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Abstract: The quantification of evaporation is very important for water resource management,
determination of water availability and environmental modeling. Evaporation (E) is a key component
of the hydrological cycle, which becomes more relevant under a changing climate scenario,
where increases in temperature and E are projected on a regional scale. This study evaluated
the hourly applicability of 21 methods to estimate E in a mountain lake. Models were grouped as
combination, solar radiation-temperature and mass transfer methods. Estimated E by all models were
compared to three measurement campaigns with an eddy covariance system in Lake Laja during
the month of January (22 to 28), March (17 to 23) and November (09 to 15) of 2016. The average
evaporated water during the measurement sessions were 3.40, 3.38 and 1.89 mm d !, respectively.
Best model performance was obtained with models whose main E principles are heat flow and water
vapor flow. The best performance in this group was the Penman model using a calibrated wind
function with a determination coefficient (R?) of 0.91, Nash-Sutcliffe coefficient (NS) of 0.9, and index
of agreement (W) of 0.98. Comparing daytime and nighttime hours, it was found that the daytime E
in the lake is best explained by the product of the vapor pressure deficit and wind speed, while the
nighttime E was explained by the flow of heat in the water. The results highlight the importance of
the analysis of diurnal dynamics of water flux and energy stored in water to better understand the E
in water bodies.

Keywords: lake evaporation; eddy covariance; model evaporation

1. Introduction

The effects of climate change and rising temperatures throughout the world, and particularly
in arid and semi-arid regions, are threatening to reduce available surface water through enhanced
surface evaporation, especially in reservoirs [1]. Mountains and agricultural regions located in
snowmelt-dominated Mediterranean climate watersheds have been identified as highly vulnerable
to climate change. Temperature levels in mountain regions are expected to increase by 3—4 °C [2,3],
thus increasing E rates in mountain lakes.

Evaporation is an important source of water loss in lakes and reservoirs in arid and semi-arid
regions. The Mediterranean climate or dry summer climate exists in the Mediterranean basin,
some parts of South Africa, California, Australia, and Chile [4]. Loss of water by evaporation can
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exceed industrial [5] and municipal water use [6]. Martinez et al. [5] determined that water loss
due to evaporation from farm dams in the southeast of Spain was greater than the industrial water
demand and equivalent to 27% of the domestic water use for a population of two million inhabitants.
Similarly, Gokbulak y Ozhan [7] estimated that annual evaporation from lakes and dams in Turkey
is greater than the human and industrial consumption and in some regions of Australia, 40% of
the water stored in reservoirs is lost through evaporation [8,9]. Bouin et al. [10] found that extreme
wind events in a French lake can triple the evaporation, reaching values higher than 350 W m~2.
Miranda et al. [11] reported evaporation measurements in a lake with Mediterranean climate obtaining
average daily values of 3.7 mm d~!,4.0mmd~!,45mmd~! y 2.5 mm d~! during June, July, August and
September, respectively.

A sequence of uninterrupted dry years has affected central Chile (30-38° S) since 2010 with annual
rainfall deficits ranging from 25% to 45% [12]. This phenomenon, which has been referred to as the
mega-drought due to its unprecedented duration and large spatial extent, has coincided with the
warmest decade on record in this area of the country [13], increasing the severity of the drought due to
higher E loss from the reservoirs [12,14].

The Laja Lake is a natural reservoir located at 1360 m above sea level (37°10" S, 71°22" W),
in the area affected by the mega-drought. It has been operated as an interannual regulation system
since 1960. At that time, the El Toro Hydroelectric Plant was built, beginning their activities in 1973,
transforming the Laja Lake into a multipurpose reservoir system. More recently, a new demand was
added to the system by the construction of an irrigation canal (Laja-Diguillin canal), located downstream
of the lake in the Laja River. In general, water demand has increased over time not only due to the
incorporation of the Laja-Diguillin Canal, which started transferring water from the Laja River in 2001,
but also due to climate variability and population growth. In this sense, precipitation in the study
area has decreased due to climate change [15] and, therefore, supply has decreased, while increasing
temperatures are associated with increased evaporation and, in turn, greater water needs for agriculture.
Similarly, population growth has increased energy demand, resulting in an increased need for lake
water [16]. The lake has a temperate snowmelt and rainfall-dominated headwater system (the Laja
Lake basin). In addition, it has had a tunnel that supplies water from the Polcura River since 1978 [17].

Since El Toro began operating in 1973, there were no important conflicts between users in the
first three decades, mainly because the lake levels were adequate to meet water demands. However,
conflicts have occurred between users over the past ~15 years and have increased in number over the
past decade, probably enhanced due to the 2010-2019 drought in Chile [12,16]. Due to the conflicts
between the users of the lake water and the impact of climate change, it has been necessary to
reformulate the Laja’s operating rules. Establishing a maximum volume for both irrigation and power
generation according to the available water volume [18].

One of the main problems in water resource management, such as water reservoirs, lakes and
lagoons, and particularly in the case of the Laja Lake, is the estimation of all the components of the
water budget. Such knowledge is necessary for the regulation of water supply, the estimation of
potential percolation and for the water quality analysis of the reservoir. In water reservoirs, generally,
it may be relatively easy to measure inflow, outflow and precipitation. However, to identify percolation
through the reservoir floor requires an accurate estimation of E loss. Therefore, E from water bodies
has been an important topic in many studies during the years [19].

In Chile, agricultural water demand has been commonly studied by the determination of potential
evapotranspiration. In this sense, some studies have been carried out for specific crops [20-23], but E
from water bodies has been poorly studied. Under climate change scenarios, the ability to accurately
measure and estimate surface evaporation becomes even more crucial for adequate water management.
However, there might be considerable uncertainty in hydrological projections associated with the
model structures and parameterization [24,25].

The eddy covariance (EC) technique is one of the few methods to obtain direct E measurements
and it is considered one of the most accurate and reliable methods to determine E rates and the main
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components of the surface energy balance from water bodies [19,26,27]. However, its use is limited
due to the expensive and complex nature of its operation. Therefore, efficient modeling approaches
are required.

A wide variety of methods to estimate E have been reported in the literature. They can be
classified into several types, including mass balance, energy budget models, the aerodynamic approach
(based on water vapor flux), solar radiation and temperature models (based on solar radiation and
air temperature), and combination equations (based on heat flux and water vapor flux). Most of the
equations were developed for specific studies and areas. Therefore, the methods are applicable to areas
with similar conditions to those in which they were developed [28].

Several studies have evaluated the performance of E models at daily (or larger) scales [19,28-31],
but to our knowledge, hourly performance of E models has been less studied. In this sense, it is
important to note that normally all the environmental variables required for these models are easily
measurable on sub-daily time intervals, which would allow the models to be applied at smaller time
scales. Granger and Hedstrom [32] developed relationships between hourly E rates and parameters
that affect E and concluded that wind speed was one of the most important factors controlling
E. McGloin et al. [33] evaluated three methods for modeling sub-daily E in a small reservoir in
southeast Queensland, Australia, determining that the theoretical mass transfer model showed the
best correlation.

Reliable estimates of surface energy balance fluxes are often needed for representing the effect
that different land surfaces have on regional climate [34]. To accurately model diurnal dynamic
variability in the atmospheric boundary layer (ABL) it is crucial that environmental processes are
simulated frequently (i.e., time-steps of one hour) ([33-36]). Estimating this variable in nearly real time
is important for both agricultural and hydrological management, while monitoring long-term trends
allows the identification of the climatological impacts on the global hydrosphere [37]. The analysis
of daytime E allows the association of this phenomenon with specific events that occur during the
day, e.g., wind gusts, heat waves, cloudiness, among others. Hourly E rates can also be compared to
surface energy balance models that use remotely sensed images (satellite or unmanned aerial vehicles)
to estimate latent heat for land and water surfaces.

The main objectives of this study were to evaluate the performance of 21 models to estimate
hourly E in water bodies and to identify the main environmental variables that control its diurnal
dynamics. These estimates are compared with measurements from an EC system during three field
campaigns in a mountain lake. Models are evaluated according to their original approach, and then
adjusted to the conditions of the Chilean Laja Lake by calibrating wind functions.

2. Materials and Methods

2.1. Study Area

The Laja Lake is located in central-southern Chile, in the middle of the Andes mountain range
(37°10'-37°27" S and 71°22’-71°14" W) at a height of 1360 m above sea level. It is 33 km long and 3 km
wide, with an average depth of 75 m, and an approximate surface of 70 km?. The climatic patterns in
the area are generated mainly from frontal rainfall and are enhanced due to the orographic effects of
the Andes mountains [38]. In this area, snowfall is concentrated mainly during June to August and
accounts for 47% of the total annual precipitation. The Laja Lake is a snow-dominated hydrological
system and has a snow-dominated hydrological regime where runoff is strongly regulated by the lake.

The Laja Lake sub-basin (975 km?) is conformed by Andean volcanic soils with low
permeability [39]. The soils are mainly volcanic and sandy with the presence of steep slope topography.
The lake has two outlets: a natural seepage through fractured rocks at the west side of the lake, and a
Hydroelectric Power Plant tunnel (El Toro), which connects the lake with the Polcura River. The flows
are controlled and managed according to energy and irrigation demands [16].
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The Laja Lake is a natural reservoir operated as an interannual regulation system. It supplies the
Abanico, El Toro, Antuco, Ructie and Quilleco hydroelectric plants, as well as the irrigation system
Laja sur, Zanartu, Laja Diguillin and a series of other canals [16]. The Laja Lake is a natural water body
but regulated in a controlled way by the El Toro Hydroelectric Plant. It has a volume of approximately
5600 Hm?, which is used for agricultural purposes and as the cornerstone of hydroelectric supply from
the interconnected power system in Chile.

The measurement site was located on the southern shore of the lake (Figure 1), 4.5 km from the
Antuco ski center (37°21’43.86” S, 71°20724.60” O a 1360 m.a.s.l). To the south of the measurement
site is the Antuco volcano, and to the north is a hilly area with little vegetation. The soils in the area
adjacent to the lake are sandy and stony, not suitable for agriculture, livestock or forestry, and with
limited use for wildlife, recreation or the protection of river basins. The site location was selected
considering previous information on the direction of the prevailing winds in the lake. This previous
analysis was considered to ensure that the fluxes of the surface energy balance measured by the EC
system comes mainly from the body of water. Wind speed in the measurement time period reached
8 m s}, predominantly blowing in a direction from west to east.
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Figure 1. Location of the eddy covariance system.

2.2. Equipment and Measurements

An EC system was installed in the study area to measure the main components of the energy
budget and the main environmental variables that affect E at 30 min intervals in January (from 22 to
28), March (from 17 to 23) and November (from 9 to 15) of 2016. Specific days during field campaigns
were selected considering the weather forecast to find high probabilities of clear and sunny days
during measurements.

A pyranometer (LI-200R, Licor, Lincoln, NE, USA) installed at a height of 3.0 m, was used to
measure solar radiation (Qg). Net radiation (Q*) was measured with a net radiometer (NR-Lite2,
Kipp & Zonen, Delft, The Netherlands) installed at a height of two meters, using a 2.0 m extension
arm. Sensible heat flux (Hs) was measured with a 3D sonic anemometer (CSAT3, Campbell Scientific,
Logan, UT, USA) installed at a height of 2.0 m and placed horizontally to the wind direction and a fine
thermocouple (FW3, Campbell Scientific, Logan, UT, USA). Latent heat flux (AE) was measured by a
sonic anemometer and an infrared gas analyzer (EC150, Campbell Scientific, Logan, UT, USA).

Air temperature and relative humidity were measured with a probe (HMP45C, Campbell Scientific,
Logan, UT, USA) installed at a height of 2.5 m. Water surface temperature was measured with
8 temperature recorders (iButton DS1921Z, Maxim Integrated, San Jose, CA, USA) at 0.1, 0.2,0.3,0.4, 0.5,
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1.5, 3 and 4.5 m depth, all attached to a marine rope with a weight and affixed with a buoy. Wind speed
was measured with the same 3D sonic anemometer. Signals from these instruments were sampled
every 5 s and stored as the mean value after 30 min in a data logger (CR3000, Campbell Scientic, Logan,
UT, USA). Two 12 V batteries connected in parallel supplied the power.
To determine water heat flux (Qx), the reduced form of the energy budget was used following
[27,31,33,40,41]:
Qx:Q*_/\E_Hs 1)

where, Qy, Q*, AE and H; is in W m™2
In order to ensure that latent heat and sensible heat fluxes came mainly from the water body;,
a footprint analysis was performed using the method developed by Hsieh et al. [42].

2.3. Evaporation Estimation Methods

Twenty-one models were used to estimate evaporation on an hourly basis, as indicated in the
following groups:

Combination equations: The combined method generally includes energy transfer and
aerodynamic components. For practical applications, the formulation requires measurement of
radiation fluxes on the water body, water surface temperature, and meteorological data such as wind
speed, air temperature, and dew point temperature at a given height.

Solar radiation and temperature: This group consists of four models, and has the advantage of
requiring fewer physical parameters, such as solar radiation, air temperature, atmospheric pressure,
and relative humidity. However, as in all the other methods, measurements should be representative
of the conditions of the water body.

Mass transfer: This group consists of three models. Mass transfer is based on physical principles.
Evaporation calculated from this method is considered proportional to a function of the mean wind
speed, and the difference between air vapor pressure at the evaporation surface and at some level
above the surface of the water body.

Table 1 shows the equations involved for each of the 21 models. The last 7 models of the mass
transfer group were proposed by Singh and Xu [29], and require the estimation of the parameters a,
b and c. The parameters were estimated using a method based on the least squares criterion between
measured and estimated evaporation. For empirical models, the values of the parameters need to be
calibrated from a sample of input and output values of the model, and from an objective function
whose value must be minimized. One of the simplest objectives is a linear regression model that uses
an input variable x, and an output variable y. The model to be calibrated is an equation of type y’ = A +
BX in which parameters A and B can minimize the objective function .7 ; (v’ - y)z, where n is the
number of data pairs.

Table 1. Evaporation estimation methods (mm h™1).

Method Equation
Combination group

Priestley-Taylor E= (Aﬁ - )( Q/\pz?x) 36
. .. -0
deBrauin-Keijman E= (0 = A+ Xy /\p » ) 3.6
s _ A(Q'=Qv)+paC (3<_€a)/rn 3.6
Penman-Monteith E= Ay (1+“) Ao
Penman E = (Aﬁy Q —Qx) + A+v =Ky f(U)(es —eq ))\3p60
; _(.A 3.6
Penman-Kimberly E= (A_ﬂ Q —Qu)+ 3 Jr},Ku (es —ea) Wy Tor
Brutsaert-Stricker E= ( 2a-1) + Q Qx) Aﬂ/ v f(U) (es — eu)) /%béw
deBruin E= (aa (A+)/) /\Pw
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Table 1. Cont.

Method

Equation

Solar radiation—temperature group

Jensen-Haise

Makkink
Stephens-Stewart

Turc

Mass transfer group
Ryan-Harleman

Trivett
Quinn
(A)
(B)
©)
(D)
(E)
(F)
(®)

— 3.6 . _ 1 . _ 5 . — 2Elev .
E=CH(Ta~T)Q 2 Cr = mrtrey O = ey C1 = 38— (522);
Ty = —2.5—1.4(es —e;) — Elev/550; C; = 7.3 °C

_ 3.6
E= (0.61( 25 )QS -0. 12)

= (0. 0082Ta 0. 19)(st3 495x1072)/24
(o 013722 (Qs + 50)) /24 for RH > 50% and for RH < 50%

= (0013 - Leps Qs+50)[1+ (50_RH) ])/24

e ((2.7|9p|0.333_;2,1u2)(65*—6/1) )3.6

E=0. 024(65* - eu*) U,/24

E = (0.052 + 0.0066Us ) (es. — eqs) U3 /24
E=a (35* - 3[1:(-)

E=a U2 (35* 61,1*)

E :a(l UZ)*(es*—em)

E a (1+bU2) (esx-_EWs)
E=aUy(es — ea*)'(l_b'(Ta—TO))

E= a(Ta+25) -(100 — HR)
E=a-(1+bU) (ess —ea:) (1= c:(Ta —To))

3.6 and 1/24 multipliers appear in the equations to convert output to mm h~!

A
a
abyc

4

6y
A
Pw
€a
€g*
€s
g%
Elev

f(u)

Slope saturated vapor pressure-temperature curve (Pa °C™1).

1.26, Priestley-Taylor empirically derived constant, dimensionless.
Adjustment parameters for mass models.

Psychrometric constant (depends on temperature and atmospheric
pressure (Pa °C1y).

Difference in temperature between surface water and air (°C).

Latent heat of vaporization (M]J kg ™).

Water density (998 kg m™3).

Vapor pressure at the air temperature (kPa) (deBruin in mb).

Vapor pressure at the dewpoint temperature (mb).

Saturation vapor pressure at the air temperature (kPa) (deBruin in mb).
Saturation vapor pressure at the water surface temperature (mb).
Elevation (m).

Wind function, f(U) = a+ b Uy; witha=0.5yb =0.54 for Penman, a =1
and b = 0.54 for Brutsaert-Stricker, a = 2.9 and b = 2.1 for deBruin model.
Day of the year.

Unit conversion factor = 74.44 W m~2 kPa~! = 0.268 M m~2 h~!
Relative humidity (%)

Net radiation (W m~2).

Solar radiation (W m~2) (Turc in cal cm™2 d1).

Water heat flux (W m™2).

Bulk surface resistance (s m™1); rs = 0

Aerodynamic resistance (s m1)

Water surface temperature (°C)

Air temperature in °C (Stephens-Steward in °F).

Wind speed at 2 m above water surface (m s71) (km hr™! for Trivett).

1
Wind speed at 3 m above water surface (m sy Uy = Ul(%) 7, U, is

wind speed at height level 2, U; is wind speed at height level 1, Z; is
measurement height level 2 and Z; is measurement height level 1

Wind function, Wy = ag + by Uy; ap = 0.4 + L4exp{~[(] - 173) /58]};
by = 0.605 -+ 0.345exp|—[(] — 243) /80]*}; For latitudes south of the

equator, one should use J’ in place of ], where ]’ = (J —182) for | > 182
and ]’ = (] +182) for ] < 182
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The Penman, Brutsaert-Stricker and deBruin models consider the following wind function:
f(U) =a+bl, @)

where a and b are adjustment constants, which will be calibrated to maximize the function of the
coefficient of determination (R?).

2.4. Evaluations

All models were evaluated using the root mean square error (RMSE), the coefficient of
determination (R?) (0-1), the Nash-Sutcliffe (NS) index (—co-1) and the index of agreement (W),
(0-1). Table 2 shows the equations corresponding to these indicators.

Table 2. Equations and indicators to validate the models.

Indicator Equation
2
Coefficient of determination R2 = cov(o,n)
sd(o)sd(m) s
Nash-Sutcliffe NS =1- Zijl (fi"ﬁ;)z
i=1(0i=0
n a2
Index of Agreement W= 1— — Lima(0=m)

1 (Jmi=2]+|oi—0])*

Root mean square error RMSE — X (oi=mi)*
n

cov = covariance, sd = typical deviation, o = observed values, m = values of the model, 7 = number of data.

3. Results

The components of the water surface energy budget and the environmental variables that affect
evaporation were measured for seven days in January (from 22 to 28), March (from 17 to 23) and
November (from 9 to 15) of 2016. The data were filtered, eliminating the values that were attributable
to noise in the data, sensor failure or rainy periods, resulting in a total of 747 half hour data (259,
255 and 233 in January, March and November, respectively).

3.1. Environmental Components

Figure 2 shows the environmental variables measured. Table 3 shows the maximum, minimum
and daily mean values of the variables. Maximum wind speed (U>) values were recorded during
the afternoon hours (between 4 and 7 p.m.), reaching 9.1 m s, 66ms'and 8.6 ms!in January,
March and November, respectively (Figure 2a). Vapor pressure deficit (VPD) (Figure 2¢) and air
temperature (T,;) (Figure 2b) reached their lowest values during the early morning hours of the day
and their highest values in the afternoon hours (between 3 and 5 p.m.). Relative humidity (RH)
(Figure 2e) ranged between 10% and 90%, reaching its maximum and minimum values in morning
and afternoon hours, respectively, showing a behavior contrary to the vapor pressure deficit (VPD)
curve. Maximum values for relative humidity were recorded in January. The maximum temperature
difference between water surface (Ty) and air temperature (Figure 2f) occurred between six and eight
in the morning, reaching up to 14 °C. The daily variation of water surface temperature (Figure 2d) did
not exceed +2 °C, reaching its maximum during the afternoon hours. In November, there was a failure
in the sensor that recorded water surface temperature, so there are no data for the 315 day of the year
(DOY) and half of the day 316.
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Figure 2. Measured environmental variables. U, is wind speed at 2 m above water surface (a),
VPD is the vapor pressure deficit (c), RH is the relative humidity (e), T is the air temperature (b),
Ty is water surface temperature (d) and, AT is the difference between water lake temperature and air
temperature (f).

Table 3. Daily maximum (Max), minimum (Min) and mean (X) values of the environmental
variables measured.

T (O Tp O Uz (ms™) HR (%)
DOY . . . -
Max. Min. X Max. Min. X Max. Min. X Max. Min. x

22 24.3 14.5 18.7 18.1 16.9 17.5 73 1.4 4.5 82.5 225 514
23 214 13.5 17.7 18.3 16.5 17.3 9.1 1.0 5.0 88.5 31.5 50.0
24 12.6 9.7 10.7 17.6 15.0 16.3 7.6 42 5.5 98.8 740 872
25 14.1 10.1 12.3 16.8 16.3 16.5 6.7 1.3 44 88.9 622 703
26 16.1 11.0 13.2 17.1 16.3 16.9 7.3 25 52 81.7 50.8  66.0
27 13.5 9.3 12.1 17.4 16.5 16.7 7.1 4.0 52 97.9 622 725
78 21.2 3.4 120 17.5 15.5 16.6 52 0.8 3.1 93.9 9.2 43.5
79 21.6 7.1 14.3 17.6 15.8 16.3 4.0 1.4 27 32.5 16.5 248
80 225 74 14.7 17.4 15.9 16.3 6.2 0.9 3.1 46.3 13.7 304
81 20.7 53 13.3 16.5 15.6 15.9 6.6 0.5 27 74.5 143  48.0
82 239 7.2 14.2 17.6 15.5 15.9 6.2 0.4 2.3 65.7 15.0 427
315 14.5 2.8 9.7 - - - 7.4 0.8 3.7 71.5 23.0 511
316 17.9 5.1 11.2 14.3 10.4 11.6 7.9 0.8 3.5 70.3 174 474
317 15.0 43 11.4 12.6 10.1 11.2 8.6 0.7 48 711 309  50.6
318 12.5 7.5 10.1 12.0 9.7 10.6 7.5 3.3 5.6 85.9 424 595

Figure 3 shows the measured solar radiation (Qs). The maximum values were recorded between 2 and
3 p.m., reaching 1200 W m~2, 900 W m~2 and 1050 W m~2 in January, March and November, respectively.
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Figure 3. Solar radiation (Qs) during the measurement time period.
Footprint

The footprint analysis shows that 90% of the fluxes, under unstable conditions, came from an area
500 m away from the station, while the most important contributions came from less than 100 m of
distance. The fluxes in the study area predominantly come from the northwest, this assures that all
the surface energy balance measurements mainly came from the surface of interest. Figure 4 shows
the flux direction under unstable conditions (north west direction), distance (Xpeak) to the point of
maximum influence from the measurement point (generally less than 100 m) and the flux footprint
distribution function.

Fetch for Unstable Cond. Xpeak
N N
600
NW " NE NW Hos NE
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SwW
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SE
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0.002 - - |
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Figure 4. Footprint analysis, direction of the fluxes measured under unstable conditions, distance from
the measurement point (Xpeak) and the footprint distribution function.
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3.2. Surface Energy Budget Components

Figure 5 shows the daily curves for the surface energy budget components. Table 4 shows
the daily maximum and mean values of all components. The net radiation reached a maximum of
862 W m~2 at 2:30 p.m. in January, recording negative values at nighttime. Furthermore, 73% of the
observations of the sensible heat flux were positive, indicating that there is heat transfer from the lake
to the atmosphere. Negative values of sensible heat flux were observed during the afternoon and
evening hours, indicating that there is heat transfer from the atmosphere to the lake. Water heat fluxes
were calculated according to Equation (1), and had positive values during daytime measurements,
while nighttime measurements recorded negative values. The latent heat flux reached a maximum
value of 217 W m~2 at 3:00 p.m. on January 23.

JANUARY MARCH NOVEMBER
1000

800

400

Heat Flux (W m'?)

200~

200

4001 I [ I ! L1 I I | L1 | | I |
22 2 % 25 2% 27 78 79 80 81 82 315 316 3 318 319

Doy

Figure 5. Surface energy budget components. Q" is net radiation, Qy is water heat flux, H; is sensible
heat flux and, AE is the latent heat flux.

Table 4. Daily maximum (Max) and mean (X) values of the surface energy budget components.

AE (W m™2) Q Wm™2) Hs (Wm™2) Q, Wm™2)
DOY . . . .
Max X Max X Max X Max X
22 184 91 722 207 37 2 591 113
23 217 117 862 181 56 2 674 62
24 183 104 221 6 92 57 99 -155
25 159 102 534 78 55 40 345 —64
26 178 120 669 139 60 4 472 -23
27 189 113 508 59 87 46 315 -100
78 209 121 608 100 128 38 324 -58
79 182 114 593 109 97 14 479 -20
80 205 99 602 114 41 3 556 12
81 202 85 599 113 130 24 473 4
82 191 71 580 108 145 10 549 28
315 104 45 665 190 157 12 559 133
316 129 56 686 190 54 -2 587 136
317 117 61 704 202 4 6 576 134
318 103 63 606 151 62 22 458 67

The following variables were correlated with the measured latent heat flux to identify those that
most significantly affect E: the relationships between latent heat flux (measured every 30 min) and
wind speed above the lake surface (Figure 6a), vapor pressure deficit (Figure 6b), the product between
wind speed and vapor pressure deficit (Figure 6c), net radiation over the lake surface (Figure 6d) and
water heat flux (Figure 6e), recording R? values of 0.32, 0.29, 0.43, 0.20 and 0.06, respectively. Figure 6
shows that the lowest relationship is given by AE and Qy, followed by AE and Q*. It can be observed
that AE is more influenced by the product of VPD and U, (R? = 0.43).
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Figure 6. Relationship between latent flux and wind speed (U) (a), vapor pressure deficit (VPD) (b),
product of VPD multiplied by wind speed (VPD = U) (c), net radiation (Q*) (d), and water heat flux

(Qx) (e).

During these campaigns, the average evaporated water depths reached 3.40, 3.38 and 1.89 mm
per day in January, March and November, respectively. Table 5 shows the evaporated water depths for
the days measured, and its equivalence as E flow (m? s7!), which was calculated based on the area
flooded by the lake (approximately 70 km?). The lowest E rate was observed in November, while the
highest value was recorded in January.

Table 5. Evaporation (mm d™!) and estimated evaporated flow m3s71).

Date Evaporated Water Height (mm d-1) Evaporated Flow (m3 s—1)
22-01-2016 3.20 2.6
23-01-2016 4.02 3.3
24-01-2016 2.44 2.0
25-01-2016 3.56 29
26-01-2016 3.95 3.2
27-01-2016 3.23 2.6
18-03-2016 4.14 34
19-03-2016 4.01 3.3
20-03-2016 3.46 2.8
21-03-2016 297 24
22-03-2016 2.33 1.9
10-11-2016 1.53 1.2
11-11-2016 1.93 1.6
12-11-2016 1.88 1.5
13-11-2016 2.21 1.8

Figure 7 shows the volume of daily water evaporated according to the elevation of the water level
of the lake for different depths of evaporated water. This indicates that the higher the elevation of
the lake, the greater the volume of water lost by evaporation. An important change occurs between
elevation 1360 and 1370 m because one of its branches is active, which implies a significant jump in the

curves of evaporated water volume.
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Figure 7. Evaporated water volume with respect to the lake elevation.

On the other hand, if the lake were at its maximum level (1390 m), at an evaporation rate of
4 mm d~!, the volume of water evaporated could reach 480,000 m3d-1.

3.3. Model Comparisons with Measurements

Figures 8-10 show the relationship between the E obtained with the hourly models and the E
measured with the EC system.
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Figure 8. Relationship between hourly measurements of evaporation and model estimation with the
combination model group (root mean square error (RMSE) in mm h™1)).
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Figure 10. Relationship between measured and estimated E with the equations of the solar radiation

and temperature group.

As observed in Figure 8, the Penman and Penman-Monteith models show similar relationships
(R?), indicating the similarity between the models. The same occurs with the Priestley-Taylor and
deBrauin-Keijman models. The best relationship between measured and estimated evaporation in this

group was obtained with the Priestley—Taylor model.

The wind functions of the Penman, deBruin, Brutsaert-Stricker models were adjusted according to
equation (2). The adjustment was performed to maximize the function of the coefficient of determination

(R?) as:

FU) poman = 0.395 + 01711,

F(U) gepyuin = 0.020 + 0.491U,

f(u)Brutsaert—Striker = 0.0+ 0.0t

®)
(4)
©)
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With the adjustment, R? changed from 0.84 to 0.91 in Penman, 0.43 to 0.44 in deBruin and 0.14 to
0.84 in Brutsaert-Stricker.

As for the solar radiation and temperature group, the data were filtered only considering the
daytime ranges where solar radiation exceeded 100 W m~2.

All models in this group overestimate E (Figure 10). The efficiency indicator (NS) for all models in
this group is negative, indicating that the mean of the observed data has a higher predictive power
than the model. A similarity of measured and estimated E relationships is observed between the
Stephens—Stewart and Jensen-Haise models. This is explained by the similarity in their equations.
Based on this, the best model of this group is the Stephens-Stewart model because it presents the
lowest overestimation.

Similarly, the mass transfer models present an acceptable linear relationship, same as most of their
indicators, except for the NS indicator. As mentioned before, water surface temperature data of two
days were not recorded and, therefore, these models were evaluated with less data (1 = 659).

Figure 11 shows the relationship between estimated values with three models of the mass transfer
group and measured values. The best linear relationship is given by the Ryan-Harleman model.
However, this does not mean that it is the best model, since it presents an overestimation of E values
(72%). Of these three models, the best is Trivett’s as it has the best indicators and the least overestimation.

= e Ryan-Harleman Trivett ® Quinn
S >
£
£ 06 - E
c 2
2 oyl
S 04 4 e
o S
2 ¥ R =064
> R2 =067 RZ  =0.69 =0
- NS =-030 NS =0.65 NSt =047
£ 024 W =085 W =095 W =094
S RMSE = 0.08 RMSE = 0.04 RMSE =0.05
£ n =659 n =659 L =50
? 00 F . . . l ; .
0.0 0.2 0.4 0.6 0.4 0.6 0.6 0.8
Observed evaporation (mm h1)
Figure 11. Relationship between measured and estimated E with the equations of the mass

transfer group.

The parameters a, b and c of the generalized form of the mass transfer model developed by Sing
and Xu [29], were adjusted through a least-squares fitting Table 6. The best adjustments are given by
the models B, D, E and G (Figure 12).

Table 6. Parameters a, b and c of the mass transfer model and goodness-of-fit indicators.

Model Parameter Indicator
a b c R2? NS W RMSE
(A) 0.2471 - - 0.23 0.51 0.77 0.05
(B) 0.0012 - - 0.64 0.70 0.92 0.04
© 0.0057 - - 0.24 0.45 0.77 0.05
(D) 0.0019 0.4570 - 0.69 0.79 0.93 0.03
(E) 0.0012 0.0002 - 0.63 0.70 0.92 0.04
(F) 7.648-1077 - - 0.27 0.48 0.87 0.05
(G) 0.0018 0.4549 0.0009 0.69 0.80 0.93 0.03
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Figure 12. Relationship between measured and estimated E with the generalized form of the mass
transfer models.

According to the analyzed indicators, the G model is the best model of the generalized form of the
mass transfer models. It is important to note that the D model requires the estimation of one parameter
less, which is an advantage when processing the data. In addition, the difference obtained in the NS
index was not significant.

As many of the equations for estimating E have constants or coefficients that were determined by
those who developed or modified them to meet their particular needs, adjustment factors (Krr) for
each of the hourly models were obtained with the least squares model. The models to estimate E are
expressed as follows:

E=f(E)=KpL (6)

where f(E) is the E function of each of the models evaluated.

Table 7 shows the statistical indicators evaluated for conditions prior to and after the application
of Ky 1. For both conditions, it is observed that the best model is Penman including the wind function
f(U) (Penman WEF). For the models of the group of solar radiation and temperature, the best model
was the Stephens-Stewart model even after applying Ky;. Finally, the best model of the mass transfer
models was Trivett, both prior to and after the application of Kpy.
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Table 7. Statistical indicators prior to and after the application of adjustment parameters for the Laja
Lake (Kyp) (* indicates that the displayed factor is the one obtained after applying K ;).

) . . RMSE RMSE *

Group Method N KLL R NS NS w W (mm h-1) (mm h-1)
Priestley-Taylor 747 0.98 0.84 0.82 0.83 0.96 0.96 0.03 0.03
deBrauin-Kefjman 747 0.95 0.83 0.80 0.82 0.95 0.95 0.03 0.03
Penman-Monteith 747 1.23 0.84 0.68 0.83 0.91 0.96 0.04 0.03
Penman 747 0.69 0.84 -0.03 0.83 0.84 0.96 0.07 0.02
Combination Penman WE 747 0.96 0.91 0.90 0.91 0.98 0.98 0.02 0.02
Penman-Kimberly 747 0.53 0.79 —2.49 0.77 0.67 0.94 0.13 0.03
Brutsaert-Stricker 747 0.91 0.14 161  -159 0.56 0.56 0.11 0.11
5;;‘“““'5““@ 747 081 084 060 083 092 09 0.04 0.03
deBruin 747 0.47 043 -4.18 0.15 0.56 0.79 0.16 0.10
deBruin WF 747 2.50 0.44 -1.19 0.02 0.54 0.78 0.10 0.07
Solar Jensen-Haise 348 0.36 0.22 -6.33 0.06 0.45 0.59 0.28 0.10
radintion.  Makking 348 0.39 0.10 —4.96 0.29 0.45 0.60 0.25 0.09
¢ Stephens-Stewart 348 0.50 0.16 -1.83 0.28 0.57 0.64 0.17 0.09

emperature

Turc 348 0.35 0.12 -7.28 0.23 0.41 0.42 0.29 0.09
M Ryan-Harleman 659 0.61 0.67 -0.11 0.77 0.85 0.93 0.08 0.04
. asfs Trivett 659 0.73 0.69 0.71 0.77 0.95 0.94 0.04 0.04
ranster Quinn 659 0.64 0.64 0.54 0.65 0.94 0.91 0.05 0.04

4. Discussion

4.1. Measurements

In the southern hemisphere, January and March correspond to summer months. January is the
month with the highest evaporative demand in the year, while November corresponds to a spring
month. Days 22 and 23 were clear days, and days 24 to 27 were cloudy, which caused a drop in the air
temperature recorded on those days compared to previous days (Figure 2). The variation in water
surface temperature between a cloudy and a clear day for the period between days 22 and 27 reached
an average of 0.8 °C. Between days 24 and 27, it was observed that the water surface temperature was
higher than the air temperature, indicating that there was heat transfer from the lake surface to the
near atmosphere. The decrease in air temperature caused a decrease in ¢;, which reduced the capacity
of the atmosphere to store water vapor, as reflected in the decrease in E around those days. The water
surface temperature was lower in November, considering snow-rain driven regime. The decrease in
water temperature in November can be associated with the beginning of thaws.

Air temperature dropped sharply during nighttime due to the absence of solar radiation.
Water temperature had an average daytime variation of 1.3, 1.6 and 2.9 °C in January, March and
November, respectively. Therefore, water temperature was higher than that of air during the night,
causing heat transfer from the lake water to the atmosphere. For the night period, water heat flux was
negative. There was a positive but not significant correlation between AT and Hs (R? = 0.22).

The latent heat flux for a water surface is expected to be high and even greater than that of a
crop. However, the effect of water depth is considerable and influences the heat storage capacity of the
water body. The maximum latent heat flux (217 W m~2) was recorded on a clear day in January at
3:00 p.m., a similar value was found in [10]. This peak coincides with the highest wind speed recorded
during the measurement time period (9.1 m s™!) but occurred later than the maximum solar radiation
(2:30 p.m.). Daytime measurements of latent heat flux had a similar pattern, reaching the highest
values in the afternoon hours. The AE reaches average values of 108, 98 and 56 W m~2 during the
months of January, March and November, respectively. Miranda et al. [11] measured E using an EC
system in a Mediterranean climate reservoir (Alqueba, Portugal) during summer months, they found
for the hottest month a AE value of 113 W m~2 similar to those found for the Laja Lake.

Nighttime E rates (between 8:00 p.m. and 7:00 a.m.) corresponded to an average of 36.9, 40.7 and
26.4% of the daytime evaporation rates recorded in January, March and November, respectively.
This can be explained by the energy release from the water body. Similar rates were found by Liu
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et al. [41] at the Ross Barnett dam, Mississippi. This lake has an area of 133 km? and water depths
between 4-8 m. Measurements with an EC system showed that nighttime evaporation represents 45%
of total E.

The heat flux in the water presented the lowest correlation when compared to latent heat. However,
when analyzing the daytime and nighttime ranges separately (Figure 13), it can be observed that
nighttime measurements showed a significant correlation (R? = 0.64) with AE, while variables were
inversely proportional (between 8:00 a.m. and 7:00 p.m.), i.e., as water heat flux decreases, latent heat
flux increases. As for the daytime range (between 7:30 a.m. and 7:30 p.m.), the relationship between
latent heat flux and heat flux in water was not significant (R? = 0.01). On the other hand, when analyzing
the other components for the daytime range, it is observed that E is better correlated during these
hours of the day, due to the product between vapor pressure deficit and wind speed (R? = 0.51).
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Figure 13. Relationship between latent heat flux and water heat flux (Qy) in nighttime (left) and
daytime (right) range.

Large and high-altitude lakes have a high capacity to store energy. In summer, most of the solar
radiation is absorbed by the water body and the greatest heat storage capacity is recorded in late
summer and early fall. Afterwards, the stored energy begins to release. In late fall and early winter,
when solar radiation is small, this energy is released to the atmosphere as latent and sensible heat
fluxes; the lowest stored heat is recorded in spring, when the heating process of the water body starts
again [43]. This explains the decrease in the nighttime E rate recorded in November (26.4%).

In the Laja Lake, there is a low relationship between latent heat flux and net radiation. This is
mainly due to the depth of the lake; short-wave radiation penetrates the lake surface where the energy
is absorbed. Granger and Hedstrom [32] studied this relationship for a 25 m deep lake with hourly
measurements and found an R? coefficient of 0.01, an even lower value than that in the present study.

The relationship between wind speed and latent heat flux was greater than the relationship
between net radiation and evaporation fluxes. Same as in [32], it is observed that E in the Laja Lake is
controlled by wind speed above the lake, similar observations were found in [10]. In addition, there is a
directly proportional relationship between the latent heat flux and the product between vapor pressure
deficit and wind speed. This occurs because evaporation rate depends directly on vapor pressure
deficit (VPD) and is enhanced by higher wind speeds.

During measurement in January and March, evaporated water reached an average of 3.4 mm
per day, equivalent to 266 million L. If we consider a daily water consumption of 200 L per person,
the evaporated volume is equivalent to the consumption of 3644 people in a year. By expressing
E in terms of flux, E flux averaged 2.76 m® s~! for the measurement days in January and March,
and 1.52 m3 s7! for those in November. Considering that the Laja Lake receives contributions from
the Polcura River with flow rates that averaged 3.47 m?s! 234 m3s!and 8,9 m3s!in January,
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March and November, respectively, it can be indicated that at least half of the water entering through
the Polcura tunnel is lost by E.

4.2. Models

The evaluation of the combined group models showed that the best estimate was given by the
Priestley—Taylor model. This model shows similarity in its equation with the deBrauin-Keijman
model. Both models incorporate the variable y, which is dependent on elevation. However,
the deBrauin—Keijman model was developed at sea level, so the Priestley-Taylor model was more
suitable for a mountain lake. Similar results were obtained by Wang et al. [31]. The Penman-Kimberly
model overestimates E in the Laja Lake. This model is based on Penman and presents a modification
of the wind function. Therefore, the wind function proposed by the Kimberly model was not adequate
to estimate the hourly evaporation in the Laja Lake.

One of the lowest yields was given by the deBruin model. The author combined the Penman and
Priestley—Taylor equations, and obtained a formula that predicts E. The model does not include net
radiation, but the drying power of air (a function of the wind associated with vapor pressure gradient),
and an energy component represented by the latent heat. deBruin’s experimental data showed that the
model performed well in a shallow body of water and in periods greater than 10 days [43]. The poor
performance of this model in the Laja Lake can be associated with the exclusion of Q* and Qy in its
formula. As abovementioned, Q, plays an important role in nighttime E.

The Brutsaert-Stricker model also presented a low fit with the measured data. Same as the models
in its group, it bases its estimates on a radiative and an aerodynamic component. Brutsaert-Stricker [44]
determined that the model was relatively insensitive to the choice of wind function, which would result
in a poor performance of the model when applied to the Laja Lake. The wind function was adjusted for
the Penman, deBruin and Brutsaert-Stricker models in order to maximize R?. The adjusted R? increased
from 0.84 to 0.91; from 0.43 to 0.44; from 0.14 to 0.84 in Penman, deBruin and Brutsaert-Stricker,
respectively. The adjustment of this last model resulted in the elimination of the aerodynamic
component (a and b = 0 in the wind function).

The models of the solar radiation and temperature group overestimated E in the lake. These models
base predictions on solar radiation and temperature, excluding net radiation, water heat flux, and the
aerodynamic component. The overestimation can be explained by the effect of not including lake depth
since part of the short-wave radiation is absorbed at the water surface, but the fraction not absorbed by
the surface can penetrate deeper layers [41]. Due to the high heat capacity of the water, an important
amount of energy is stored in the water during spring and summer months. Normally the water
temperature increases and the heat storage peaks occurs in late summer or early fall [41,45].

The Ryan-Harleman, Trivett and Quinn models have adjustment constants calibrated for daily
estimates. Due to this, it was necessary to divide the output of these models into 24 parts to obtain mm
h~!. The results obtained show that the Trivett model had the best fit. Additionally, the least squares
method was applied to determine the constants a, b and c in the generalized form of the mass transfer
models proposed by Sing and Xu [29]. Once the constants were determined and the model applied,
it was obtained that the best fit was given by the G model. However, it is important to note that the D
model presents similar fit indicators and requires fewer parameters. Although the models in this group
tend to overestimate evaporation, they produced a good fit with the measured data. This occurred due
to the influence of the wind on the E of the lake.

Figure 14 shows the distribution of the model groups with respect to the indicators used. For RMSE
versus R?, the closer to zero on the abscissa axis and to one on the ordinate axis, the better fit of the
model. As for NS and W versus R?, a better fit is close to one on both axes. The models of the combined
group had the best fit, followed by the mass transfer models. Conversely, the models based on solar
radiation and temperature exhibited the worst performance.
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Figure 14. Map of the indicators of the model adjustment (R? = coefficient of determination, RMSE =
root mean square error, W = index of agreement, NS = Nash and Sutcliffe index.

Figure 15 shows maximum, minimum, and average absolute errors between modeled and
observed values for hourly estimates. It is observed that the mean value of most of the combination
models and the mass transfer group was found within an error range of + 0.04 mm h~!, while the
models of the solar radiation and temperature group present a significant overestimation. The mean
values of the absolute errors of the generalized form of mass transfer models exhibited the smallest
distance to the observed value.
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Figure 15. Maximum, minimum and average absolute errors between modeled and observed values
for hourly models.

The use of the adjustment factors (Krr) resulted in a general improvement in all the models
for the RMSE, W and NS indicators. However, the best fit was obtained using the combined group,
followed by the mass transfer and the temperature and solar radiation group. Rosenberry et al. [30]
evaluated 15 models to estimate evaporation in a small mountain lake on a daily scale, and determined
that the best comparisons with the measured E were achieved with the methods that include available
energy and aerodynamic components. Similar results were found in [31].

Figure 16 shows maximum, minimum and average absolute errors after applying the adjustment
factor K. The mean value of the absolute errors improved, achieving an error range of +0.02 mm h~!
for all the models. As in the previous case, the maximum amplitude of the error is found in the group
of the solar radiation and temperature models, while the minimum amplitudes are achieved with the
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combined group. This shows the effectiveness of the use of an adjustment constant for the particular
conditions of the lake.
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Figure 16. Maximum, minimum and average absolute errors between modeled and observed values
for hourly models after applying Kj .

5. Conclusions

The main goals of this study were to evaluate the performance of 21 models to estimate hourly E
rates in water bodies and to identify the main environmental variables that control its diurnal dynamics.
Hourly E and environmental variables that affect it were measured in a mountain lake for 18 days
using an EC system. Average E rates measured during three field campaigns reached 3.40, 3.38 and
1.89 mm d~! in January, March and November 2016, respectively.

Best model performance was obtained with the models that include the available energy and
aerodynamic components (combined group). The best fit was obtained with the Priestley-Taylor
equation; however, the Penman model showed the best performance when the wind function was
adjusted. The models based on solar radiation and air temperature exhibited the worst performance
because the aerodynamic and available energy components were not considered, the Stephens-Stewart
model produced the best estimates of the group. The mass transfer models presented a good agreement
with the E measured. The greatest advantage of this group is that it does not require water heat flux
measurements, the G model had the best performance in this group.

In order to adjust the results to the particular conditions of the Laja Lake, an adjustment factor
(Krr) was applied to all models, with the exception of those proposed by Sing and Xu [29] as they
present their own adjustment parameters. After applying the adjustment factor, the Penman model
(with the wind function) presented the best performance. In general, all the models improved their
indicators after applying the Kj; .

Nighttime E represented 36.9 and 40.7% of the total daily rates in January and March, respectively,
which is explained by the energy release from the water body to the atmosphere. The water heat flux
during nighttime accounted for 64% of E. In November, the nighttime component reduced E rates to
26.4%, mainly due to the energy loss from the lake in winter. Daytime E is aerodynamically driven in
the Laja Lake and hourly fluxes are strongly correlated with the product of wind speed above the lake
and the vapor pressure deficit.
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The analysis of the nighttime component of latent heat flux and the better correlation with wind
speed found during daytime highlights the importance of the analysis of diurnal dynamics of water
flux and energy stored in water. Therefore, hourly measurements of latent heat flux, net radiation,
sensible heat flux, and water heat flux are recommended to better understand the E variability and
energy balance components of water bodies.
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