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Abstract: Microplastics are an emerging environmental pollutant, whose global ubiquity is becoming
increasingly evident. Conventional wastewater treatment does not completely remove them, and there
are growing concerns about microplastics in source water and post-treatment drinking water.
Microplastics have been reported to alter the development, physiology, and behavior of various
aquatic organisms; however, limited knowledge exists on their effect on natural phytoplankton
communities. Many studies also use uniformly spherical plastic beads, while most scrub particles
in consumer products and secondary microplastics in the environment have various shapes and
sizes. We tested the effects of two types of microplastics, 50 µm polystyrene (PS) calibration beads
and polylactic acid (PLA) plastic body wash scrub particles, and one type of plant-derived body
wash scrub particle on a natural phytoplankton assemblage through a 7-day incubation experiment
in a temperate, mesotrophic lake. The calibration beads and the plant-derived particles generally
did not alter the taxonomic composition of the phytoplankton in the mesocosms, while the PLA
body wash microplastics eliminated cryptophytes (p < 0.001) and increased chrysophytes (p = 0.041).
Our findings demonstrate differential effects of irregularly shaped PLA body wash microplastics vs.
PS calibration beads on lake phytoplankters and empirically support potential bottom-up alteration
of the aquatic food web by secondary microplastics.
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1. Introduction

Microplastics (MPs), or plastic pieces that are typically <5 mm, have come to be widely recognized
as an emerging pollutant in recent years. While the earliest major scientific report of aquatic
microplastic pollution dates back to 1971 [1], MPs did not draw much attention as a research topic
until the 21st century. Since then, we have gained substantial knowledge on the extent of the global
MP pollution and its impact on the development, physiology, and behavior of various marine and
freshwater organisms [2–7]. We have also learned that conventional wastewater treatment plants
do not completely remove MPs and can be point sources of aquatic MPs [8–11]. Simultaneously,
MPs in source water and processed or bottled drinking water have been a growing concern for water
utilities and the general public [12]. Controlled lab studies are elucidating the molecular pathways
of organismal responses to aquatic MPs, including nanoplastics (NPs) [13–15]. Data are severely
limited, however, on how MPs affect natural phytoplankton communities instead of lab monocultures
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where a single, well-studied species from a culture collection is grown in defined growth media at
constant temperature and regular light/dark cycles. Such studies have revealed physiological effects of
MPs on phytoplankton cells and their gene expression using certain enzymes and reactive oxygen
species as responses [16]. The influences of MPs at the population and community levels, however,
are yet to be studied to the same extent, although remarkable advances are being made for biofilm
communities [17,18]. Many of these MP studies used uniformly spherical and fluorescent plastic
beads, while many scrub particles in consumer products [16,19–21] and MPs found in environmental
samples [22,23] have various shapes and sizes. Non-spherical MPs, including those resulting from
fragmentation of macroscopic plastic debris, are expected to be the majority of MPs encountered by
aquatic organisms. Yet, non-spherical MPs are rarely used in MP bioassays because analytic-grade MP
beads are readily available and facilitate straight-forward study design and data interpretation.

We aimed to investigate whether analytic-grade MP beads are a reasonable surrogate to other
types of anthropogenic microparticles that may be released in household wastewater and interact with
lake phytoplankton. A novel, 7-day summertime in situ incubation experiment was conducted in
a temperate, mesotrophic lake where different types of spherical and non-spherical microparticles
were added to mesocosms containing natural lake phytoplankton. We first hypothesized that MPs
have quantitative and/or qualitative effect(s) on the lake phytoplankton, while plant-derived particles
have no such effect. Plant-derived scrub particles from a body wash were included as one of the
experimental treatments. They are often chosen by personal care product manufacturers as alternatives
to plastic microbeads, which have been banned or are being voluntarily phased out of production by
manufacturers [24,25]. We also hypothesized that planktonic cyanobacterial colonies become smaller
and more numerous with MPs. In previous years, cyanobacteria such as Aphanizomenon, Microcystis,
Dolichospermum, and Planktothrix were regularly observed in summer at the study site, where they only
formed very localized and/or diffuse “blooms”. The same cyanobacterial taxa, however, often caused
harmful blooms in other local lakes, and MPs may have an effect on colony formation and maintenance
in these taxa, which can cause harmful blooms in eutrophic lakes.

2. Materials and Methods

The overall design of our in situ incubation experiment was based on [26], utilizing 15.2 cm ×
15.2 cm Bitran® polyethylene bags (Thermo Fisher Scientific, Waltham, MA, USA) as mesocosms,
deployed in floating racks at a near-shore lake surface (Figure 1). We collected ~20 L and 2 L of
surface lake water containing phytoplankton from mesotrophic Otsego Lake, New York, USA, on
6 and 13 July 2016, respectively. The pre-incubation sample (20 L) was filtered through a 118 µm
Nitex® (Nitex, Singapore) mesh to exclude most large grazers before treatment. Three types of
microparticles constituted treatments in this experiment: 50 µm diameter polystyrene calibration
beads (DC) (Dri-Cal® Particle Size Standards Beads, DC-50, Thermo Fisher Scientific, Waltham,
MA, USA), plant-derived scrub particles from Softsoap® (Softsoap, Chaska, MN, USA) Coconut
Scrub body wash (CS), and plastic scrub particles from Dial® (Dial, Scottsdale, AZ, USA) Power
Scrub body wash (DP). Figure 2 shows images of representative microparticles used. CS and DP
(Supplementary Materials) were harvested in a lab from June to August 2013 through repeated rounds
of dilution with deionized water and centrifugation. They were subsequently dried and stored at
room temperature. The detailed harvesting method and size distributions for CS and DP are described
in [20]. CS burned and DP melted, respectively, when exposed to heat similar to the hot needle test
used in [27], meaning that DP was a plastic and CS was not. CS was most likely an apricot kernel
powder, as it was the only scrubbing agent listed on the bottle. Both DC and DP sank when mixed
into deionized water. Fourier transform infrared (FTIR) analysis by a Frontier FT-IR/NIR spectrometer
with a built-in standard reference library (PerkinElmer, USA) was performed on CS and DP for further
characterization. Full FTIR spectra were compared to reference spectra by Open Specy [28] with
default preprocessing parameters (smoothing polynomial = 3, baseline correction polynomial = 8) and
a spectral range of 650 to 4000 cm−1. Each treatment was applied at 67 mg L−1 (~30 mg particles per
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450 mL pre-incubation ambient lake water per mesocosm) with 4 replicates per treatment. Control
mesocosms did not receive any microparticle addition but otherwise were prepared in the same manner
as the treatment mesocosms. With the control group, a total of 16 mesocosms were incubated for 7 days.
A 7-day incubation was selected as it was long enough for the phytoplankton population to build
up in the mesocosms, yet no signs of CO2 limitation nor a shift from planktonic to attached growth
were observed.
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Chlorophyll a (chl. a) was analyzed by filtration onto Whatman GF/F filters (nominal pore size:
0.7 µm) (GE Healthcare, Chicago, IL, USA), followed by extraction by acetone and fluorometry on
a TD-700 laboratory fluorometer (Turner Designs, Sunnyvale, CA, USA) [29,30]. Sample volumes
that were filtered onto the GF/F filters were 150 mL for each experimental replicate and 500 mL for
the pre- and post-incubation ambient lake water samples (all were pre-filtered through a 118 µm
mesh). All chl. a filters were prepared as soon as possible, within an hour of ambient lake water
collection and within two hours of mesocosm takedown, and then kept frozen until the acetone
extraction step. Phytoplankton samples from the ambient lake water and experimental mesocosms
were preserved with Lugol’s iodine and stored at 4 ◦C. They were settled in 10 mL Utermöhl chambers
overnight before identification and quantification under an inverted light microscope (Axiovert, Zeiss,
Dublin, CA, USA). At 400X, the first 100 identifiable cells (i.e., >5 µm in the largest dimension)
were counted along a transect across the bottom of the Utermöhl chamber. Examination of 5 to
17 fields of view were typically required to reach 100 cells. Phytoplankters were first identified to the
genus level whenever possible and then grouped into major taxonomic groups. We examined the
following variables as responses to the treatments: species richness (total number of taxa per replicate),
Shannon–Wiener (SW) diversity index [31], and taxon-specific cell counts. Statistical analyses were
performed on the open-source statistical software R [32] and RStudio [33] with packages multcomp [34],
multcompview [35], tidyverse [36], and ggplot2 [37]. All response variables except chl. a were
square-root (sqrt) transformed. Their normality was visually inspected in Q-Q plots, and normality
of residuals in ANOVA models was confirmed by Shapiro–Wilk test. Assumption of equal variance
among treatments was justified by the results of Bartlett’s K-squared test.

3. Results

3.1. FTIR Analysis of Body Wash Particles

FTIR analysis confirmed that CS was a plant material; all top 10 matches (r ≥ 0.93) on Open
Specy [28] were plant materials, with the top three (fiber poplar down, fiber kapok, and fiber jute)
sharing the best match at r = 0.96 (spectra source: [38]) (Figure 3a). The top matches for DP were two
spectra for polylactic acid (PLA) (r = 0.99 and 0.98) and fiber polylactide (0.98) (spectra source: [38])
(Figure 3b).

3.2. Chl. a and Diversity Indices

Chl. a concentrations in untreated pre- and post-incubation ambient lake water were 8.6 µg L−1

and 8.1 µg L−1, respectively. After the 7-day incubation, mean chl. a concentrations in the mesocosms
were 100.9, 137.1, 106.6, and 95.4 µg L−1 for control, CS, DC, and DP, respectively, with no significant
difference across treatments (Figure 4a). Similarly, the mean SW index was 1.88, 2.24, 1.96, and 1.46;
the mean species richness was 12.2, 14.8, 10.8, and 10.2, respectively. No significant difference was
detected among treatments in SW index or species richness (Figure 4b,c).
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3.3. Phytoplankton Composition

The pre-incubation phytoplankton community was represented by five major taxonomic
groups: Cryptophyta (including Synurophyta) (42.0% by cell count), Bacillariophyta (diatoms) (37%),
Chlorophyta (11.0%), and Cyanophyta (8.0%) (Figure 5). Pyrrophyta (dinoflagellates) were not counted
in the pre-ambient sample but were detected in post-incubation samples at low frequencies (means:
5.5, 1.3, 0.5, and 0.5% for control, CS, DC, and DP, respectively). Cyanophytes were predominantly
small colonies of picocyanobacteria such as Aphanocapsa and Gloeocapsa.
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Figure 4. Boxplots of major experimental responses after a 7-day incubation by treatment groups. n = 4
each for control (Ctrl), plant particles (CS), calibration beads (DC), and body wash MPs (DP), except
chlorophyll a (chl. a) for DC (n = 3 due to sample loss). All responses except chl. a were square-root
(sqrt) transformed to better meet model assumptions. Letters a and b on top of each panel indicate
groupings by the results of multiple pairwise comparisons among the treatment groups by Tukey’s
honestly significant difference (HSD) test at α = 0.05. (a) chl. a (µg L−1), (b) Shannon–Wiener (SW)
index, (c) species richness, (d) Bacillariophyta count, (e) Chlorophyta count, (f) Chrysophyta count,
(g) Cryptophyta count, (h) Cyanophyta count, and (i) Pyrrophyta count.

Consistent with the chl. a results above, there was no noticeable difference in general abundance
of identifiable phytoplankton cells among treatments after the 7-day incubation. Cell counts by major
taxonomic groups, however, showed a treatment effect, most evidently for cryptophytes (one-way
ANOVA, p < 0.001), followed by chrysophytes (p = 0.041) and marginally by bacillariophytes (p = 0.051)
and chlorophytes (p = 0.066) (Figure 6). DP had such a strong inhibitory effect on cryptophytes that it
was totally separated from the other three treatment groups (Tukey’s honestly significant difference
(HSD), p < 0.0025, Figures 4g and 6). DP was also marginally distinct from DC and CS for chrysophytes
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(p < 0.059, Figure 6) but had an overlap with the control. This weak trend was recognized but not
indicated as statistically significant in Figure 4f at α = 0.05.
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Figure 6. Summary of one-way ANOVA (left) and grouping by Tukey’s HSD test (right) on the
taxonomic responses of the phytoplankton to the treatments. n = 4 for all four treatment groups except
for chl. a for DC (n = 3 due to sample loss). Dashed horizontal lines in the right panel indicate Tukey’s
HSD groupings; for example, for Bacillariophyta (top right box), DC, CS, and DP formed one group and
CS, Ctrl (control), and DP formed another group. While an overlap existed between the two groups,
DC and Ctrl never belonged to the same group and therefore had statistically different responses in this
case (p = 0.035 for the DC–Ctrl contrast). Similarly, CS–DP contrast for Chlorophyta was significant
(p = 0.048), DP–DC and DP–CS contrasts had p < 0.059, and DP–DC, DP–CS, and DP–Ctrl contrasts had
p < 0.0025.
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4. Discussion

Our first hypothesis that MPs, but not plant-derived particles, affect the lake phytoplankton was
partially supported. Microparticle addition to the lake phytoplankton did not lead to any statistically
significant increase or decrease in chl. a in the control nor any of the three microparticle treatments
(one-way ANOVA and Tukey’s HSD at α = 0.05), which was interpreted as no quantitative effect on
overall phytoplankton biomass. Responses of each taxonomic group to different types of microparticles,
however, showed previously unreported qualitative effects: Cryptophytes were eliminated (Figures 4g
and 5) and chrysophyte counts increased (Figures 4f and 5) in response to the addition of irregularly
shaped and sized MP fragments recovered from a body wash (DP). Plant-derived scrub particles
(CS) had no effect (α = 0.05) on cell counts of any of the taxonomic groups included in this study
(Figures 4–6), supporting the idea that plant-derived microparticles are a more environmentally
sustainable alternative to MPs as scrubbing agents in personal care products. Yet, the effects of
the perfectly spherical calibration beads (DC) on the phytoplankton were either nondetectable or
indistinguishable from those of CS in this study. Other studies have reported negative effects of
analytic calibration beads on aquatic primary producers [39–41]. If these experiments were repeated
with MPs that are more representative of secondary MPs found in the environment, more pronounced
and/or different results may be observed. Such studies are going to be critical as we seek to predict
long-term effects of secondary MPs in our aquatic ecosystems and to mitigate them at strategic points
in the modern hydrologic cycles such as wastewater treatment plants. Our second hypothesis that
planktonic cyanobacterial colonies become smaller and more numerous with MPs was not testable
as the cyanobacteria observed in this study were predominantly small colonies of picocyanobacteria.
With certain NPs being reported to increase microcystin production in cyanobacteria [42], repeating
this experiment with a more eutrophic source water and in late summer to early fall when the water
temperature is higher would be interesting and may potentially have an applied implication to
management of harmful cyanobacterial blooms, an increasing concern for water utilities with respect
to cyanotoxins as well as taste and odor compounds [43].

The differential effects of the calibration beads (DC) vs. irregularly shaped body wash MP particles
(DP) on cryptophytes and chrysophytes were totally unexpected, as they were both “sinking” MPs
(i.e., not made of “floating” high- or low-density polyethylene or polypropylene), and their size
difference was within one order of magnitude. DP had an extremely close (r = 0.99) match with PLA,
a family of plant-based biodegradable plastics widely used in medicine as suture threads, bone fixation
hardware, and drug delivery devices and also noted for its brittleness and slow degradation [44].
PLAs derived from corn-based starch are also widely used in biodegradable/compostable single-use
clamshell food containers [45] and tableware [46]. Chroomonas and Rhodomonas are flagellated, “naked”
unicellular algae, and small cryptophytes resembling them (definitive species identification is not
possible with light microscopy) comprised the majority of our cryptophytes (Figure 7), the group
eliminated by DP (Figures 4g and 5). Cryptophytes have an external covering called periplast, which is
composed of a plasma membrane and plate(s) embedded underneath [47–49]. This would be expected
to offer some extra support, but this reinforcement appears limited [50] and easily compromised
by trypsin digestion [47]. Cryptophytes therefore do not have physical protection for their plasma
membranes against degradation products from MPs, including proteolytic metabolites from surface
biofilm. Trypsin has been detected in coastal surface seawater [51], and proteolytic enzymes in general
have been associated with both live and dead bacteria in lakes [52].
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Figure 7. Conceptual diagram of the differential effects of irregularly shaped body wash MPs
on Chrysophytes and Cryptophytes, with images of representative taxa identified in this study.
Images are not to scale. Inside the right box: Mallomonas sp. image (upper right) is licensed under
CC BY-NC-SA 2.0 [53]; images of Dinobryon divergens (upper left), Chroomonas- (lower left and
middle) and Rhodomonas-like (lower right) cryptophytes are from this and past studies from Otsego
Lake phytoplankton.

In contrast, chrysophytes, mostly Dinobryon and Mallomonas in our samples, increased their
occurrence with DP addition. These taxa have protective siliceous lorica or plates [48,54] that may
afford them protection from MPs and potentially harmful chemicals leaching from or adsorbed to MPs.
At the same time, DP did not affect cell counts of Bacillariophytes (diatoms), which are protected by
siliceous frustules (valves) and mucilage [48,55] and considered resistant to abrasion and disturbance in
stream periphyton [56]. The vast majority of diatoms observed in this study were non-colony forming,
and MP effects on diatom colony sizes could not be evaluated. We thus postulate that a physically
protective cellular outer covering is an important factor for phytoplankters to avoid negative effects
from irregularly shaped and brittle aquatic MPs with large and uneven surface areas. The negative
effects could include physical abrasion, electrostatic interaction, and chemical leaching from jagged
and constantly eroding surfaces. Perfectly spherical MPs (DC), which are smaller in particle size and
collectively have a large but smooth surface area, are more likely to roll along the surface of a cell than
to damage it, which may explain them having no effect on cryptophyte counts in this study (Figure 4g).
Plant-derived CS particles also tend to have rounded edges due to their cellular composition, as visible
along the outline of the representative particle in Figure 2a. DP particles, on the other hand, have many
projections and sharp edges that seemed to have resulted from exuding of melted plastic through a
fine mesh-like structure or mechanical shredding or shaving of larger pieces of plastic. Sinking rates of
diatoms have been reported to decrease with formation of diatom-microbead aggregates, while those
of cryptophyte-microbead aggregates increased their sinking rate [39]. This can lead to more diatoms
remaining in the photic zone while the flagellate and motile cryptophytes may experience higher
mortality due to sinking into the aphotic zone. If the motile cryptophytes sense increased sinking,
this may also manifest as a subtle decrease in fitness due to increased energy expenditure to swim
against gravity in order to remain in the photic zone.

The findings from this study also point to the potential danger of extrapolating results from
precision-manufactured calibration beads and nanoparticles to secondary MPs found in the environment.
We fully acknowledge the fact that harvesting microparticles from consumer products can be extremely
labor intensive and that obtaining the raw particles from a vendor is often difficult, as the exact entity
of the scrub particles is not necessarily disclosed in the ingredients list. Vendors are also unlikely
to respond to researcher inquiries in general. Whenever possible, however, comparison between
calibration beads and scrub particles in consumer products that are expected in wastewater effluents
or lab-generated secondary particles that mimic those in the environment (e.g., [57]) is advised in
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studies of biotic responses to MPs. Use of MPs in personal care products is either banned or being
voluntarily phased out in the European Union, United Kingdom, and North America and assumed
to be responsible for a relatively small portion of the overall aquatic MP pollution [24,25]; however,
in this study the MPs harvested from a body wash served as a superior surrogate for secondary MPs
found in source and wastewater than uniformly sized and shaped calibration beads (primary MPs).
The body wash MPs better mimicked the products of fragmentation of larger pieces of plastic waste and
were most likely still associated with chemical residue of the body wash. Such residue would contain
chemicals commonly expected in household effluent and potentially adsorbed by aquatic MPs, e.g.,
surfactants, fragrances, colorants, moisturizers, stabilizers, and preservatives. Effects of MPs on aquatic
organisms are expected to be driven by the physical (size and shape) and chemical characteristics of
MPs themselves as well as externally associated chemicals from the surrounding water.

This study focused mainly on the effects of MPs that would be classified as fragments in
environmental samples. Fibers are the most irregularly shaped MPs with a large surface-to-volume
ratio and a miniscule mass, resulting in a very slow sinking rate. Fibers are therefore more likely to
interact with living cells that they encounter in the environment than beads and fragments. With our
increasing awareness of their true ubiquity [9,23,58], further investigation of the effects of MPs,
including fibers on phytoplankton communities, and potential bottom-up effects on aquatic food webs
are warranted.

5. Conclusions

This study focused on the interaction between a freshwater lake phytoplankton community
and 50 µm polystyrene calibration beads, PLA-based MP from a body wash, and plant-derived
scrub particles from another body wash through a 7-day, summertime, in situ incubation experiment
in a mesotrophic, northern temperate lake. Taxonomic composition of the phytoplankton in the
450 mL mesocosms were not affected by the calibration beads and the plant-derived particles,
while the body wash MPs eliminated cryptophytes (p < 0.001) and increased chrysophytes (p = 0.041).
These differential effects of irregularly shaped body wash MPs on certain taxa of lake phytoplankters
suggest potential bottom-up alteration of aquatic food webs by secondary MPs, including those
considered biodegradable. Increased monitoring data and sample sharing between utilities operators
and researchers will accelerate our understanding of how environmental MPs interact with freshwater
biotas before they enter the ocean.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/9/2650/s1,
Supplementary File 1: photographs of the product ingredient lists of CS and DP. Raw data tables for phytoplankton,
water chemistry, and CS and DP FTIR spectra are available as a data package through the Environmental
Data Iintiative (EDI) data portal: https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=615.
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