short-term prediction RF models.

Features Acrack-15/5d |UA|-15/5d Rain.cu-65 LAI-15/5d di f [LAI]-
15/5d T MP

RFstp,15d - 0.32 0.23 0.22 0.10 0.08
RFstp,15d,Acr 0.48 0.17 0.13 0.11 0.05 0.05
RFstp,5d - 0.36 0.23 0.19 0.12 0.08

The results in Figure 12a, which are coloured by Acrack, show that for RFstp,15d, R = 0.94
and RMSE = 0.06. The results for the evaluation data set (Figure 12b) show poor perfor-
mance, i.e., R = 0.06 and RMSE = 0.14. As discussed before for RFrta, in the evaluation
data set, after cracks grow, the red markers diverge from the diagonal line, showing the
deviation of predicted FoS from calculated FoS after 22 July 2018. The markers that have
the highest error in prediction correspond to heavy rainfall after crack expansion and cause
reductions in calculated FoS, while RFstp,15d cannot predict these values. In Figure 12b,c,
the predicted FoS over 2018 is plotted against the calculated FoS in the independent data
set. As before, it is seen that after the crack growth, the RFstp,15d model cannot predict
FoS accurately.

��	 ��� ��� ��� ��� ��	 ��� ���
������������������

��	

���

���

���

���

��	

���

���

��
��

��
��

��
��

��
���

������
�
����������

�

�

	




��

��

�
cr
ac

k
(%

)

��	 ��� ��� ��� ��� ��	 ��� ���
������������������

��	

���

���

���

���

��	

���

���

��
��

��
��

��
��

��
���

��������
����������

�

�

	




��

��

�
cr
ac

k
(%

)
(a) (b)

(c)

Figure 12. RFstp,15d model performance, over (a) the testing data set and (b) the evaluation data set, and (c) time series of
predicted and calculated FoS in the evaluation data set (year 2018).

In an attempt to improve the results, two other analyses are tested. Firstly, as in the
real-time assessment, the crack area is also considered as one of the features (RFstp,15d,Acr);
secondly, the period of the short term prediction decreased to 5 days (RFstp,5d). For the
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former option, Acrack is selected from 15 days before the event day, and the other features
remain as in the RFstp,15d model.

As expected from previous analyses, Acrack has the highest impact on the RF perfor-
mance (0.48); this is followed by |UA-15|with a feature importance of 0.17. Again, the order
of the feature importance for the rest of the features is the same as in the previous analysis.
Rain.cu-65 has the relative importance of 0.13, then followed by LAI-15 with the relative
importance of 0.11. The lowest relative importance is again for di f [LAI-15] and TMP.

The results of RFstp,15d,Acr are shown in Figure 13. The performance of the RFstp,15d,Acr
model is increased compared to RFstp,15d over both testing and evaluation data sets. Adding
Acrack leads to a higher correlation between predicted and calculated FoS in the testing
data set; R increased in order of 0.04 (R = 0.98) and RMSE is reduced by 0.02 (RMSE = 0.04)
for the evaluation data set. Again, it can be inferred that after additional crack growth,
the model cannot extrapolate FoS values for the heavy rainfall events, since the rela-
tive power of antecedent rainfall in predicting FoS is relatively low (feature importance
Rain.cu-65 = 0.13).
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Figure 13. RFstp,15d,Acr model performance, over (a) the testing data set and (b) the independent data set, and (c) time series
of predicted and calculated FoS in the evaluation data set (year 2018).

In another attempt to improve the short term prediction models, the lag is reduced to
5 days, which means that |UA|, LAI and di f [LAI] are selected from 5 days before the event
day, while Rain.cu-65 and TMP are selected from the same day that FoS is predicted; Acrack
is no longer considered. This period can be considered as sufficient to take emergency
actions before a dike fails, e.g., evacuating a residential area.

The feature importance of RFstp,5d model is shown in Table 5. Like the previous
models, |UA − 5| has the highest importance among other features, 0.36; this is between
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feature importance for |UA| in real-time assessment and |UA-15| for short-term prediction
(15 days). The reason can be also concluded from Figure 7b: as the time lag increases, the
correlation between FoS and |UA| decreases. The ranking order for other features for the
RFstp,5d is the same as short-term prediction with 15 days lag. However, the correlation
between predicted and calculated FoS is increased in RFstp,5d, R= 0.24 and RMSE= 0.12,
compared to RFstp,15d. As the lag decreases, the correlation between FoS and |UA| and
Rain.cu-65 increases, which leads to an increase in the power of the features in predicting
the FoS. The time series plot for 5 days’ prediction is shown in Figure 14c (again like the
previous analysis), the predicted FoS after crack growth in July 2018, which deviates from
the calculated FoS. Although in RFstp,5d, the deviation is less from the actual FoS compared
to the results of RFstp,15d, it still performed poorer than RF15d,Acr.
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Figure 14. RFstp,5d model performance, over (a) the testing data set and (b) the independent data set, and (c) time series of
predicted and calculated FoS in the independent data set (year 2018).

A summary of the build RF regressor ability to predict the FoS is given in
Table 6, for the training data set, testing data set (which are randomly selected over
the years 2009–2017) and the evaluation data set (year 2018). In both scenarios (real-time
assessment and short-term prediction), if the crack area is used as one of the features, the
model performance improves both in the testing data set and in the evaluation data set. In
short-term prediction, when the time window is shortened from 15 days to 5 days, the RF
model performance improves, since there is a higher correlation between the features that
have the highest impact (Acrack, |UA| and Rain.cu-65) and FoS at the shorter lag. Currently,
it is not feasible to measure the crack area, but there are ongoing studies to simulate the
crack volume, e.g., [57].
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Table 6. Summary of RF models performance on all data sets.

Scenarios Training Testing Evaluation

R RMSE R RMSE R RMSE

Real-time
assessment

observable features
(5 features)

0.99 0.01 0.96 0.05 0.31 0.1

observable features
(6 features)

0.99 0.01 0.98 0.05 0.32 0.1

observable and crack area
as features

1 0.01 0.98 0.03 0.56 0.07

Short-
term
prediction

observable features
(15 days lag)

0.99 0.01 0.94 0.06 0.06 0.14

observable and crack area
as features (15 days lag)

0.99 0.01 0.98 0.04 0.44 0.08

observable features
(5 days lag)

0.99 0.01 0.96 0.05 0.24 0.12

As shown in the results, using a RF regressor, the predicted values are never outside
the training set values for the target variable (FoS). One of the RF regressor limitations
is that it cannot extrapolate, because in the test set, it predicts an average of the values
seen previously in the training. Therefore, the predicted FoS is bound to the minimum and
maximum values of the build RF models seen in the training set. In the evaluation data set
RF cannot, therefore, predict the minimum FoS values of the whole timeseries (2009–2018)
that occurred after the training data set where the maximum Acrack occurs. To overcome
this limitation, other algorithms can be used, e.g., deep learning, or combining predictors
using stacking [47]. An alternative could be to undertake more numerical simulations of
potential future scenarios to allow the RF regressor to ‘see’ potential future results. This
research introduces that using a combination of EO data and predictive models can have a
significant potential in the context of dike monitoring. This helps dike managers to be able
to undertake real-time assessment and short-term predictions.

4. Conclusions

This proof-of-concept study investigates the potential use of observable data in pre-
dicting temporal changes in slope stability due to climatic forcing and includes the impact
of vegetation and surface cracking. This study focused on making an ML-based surrogate
for an FE model. The underlying assumption is that the FE model can emulate reality.
Therefore, the validation against the ground truth data should be first reflected in the
FE model evaluation. Using such an approach can provide experts with a monitoring
tool where they can assess a significant length of dikes relatively easily. A random forest
machine learning approach was adopted, with features used in the model (LAI, surface
displacement, cumulative rainfall and temperature) selected based on correlations with
the FoS and that were potentially observable using satellite earth observation. This has
advantages over using other features which require on-site investigation or the installation
of permanent sensors. The results from the predictive model used in this study show that
displacement has the highest feature importance for both cases of real-time assessment
and short term prediction. It is recognised that, for other situations, slightly different
features may be required. The approach resulted in an accurate prediction of the temporal
FoS before new cracking events for the example dike. Over the ‘unseen’ data and after
a crack expansion, the model performance is weak, as an RF model cannot extrapolate
results and estimation is bound to the range of data over which the model has been trained.
The results of this study show the potential use of EO data for real-time assessment and
short-term prediction of an example dike condition. This method shows the potential
of predictive models to support the assessment of a dike condition (stability), but not to
replace more in-depth geotechnical site investigation and analysis. A single example dike
was used as a case study to demonstrate the potential value of machine learning in general
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to circumvent the computational burden of modeling and taking an important first step
towards large-scale monitoring of dike stability with EO data. It is suggested for future
studies to include various real case studies to investigate the effectiveness of different ML
algorithms for assessing a slope condition.
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