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Abstract: Water body mapping is significant for water resource management. In the view of 21
spectral bands and a short revisit time of no more than two days, a Sentinel-3 OLCI (Ocean and Land
Colour Instrument) image could be the optimum data source in the near-real-time mapping of water
bodies. However, the image is often limited by its low spatial resolution in practice. Super-resolution
mapping (SRM) is a good solution to generate finer spatial resolution maps than the input data allows.
In this paper, a multiscale spatiotemporal super-resolution mapping (MSST_SRM) method for water
bodies is proposed, particularly for Sentinel-3 OLCI images. The proposed MSST_SRM method
employs the integrated Normalized Difference Water Index (NDWI) images calculated from four
near-infrared (NIR) bands and Green Band 6 of the Sentinel-3 OLCI image as input data and combined
the spectral, multispatial, and temporal terms into one objective function to generate a fine water
body map. Two experiments in the Tibet Plate and Daye lakes were employed to test the effectiveness
of the MSST_SRM method. Results revealed that by using multiscale spatial dependence under the
framework of spatiotemporal super-resolution Mapping, MSST_SRM could generate finer water
body maps than the hard classification method and the other three SRM-based methods. Therefore,
the proposed MSST_SRM method shows marked efficiency and potential in water body mapping
using Sentinel-3 OLCI images.

Keywords: multiscale spatial dependence; water body mapping; super-resolution mapping; Sentinel-3

1. Introduction

Water resources are important natural resources for the development of human beings and
the ecological sustainability of ecosystems. However, many countries suffer from water scarcity
because of several reasons, such as land-use change, natural calamities, and water pollution [1,2].
Water body extraction and mapping are essential and useful in many water applications, including
water resource management [3,4], wetland protection [5,6], lake change detection [7,8], flood detection
and assessment [9–11], and cyanobacteria blooms [12].

Advances in remote sensing technology provide access to water body monitoring and
mapping [13,14]. Thus far, many papers have proposed water body mapping approaches from
satellite images. Water indices are often employed as a popular and valid way to extract water because
they enhance the distinction between water and nonwater through band calculations [15,16]. Existing
water extraction methods are mostly based on single-source remotely sensed images such as Moderate
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resolution Imaging Spectroradiometer (MODIS), Sentinel-3, Landsat, or Sentinel-2. However, images
such as Landsat have a relatively high spatial resolution but have a repeat frequency of 16 days, and,
sometimes, the data is not available because of bad weather or cloud cover. These characteristics
are insufficient to capture short-term water body changes, especially for the daily monitoring of
water. On the other hand, images such as Sentinel-3 have high temporal resolution and can provide
near-real-time water monitoring but are often limited by their low spatial resolution. In fact, a single
source sensor cannot obtain both high spatial resolution and high temporal resolution images at the
same time because of the limitations of satellite sensor hardware technology and satellite launch
costs. Moreover, most of the single-image-based methods are only calculated on the pixel scale.
Water body pixels, especially those at water boundaries, often have mixed class composition [17,18].
Mixed pixels cannot be classified correctly through hard classification because it treats each pixel
as a single water/nonwater class. Even if spectral unmixing technologies can determine the ratio of
water/nonwater types in a pixel and generate a more accurate water body map, the specific spatial
distribution of each mixed water pixel is still indistinguishable [19,20].

Super-resolution mapping (SRM) was first proposed by Atkinson in 1997 to increase the spatial
resolution of spectral unmixing results [21]. It aims at producing a higher spatial resolution map by
maximizing the spatial correlation or spatial dependence among neighboring subpixels according to
the original pixel proportions [22–25]. SRM has achieved success in producing water maps. Ling et al.
employed the digital elevation model (DEM) as an additional tool to extract high-resolution information
at the subpixel scale for waterline subpixel mapping [26]. Foody G.M. et al. proposed a subpixel-based
method for mapping waterlines from a soft image classification [27]. Li et al. used a locally adaptive SRM
method to extract waterlines [28]. Niroumand-Jadidi et al. combined the linear spectral mixture model
(LSMM) and pixel swapping (PS) algorithm for the mapping and monitoring of water boundaries [29].
However, existing methods consider only the spatial dependence at the subpixel level and assume
the center subpixel is just as affected by its neighboring subpixels. Therefore, the center subpixel is
often labeled according to the neighboring subpixels. Nevertheless, without coarse pixel information,
maintaining the overall information and spatial continuity in the result of water body maps may
be difficult. Spatial dependence at the pixel level also has a significant effect on the center subpixel.
By adopting the coarse-pixel-based spatial dependence, the whole water body information for the
resultant water body map can be maintained. Therefore, the multiscale spatial dependence at the pixel
and subpixel levels should be considered rather than only one of them [30].

Compared with other satellites such as Landsat, SPOT, and HJ-1A, Sentinel-3 has unique
advantages, with its 21 spectral bands ranging from visible to near-infrared and almost-two-day revisit
cycle providing a new data source for water body monitoring. With such unique advantages, Sentinel-3
OLCI images have been used to draw water quality parameter maps [31], calculate the down-welling
diffuse attenuation coefficient of lakes [32], estimate the composition of suspended particulate matter
in lakes [33], classify natural colors of water [34], and monitor water levels in rivers [35]. Most of these
applications have been performed for quantitative inversion from Sentinel-3 OLCI images because
they can produce more continuous spectral curves for the water. However, on account of its sensitivity
to water reflection and high temporal resolution, using Sentinel-3 for water body mapping is more
interesting. Unfortunately, Sentinel-3 OLCI images have not been widely used in mapping water
bodies [36]. One possible reason is the relatively low spatial resolution of 300 m, which results in a
large number of mixed pixels, especially those around the boundaries of two classes.

To address this problem, researchers have employed the SRM method to extract the water body.
SRM is intended to generate a land-cover map with higher spatial resolution than the input data [37,38].
From this perspective, SRM can be utilized to generate water body maps of finer spatial resolution
from the Sentinel-3 images. Wang et al. [36] proposed an unsupervised sub-pixel water body mapping
(USWBM) method to extract water from Sentinel-3 images to draw 30-m water body maps. Compared
with traditional methods, USWBM obtained results with improved accuracy. However, the resultant
water body maps have limitations in terms of spatial details of some water features, particularly for
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small patches and linear features. The accuracy needs to be improved because it only uses one coarse
spatial resolution Sentinel-3 image as the input. The successful launch of numerous high-resolution
satellites has produced abundant high spatial resolution remotely sensed images, with which finer
water body maps can be generated. These archived finer water body maps can provide prior spatial
information for the processing of subpixel locating. Spatiotemporal super-resolution mapping (STSRM),
which is developed based on SRM, can realize the fusion of multisource remote sensing data with
different spatial and temporal resolutions. Finally, by combining the advantages of a short period,
the many spectral bands of Sentinel-3 images, and the abundant archived high spatial resolution
images, high spatial–temporal resolution water body maps can be generated.

In this study, a water body extraction method under the multiscale spatial–temporal
super-resolution mapping (MSST_SRM) method is put forward for Sentinel-3 OLCI images to overcome
the above problem of water body extraction. First, an integrated NDWI image calculated directly from
the original Sentinel-3 image is used as model input for the processing of water body mapping. Then,
MSST_SRM is implemented based on four terms: the spectral water index term, the subpixel/pixel
spatial dependence term, and the temporal term. In particular, the spectral water index term is
grounded on the Markov random field (MRF) approach; spatial dependence is calculated at the
multiscales, and a transfer matrix is employed in the temporal term to calculate the change in the
water body.

The rest of the paper is organized as follows. Detailed introductions of the MSST_SRM method
is presented in Section 2. Results and analysis of the implementations are outlined in Section 3.
Discussions are shown in Section 4. Finally, Section 5 concludes.

2. Methods

Figure 1 shows the flowchart of the proposed MSST_SRM approach. After preprocessing the
Sentinel-3 OLCI image, five bands, four NIR bands, and one green band were employed to calculate the
NDWI images. Normally, in Sentinel-3, Band 17 is regarded as the NIR band in the NDWI calculation.
However, using one NIR band of Sentinel-3 OLCI would be too narrow compared with Landsat
sensors because the wavelength range of NIR in Landsat covers almost four NIR bands (Bands 17–20)
in Sentinel-3. Hence, to ensure the same bandwidth of NIR and a comprehensive description of
the water features, NIR bands from 17 to 20 of Sentinel-3 were used to calculate the NDWI images,
and all precalculated NDWI images were combined into one image as input for the MSST_SRM model.
MSST_SRM is implemented by the following four terms. Detailed information on these four terms is
discussed in Sections 2.1–2.4. In addition, Section 2.5 discusses the implementation of MSST_SRM and
some validation methods.
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2.1. MSST_SRM

The target of MSST_SRM is to generate a finer water body map, X, from the combined NDWI
image Y with the assistance of the previous water body map X f ormer. Suppose the spatial resolution
of the Sentinel-3 image is R and the scale factor is z. Then, the spatial resolution of NDWI images
Y = [y1, y2, y3 . . . yi . . . yn] is also R because it is calculated from the Sentinel-3 image. Here, yi is a single
NDWI image, and n is equal to 4. Four NDWI images comprise the integrated input NDWI image.
The spatial resolution of X f ormer and X are both R/z . Each pixel in image Y includes z × z pixels in
X f ormer and X. In general, the optimal MSST_SRM results, X, is a minimized optimization problem.
The objective function of MSST_SRM is composed of four terms and expressed as follows:

Uopt = arg
{
min

(
Uindex_spectral + α

[
δUspatial_sp + (1− δ)Uspatial_cp

]
+ βUtemporal

)}
(1)

where Uindex_spectral, Uspaial_sp, Uspatial_cp, and Utemporal are the energy functions of the four parts: a spectral
term for the water index, a spatial term at the subpixel scale, a spatial term at the pixel scale, and a
temporal term, respectively. The weighting coefficients α, δ, and β control the weights of the four terms.

2.2. Spectral Water Index Term

The goal of this term in MSST_SRM is to make the class proportions in the resultant water body
map consistent with the input NDWI images. The Markov random field (MRF) method [39,40] has
been successfully applied as a spectral term in SRM to mitigate the effects of classification errors on
change detection. The energy function Uindex_spectral is expressed as the following:

Uindex_spectral =
z2∑

j=1

D∑
i=1

C∑
ω=1

[1
2
(y(xi) −Vi)

′Mi
−1(y(xi) −Vi) +

1
2

ln|Mi|

]
(2)
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where z is the scale factor, equal to 10, and C is the number of classes, equal to 2. D represents the number
of pixels in NDWI image Y. xi is a coarse pixel in NDWI image at the current time, y(xi) is the observed
pixel’s spectral value of xi, assuming that xi is allocated with the normal distribution of the mean vector
Vi and the covariance matrix Mi, according to the category proportions.

Vi =
C∑
ω=1

fωiVω (3)

Mi =
C∑
ω=1

fωiMω (4)

where fωi is the category proportion of class ω in pixel xi. The value of fωi is obtained from the fraction
images of Y.

2.3. Multispatial Term

The multispatial term includes two parts, namely, the subpixel spatial dependence term and the
pixel spatial dependence term. In MSST_SRM, each subpixel is surrounded by two neighborhood
systems. According to the maximum spatial dependence rule, the center subpixel is affected by the
neighboring pixels and subpixels. Suppose the pixel neighborhood window size is 5, and the subpixel
neighborhood window size is 7. Figure 2 shows an example to illustrate the multispatial neighborhood
system. The center subpixel is affected by the surrounding 48 neighboring subpixels and 24 neighboring
pixels. Detailed subpixel and pixel spatial dependence and calculation methods are described in
Sections 2.3.1 and 2.3.2.
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2.3.1. Subpixel-Based Spatial Dependence Term

This term intends to locally smoothen the resultant water body map. In SRM, the maximum
spatial dependence rule is a popular method for expressing the spatial correlation and spatial pattern
among subpixels. Under this rule, subpixels that are nearby may have similar class labels than those
with longer distances [19,30]. MSST_SRM adopts the maximum spatial dependence rule to express
the spatial relationships between the center subpixel and its neighbors. The subpixel spatial energy
function Uspatial_sp is formulated as follows:
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Uspatial_sp = −
D∑

i=1

z2∑
j=1

∑
l∈Nsp(x j,i)

θ
(
c
(
x j,i

)
, c(xl)

)
·η
(
x j,i, xl

)
(5)

where x j,i is the jth subpixel in ith coarse pixel. xl is the neighboring subpixel of x j,i. Nsp
(
x j,i

)
represents the subpixel neighborhood system for x j,i. Suppose the neighborhood window size is w,
the neighborhood system of x j,i is a w×w square window. x j,i is located in the center of the window,
with (w×w− 1) subpixel neighbors. c

(
x j,i

)
is the class label of x j,i and c(xl) is the class label of xl.

θ
(
c
(
x j,i

)
, c(xl)

)
aims to show the land cover spatial dependence and is calculated as 1 if c

(
x j,i

)
equals

c(xl). Otherwise, it is 0. The spatial weighting function η
(
x j,i, xl

)
weighs the contribution of xl to x j,i,

which is calculated as follows:
η
(
x j,i, xl

)
=

1
Ω

(
d
(
x j,i, xl

))−1
(6)

where Ω is the selected normalization constant to ensure
∑

lεNsp(x j,i)
η
(
x j,i, xl

)
= 1. d

(
x j,i, xl

)
is the

distance between x j,i and xl.

2.3.2. Pixel-Based Spatial Dependence Term

The goal of this term is to provide holistic water information for the results. Under the principle of
this term, the class label of each center subpixel is decided by its adjacent coarse pixels. The objective
function of this term is to maximize the spatial correlation of neighboring coarse pixels and it is
expressed as

Uspatial_cp = −
D∑

i=1

z2∑
j=1

∑
t∈Ncp(x j,i)

φ
(
c
(
x j,i

)
, c(xt)

)
·η
(
x j,i, xt

)
, (7)

where x j,i is the jth subpixel in ith coarse pixel, xt is the tth neighboring coarse pixel around subpixel
x j,i. Ncp

(
x j,i

)
is the pixel neighborhood system for x j,i. Suppose W is the pixel neighborhood window

size, which has the same meaning as w in Section 2.3.1. φ
(
c
(
x j,i

)
, c(xt)

)
is the spatial coefficient of the

neighboring coarse pixel xt at the class of c
(
x j,i

)
indicating the contribution of xt. The spatial weighting

function η
(
x j,i, xt

)
is formulated as follows:

η
(
x j,i, xt

)
= e−d2(x j,i,xt)/ε2

(8)

where ε is the distance–decay parameter, and d
(
x j,i, xt

)
represents the Euclidean distance of x j,i and its

neighboring coarse pixel xt.
The spatial coefficient

(
c
(
x j,i

)
, c(xt)

)
is calculated according to the category proportion of the

neighboring coarse pixels. The category proportion can be obtained from the fraction image through
spectral unmixing. Suppose xq is another neighboring coarse pixel of subpixel x j,i, then φ

(
c
(
x j,i

)
, c(xt)

)
is formulated as

fc(x j,i)

(
xq

)
=

Ncp∑
t=1

φ
(
c
(
x j,i

)
, c(xt)

)
·η
(
xq, xt

)
(9)

where fc(x j,i)

(
xq

)
represents the category proportion of the pixel xq when the class label is c

(
x j,i

)
.

The spatial correlation function η
(
xq, xt

)
is used to calculate the spatial correlation between xq and xt.

The expression ofη
(
xq, xt

)
is similar to Equation (8). After fc(x j,i)

(
xq

)
andη

(
xq, xt

)
are obtained, the solution

of φ
(
c
(
x j,i

)
, c(xt)

)
can be resolved by the matrix in Equation (10):
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η(x1, x1) · · · η

(
x1, xNcp

)
η(x2, x1) · · · η

(
x2, xNcp

)
...

...
...

η
(
xNcp , x1

)
· · · η

(
xNcp , xNcp

)
×


φ
(
c
(
x j,i

)
, c(x1)

)
φ
(
c
(
x j,i

)
, c(x2)

)
...

φ
(
c
(
x j,i

)
, c

(
xNcp

))
 =


fc(x j,i)

(x1)

fc(x j,i)
(x2)

...
fc(x j,i)

(
xNcp

)
 (10)

The spatial energy function Uspaial combining subpixel and coarse pixel spatial dependence terms
are expressed as follows:

Uspatial = δUspatial_sp + (1− δ)Uspatial_cp (11)

where δ controls the weight of the subpixel spatial term.

2.4. Temporal Term

Earlier archived images with high spatial resolution can provide prior information and spatial
patterns for the processing of subpixel location. However, the water body changes over time. In this
paper, transition probability P, which represents the change and transfer laws of the land-cover class,
is employed in the temporal term to maintain the correlation between the previous water body map
X f ormer and the current NDWI image Y. In the subpixel temporal neighborhood system Nt, the subpixel
at the current time is affected by its temporal neighbors at the former time. The degree of influence is
usually expressed as the transition probability. In general, the higher the transfer probability for a
certain class of subpixel, the lower the temporal energy function of this class should be. Therefore,
the objective function Utemporal can be modeled as follows:

Utemporal =
z2∑

j=1

D∑
i=1

∑
k∈Nt(x j,i)

−P
(
c2

(
x j,i

)∣∣∣∣c1(xk)
)

(12)

where c2
(
x j,i

)
is the class label of subpixel x j,i at the current time. c1(xk) is the class label of the fine pixel

xk at the previous time. P
(
c2

(
x j,i

)∣∣∣∣c1(xk)
)

is the transition probability from xk at the previous time to x j,i
at the current time. In MSST_SRM, P is calculated based on the global transition model by comparing
the previous water body map and current SR map pixel by pixel. Suppose the land cover class is C.
In this study, there are only two classes, so C equals to 2. Transition probability matrix T is composed
of C×C transition probabilities P.

T =

[
P(c2(•) = ω1

∣∣∣c1(•) = ω1) P(c2(•) = ω2
∣∣∣c1(•) = ω1)

P(c2(•) = ω1
∣∣∣c1(•) = ω2) P(c2(•) = ω2

∣∣∣c1(•) = ω2)

]
(13)

where c1(•) is the class label of the arbitrary fine pixel at the previous time, and c2(•) represents the
class labels of an arbitrary subpixel at the current time. P is calculated as [40].

P(c2(•) = ωb
∣∣∣c1(•) = ωa) =

∑n×z2

m=1 I
(
c1(xm) = ωa AND c2(xm) = ωb

)
∑n×z2

m=1 I(c1(xm) = ωa)
(14)

where I(c1(xm) = ωa) is an indicator function equaled to 1 when c1(xm) = ωa and 0 otherwise.

2.5. Implementation of MSST_SRM and Accuracy Validation

Generally, the process of obtaining the optimal solution of the MSST_SRM algorithm is to
minimize the objective function. In this paper, the iterative conditional model (ICM) is adopted as a
fast convergence algorithm to minimize global energy iteratively. The main steps of the MSST_SRM
are as follows:
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(1) Initialize the input data and parameters and generate NDWI images by calculating Band 6 and
Bands 17–20 from Sentinel-3 OLCI; set the proper values for scale factor z, key parameters α, δ,
and β, and window sizes w and W.

(2) Extract the endmember and then obtain fraction images by using the linear unmixing method.
Then, initialize the SR map based on it.

(3) Calculate the transition probability matrix.
(4) Update the subpixel labels iteratively all over the whole image. The class label for each subpixel

that contributes to the last iteration process is regarded as the final class label for this subpixel.
(5) Stop the iteration after the algorithm converges or the iteration exceeds the setting number;

otherwise, step 4 is repeated.

Kappa coefficient, overall accuracy (OA), PULC, and PCLC are employed to assess the accuracy
of the proposed method. PULC and PCLC represent the correct classification ratio of the unchanged
and changed pixels, respectively.

3. Experiments and Analysis

3.1. Experiment 1

3.1.1. Study Area

The Tibetan Plateau is located in central Asia, and it is the Earth’s broadest and highest highland.
With its rich water resources, the Tibetan Plateau is also called the “Water Tower of Asia”. The Tibetan
Plateau is not only the source of many large rivers in East Asia and Southeast Asia, but it also has
a great number of alpine lakes and is the most concentrated area of lakes in China. The study area
(Figure 3) is located in the Tibetan Plateau.
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3.1.2. Data Sources and Preprocessing

Three kinds of data were used in Experiment 1 (Figure 4) as inputs, namely, the current
Sentinel-3 image, previous Landsat image providing additional prior information for the processing of
subpixel locating, and current Landsat image used for model validation. Specifically, the Sentinel-3A
OLCI image was acquired on 25 July 2019 and downloaded from the European Space Agency
(https://scihub.copernicus.eu). The Sentinel Toolboxes of Sentinel Application Platform (SNAP) is
used to preprocess the Sentinel-3A image for cloud detection, atmospheric correction, and coordinate
transformation. Image correction for atmospheric effects (iCOR) is used for OLCI Sentinel-3 atmospheric
correction. The coverage area of the Sentinel-3A image is 12 × 12 km, containing 40 × 40 pixels and
21 bands. The two Landsat images were obtained from the United States Geological Survey (USGS)
Earth Explorer (https://earthexplorer.usgs.gov). The previous image of Landsat-5 was obtained for
28 August 2009, and the reference image of Landsat-8 was acquired on 25 September 2019. The Landsat
acquisition period was the same as the Sentinel-3A image in the summer season to ensure the same
water level in the Sentinel-3A image. The two Landsat images were divided into water and nonwater
classes to extract water body maps and they contained 400 × 400 pixels and 9 bands. The changed
pixels of water accounted for 11.31% of all water pixels.
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Figure 4. Data used in Experiment 1: (a) current Sentinel-3A OLIC image, 2019; (b) previous water
body map (Landsat-5, 2009); (c) reference water body map (Landsat-8, 2019).

Model parameters were initialized after data preprocessing. The pixel- and subpixel-based
neighborhood window sizes were both set to 7, which indicates that the center subpixel has 48 neighboring
pixels and subpixels. The value of scale factor z was 10. Weighting coefficients of α, δ, and β were gained
by trying and testing. Kappa coefficient, overall accuracy (OA), PULC, and PCLC were employed to
calculate the accuracy of the result.

3.1.3. Results and Analysis

Four additional approaches, namely, hard classification (HC), MSS_SRM, MCT_SRM, and MST_SRM
were used for comparison. HC is a pixel-based method that labels the principal component class with the
pixel class label according to the fraction images. MSS_SRM is an SRM-based method with a multiscale
spatial term, but it uses only one single remotely sensed image regardless of the temporal term.
MCT_SRM and MST_SRM are methods based on spatiotemporal super-resolution mapping (STSRM),
but they use only single scale spatial dependence. Specifically, MCT_SRM adopts a pixel-based
spatial dependence without considering its subpixel spatial neighbors, while MST_SRM utilizes
subpixel-based spatial dependence. The resultant water body maps, generated through the different
methods, are shown in Figure 5. Table 1 presents the confusion matrices of the five different methods.
Based on these confusion matrices, the corresponding quantitative results of these five different
methods are obtained, as shown in Table 2.

https://scihub.copernicus.eu
https://earthexplorer.usgs.gov
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Figure 5. Resultant water body maps of the different methods for Tibet Plate Lake: (a) reference;
(b) hard classification (HC); (c) MSS_SRM; (d) MST_SRM; (e) MSS_SRM; (f) multiscale spatiotemporal
super-resolution mapping (MSST_SRM).

From the visual and qualitative perspective of the above results, the MSST_SRM-based method is
significantly superior to the other four methods. In Figure 5b, the resultant water body map of the
HC-based method has many jagged boundaries and shows poor continuity because, in HC, only pixel
scale land cover information is considered, making it easy to lose spatial details. In Figure 5c, multiscale
maximal spatial dependence was adopted in MSS_SRM, which considers the spatial neighborhood
relationship at both pixel and subpixel scales. The resultant water body map of MSS_SRM becomes
locally oversmoothed because of the multispatial dependence model and lack of temporal term. Thus,
while the MCT_SRM method can provide a relatively continuous water body map, it contains many
discontinuous speckles because of the lack of spatial constraint at the subpixel level (Figure 5d).
Compared with the three previously mentioned methods, the resultant water body map of MST_SRM
has better visual results (Figure 5e) and higher resulting accuracy (Table 2). However, some detailed
information on the resultant water body map in Figure 5e was lost, especially for the linear features
and small water blocks (highlighted by red circles).

By contrast, as shown in the red circle, the resultant water body map generated by MSST_SRM
(Figure 5f) can maintain better spatial patterns and water structure information than the other four
results. Moreover, MSST_SRM also had the highest quantitative evaluation results (Table 2). The main
reason for the good results is that the MSST_SRM method considers multiscale spatial dependence
and additional prior temporal information. With the help of a former water body map of Landsat-5,
a valuable spatial pattern can be provided for the current Sentinel-3 image. For unchanged areas,
the class label of the subpixels can be obtained directly from the former water body map of Landsat-5
of 2009. Thus, using multiscale spatial dependence, the neighboring subpixels and pixels can provide
prior spatial information for the center subpixel.
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Table 1. Confusion matrices of the different methods for Tibet Plate Lake.

Methods Water Nowater

HC
water 64,019 10,681

nonwater 5740 79,560

MSS_SRM
water 53,781 2164

nonwater 15,978 88,077

MCT_SRM
water 57,607 118

nonwater 12,152 90,123

MST_SRM
water 61,503 393

nonwater 8256 89,848

MSST_SRM
water 62,296 439

nonwater 7463 89,802

Table 2. Accuracy statistics of the different methods for Tibet Plate Lake.

Methods Kappa OA(%) PULC(%) PCLC(%)

HC 0.7930 89.74 91.03 64.83
MSS_SRM 0.7642 88.67 91.60 32.07
MCT_SRM 0.8410 92.33 96.87 4.82
MST_SRM 0.8887 94.59 99.46 0.65
MSST_SRM 0.8984 95.06 99.99 4.51

The proposed approach was compared with a previous approach, which was also calculated
for Tibet Plate Lake. Wang et al. [36] used a USWBM method based on a spectral water index to
produce a 30-m water body map from the Sentinel-3A image and obtained optimal results with kappa
= 0.8430 and OA = 92.37%. By contrast, MSST_SRM generated better results, with kappa = 0.8984 and
OA = 95.06%, which indicates that MSST_SRM can produce better results closer to the reference water
body maps.

3.2. Experiment 2

3.2.1. Study Area

A Sentinel-3 OLCI image and Landsat multispectral images (Figure 6), taken over at Huangshi City,
were employed in this experiment to further explore the proposed MSST_SRM method. Daye Lake is
located in the southeast of Daye city; it crosses Daye city, Yangxin county, the Xisai mountain area,
and the development zone of Huangshi and then flows into the Yangtze River from west to east at the
Sigu floodgate. Daye Lake is rich in natural bait and suitable for fish and algae reproduction, which
makes it an important water source for aquatic economic plants and fishery breeding.
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Comparative experiments among HC, MSS_SRM, MCT_SRM, MST_SRM, and MSST_SRM were 
conducted to verify the proposed MSST_SRM method for Daye Lake (Figure 8). Confusion matrices 
of the different methods are showed in Table 3. Four quantitative statistical results were adopted to 

Figure 6. Original image of Daye Lake.

3.2.2. Data Sources and Preprocessing

The experiment was implemented with the Sentinel-3A OLCI image acquired on 25 July 2019 and
two Landsat images acquired on 29 August 1997 and 25 July 2019 (Figure 7). The Landsat-5 TM image
from 1997 was divided into nonwater and water classes and used to offer additional prior information
for the processing of subpixel location. The Landsat-8 OLI image from 2019 was also classified into two
categories and used as a reference water body map. The acquisition and data preprocessing methods
of these three images are the same as those in Experiment 1. The study area in the Sentinel-3A OCLI
image contains 70 × 40 pixels and 21 bands. The two Landsat images contain 700 × 400 pixels and
9 bands. Scale factor z was set to 10 and the neighborhood window of subpixels and pixels was set to 7.
The changed pixels of water accounted for 32.63% of all water pixels.
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3.2.3. Results and Analysis

Comparative experiments among HC, MSS_SRM, MCT_SRM, MST_SRM, and MSST_SRM were
conducted to verify the proposed MSST_SRM method for Daye Lake (Figure 8). Confusion matrices of
the different methods are showed in Table 3. Four quantitative statistical results were adopted to assess
the results (Table 4). Tests and errors were used to achieve the best value of the weighting coefficients.
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The comparison maps in Figure 8 show that the results of MSST_SRM can maintain better water
structure. Results in Figure 8b have boundaries with many jags and low continuity because the HC
method classification operation is calculated only on the pixel scale. The resultant water body map
produced by MSS_SRM contains many over-smoothed patches (Figure 8c) because of the lack of
temporal term. The kappa coefficient and OA of MCT_SRM have a higher value than those of HC
and MSS_SRM (Table 4), and thus, the resultant water body map generated by MCT_SRM has low
continuity (Figure 8d). In Figure 8e, the resultant water body map contains many speckle-like artifacts.
Although MCT_SRM and MST_SRM methods have employed the former finer resolution water body
map to learn the spatial pattern, the resultant water body maps still did not perform well because both
methods only applied single scale spatial dependence either on the pixel scale or on the subpixel scale.

Compared with Tibet Plate Lake, the water in Daye Lake has more mixture, such as algae and
sediments, which may be reflected in the NIR, making it more difficult to extract water from Daye Lake.
However, among the above methods, the resultant water body map generated by MSST_SRM has the
best performance (Figure 8f) and the highest OA and kappa coefficient values (Table 4). Qualitative
and quantitative results show that multiscale spatial dependence and additional temporal terms are
significant in increasing the accuracy of the results.
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Table 3. Confusion matrices of the different methods for Daye Lake.

Methods Water Nonwater

HC
water 65,342 13,658

nonwater 8212 192,788

MSS_SRM
water 64,904 12,762

nonwater 8650 193,684

MCT_SRM
water 64,354 9349

nonwater 9200 197,097

MST_SRM
water 61,739 7562

nonwater 11,815 198,884

MSST_SRM
water 64,149 8668

nonwater 9405 197,778

Table 4. Accuracy statistics of the different methods for Daye Lake.

Methods Kappa OA(%) PULC(%) PCLC(%)

HC 0.8031 92.18 94.64 66.08
MSS_SRM 0.8061 92.35 94.74 66.88
MCT_SRM 0.8291 93.38 97.60 48.31
MST_SRM 0.8180 93.08 98.81 31.96

MSST_SRM 0.8328 93.55 98.01 45.88

4. Discussion

4.1. Influences of Weighting Coefficients among Spectral, Multispatial, and Temporal Terms

The objective function includes spectral, multispatial, and temporal terms. Weighting coefficients
α and β, which are used to balance the three big terms, play significant roles in water body mapping.
α is a spatial weight coefficient that adjusts the contribution value of the whole multispatial term.
The higher the value of α, the greater the spatial dependence among pixels. β is used as a temporal
weigh coefficient. A higher value of β means the previous water body map has a greater effect on
the results.

Different water body maps can be generated by using different αs and βs. Four typical water
body maps are displayed here to elaborate on the effects of the different coefficient combinations on the
results. In Figure 9a, the temporal coefficient β is equal to 0, indicating the ineffectiveness of temporal
dependence. Moreover, spatial coefficient α was at a low value of 0.01. Finally, the resultant water
body map in Figure 9a has many jagged boundaries and poor continuity because of the absence of prior
information and imperfect spatial pattern. In Figure 9b, α was set to 1, and β was set at a low value of
0.1, which means the previous water body map only plays a minor role in the process of water body
generation and that the results would be extremely dependent on the spatial term. As a consequence,
the results were over-smoothed, and the linear water body features could not be classified correctly.
In Figure 9c, the temporal coefficient β was set to 1. Spatial coefficient α was set to 0, indicating that
the multispatial term was unavailable in such a situation. The resultant water body map contained
many speckle-like artifacts because of the missing constraint of spatial dependence. By contrast,
with appropriate weight coefficients, the results displayed in Figure 9d had the best performance,
with a better spatial pattern that not only represented linear water body features correctly but also
contained fewer speckle-like artifacts.
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The quantitative accuracy values of the proposed MSST_SRM method are shown in Table 5.
When β is set to 0, no matter how α increases, the kappa coefficient will not exceed 0.76 and OA
remains at a relatively low value because, when β equals 0, the temporal term will be useless in the
object function, which would result in great uncertainty in subpixel location. Meanwhile, if the value of
α is fixed, the kappa coefficient, PULC, and OA will be higher when β is higher. However, the accuracy
values tend to be stable. After that, the accuracy values remain almost unchanged, no matter how
much β increases. The final optimal parameters were obtained by trial and error. In general, the value
of PULC is higher than PCLC, especially when β is higher. The main reason for this result is that the
previous finer water body map is ineffective for changed pixels. Therefore, the correct classification
probability of changed pixels is lower than for unchanged pixels.

Table 5. Accuracy statistics of the MSST_SRM method with different weighting coefficients (δ = 0.6).

Result
Statistic

α
0 0.01 0.1 1 10 100

β

Kappa

0 0.7307 0.7346 0.7506 0.7642 0.7560 0.7595
0.01 0.7414 0.7458 0.7605 0.7653 0.7590 0.7593
0.1 0.7757 0.7776 0.7825 0.7731 0.7596 0.7593
1 0.8418 0.8423 0.8409 0.8181 0.7734 0.7603

10 0.8960 0.8980 0.8960 0.8961 0.8712 0.7716
100 0.8979 0.8980 0.8980 0.8980 0.8984 0.8773

OA (%)

0 87.02 87.21 87.99 88.66 88.37 88.51
0.01 87.54 87.75 88.46 88.71 88.44 88.45
0.1 89.20 89.28 89.53 89.09 88.47 88.46
1 92.36 92.38 92.31 91.24 89.13 88.51

10 94.94 94.95 94.95 94.95 93.77 89.05
100 95.04 95.04 95.04 95.04 95.06 94.06

PULC
(%)

0 88.11 89.92 90.76 91.60 91.59 91.79
0.01 90.53 90.76 91.37 91.68 91.64 91.73
0.1 97.92 92.76 92.89 92.22 91.72 91.74
1 96.73 96.74 96.64 95.28 92.55 91.80

10 99.86 99.86 99.86 99.87 98.38 92.53
100 99.96 99.97 99.97 99.97 99.99 98.70

PCLC
(%)

0 31.74 34.03 35.77 31.07 26.39 25.28
0.01 29.91 29.81 32.33 31.50 26.24 25.16
0.1 21.34 22.19 24.68 28.79 25.89 25.15
1 8.00 8.28 8.89 13.41 23.15 24.94

10 0.13 0.13 0.13 0.09 4.79 21.78
100 0.01 0.01 0.01 0.01 4.51 4.58
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4.2. Influences of Change Rate

Land cover changes always occur, and the change rate of the water body should be considered
in practical applications. The change rate of the water body means the proportion of changed water
pixels in all water pixels, which is calculated by comparing the current image with the previous image.

In general, the accuracy of the results, such as kappa and OA, is determined by the classification
precision of changed and unchanged water bodies. For unchanged pixels, the class labels can be
inherited from the former water body map directly. Therefore, the result accuracy will be higher when
the change rate is smaller. For changed pixels, the spatial pattern of the water body is obtained from the
current image and the spatial dependence rule. Obviously, in the processing of SRM, the uncertainty
of changed pixels is greater than with the unchanged ones.

In this study, the change rate of water in the two experiments is 11.31% and 32.63%, respectively.
The time interval of the former and latter images in Experiment 2 is 22 years. Even so, the two results
show that the MSST_SRM method can still obtain the best result among the contrast experiment
methods (HC, MSS_SRM, MCT_SRM, and MST_SRM). The above experiments also suggest the
following: (1) A higher precision water body map is more likely to be produced at a smaller change
rate because the proposed MSST_SRM method usually gains more accurate results for unchanged
pixels than changed ones; (2) among the three STSRM-based methods that employ the former fine
resolution water body map as prior information, the proposed MSST_SRM method is superior to the
other methods (MCT_SRM and MST_SRM) in quantity and quality, thereby indicating that with the
help of multiscale spatial dependence, MSST_SRM can provide better spatial patterns and maintain
the water structure well.

The changed and unchanged water body classifications affect the resultant water body map.
Therefore, to achieve higher result accuracy, the trade-off between changed and unchanged pixels
should be considered. First, a balance should be made between the previous finer water body map
and the current low-resolution image. Using training data to adjust the weighting parameters is a
significant and credible way to obtain balance and gain higher accuracy. Second, using multiscale
spatial dependence is an effective and promising means of promoting the performance of the current
image. Third, it is better to use Sentinal-3 OLCI and Landsat-8 images acquired at the nearest time
and in the same season to reduce the water change rate and to make full use of the prior information
provided by the previous high spatial resolution remotely sensed images. In future research, adopting
a series of previous finer resolution water body maps to acquire land-cover change rules may be a
worthwhile method for further improving the result accuracy of unchanged pixels.

5. Conclusions

In this work, a multiscale spatiotemporal super-resolution method was proposed to produce a
water body map with high spatiotemporal resolution from Sentinel-3 images. The proposed MSST_SRM
method not only extends the application field of Sentinel-3 but also provides data support for water
monitoring and water mapping. First, to ensure the stable performance of the proposed algorithm
under different water features, MSST_SRM utilizes four combined NDWI images as input data from
the band calculations of the Sentinel-3 image. Then, MSST_SRM unites the spectral, multispatial,
and temporal terms into one objective function, where the spectral term is established according to the
MRF criterion; the multispatial term is realized by the maximal spatial dependence principle on the
pixel and subpixel scales, and the temporal term is constructed through the transition probability matrix
between the latter and former images. As a consequence, by using temporal dependence, the spatial
pattern uncertainty caused by a single image can be effectively reduced. With the help of multiscale
spatial dependence, the integrity and spatial continuity of the entire image can be maintained well.

Two experiments at Tibet Plate Lake and Daye Lake were employed to validate the performance
of MSST_SRM. Compared with the pixel-based method (HC), the no-temporal-information SRM-based
method (MSS_SRM), and the two STSRM-based methods of single scale spatial dependence (MST_SRM
and MCT_SRM), the proposed MSST_SRM method could generate a water body map with high result
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accuracy. The comparable visual results and higher precision values of the new MSST_SRM method
show that MSST_SRM could be a promising approach in producing high spatiotemporal water body
maps from Sentinel-3 OLCI images.
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