Modelling the Role of SuDS Management Trains in Minimising Flood Risk, Using MicroDrainage
Abstract
:1. Introduction
1.1. Sustainable Drainage Systems Management Train
1.2. Sustainable Drainage Management Trains: Barriers to Their Implementation
2. Methods
Analysis of Sustainable Drainage Systems in a Management Train
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dearden, R.A.; Price, S.J. A proposed decision-making framework for a national infiltration SuDS map. Manag. Environ. Qual. Int. J. 2012, 23, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Shuster, W.D.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semádeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Ballard, B.W.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual (C753) 2015; CIRIA: London, UK, 2015. [Google Scholar]
- Jefferies, C.; Duffy, A.; Berwick, N.; McLean, N.; Hemingway, A. Sustainable Urban Drainage Systems (SUDS) treatment train assessment tool. Water Sci. Technol. 2009, 60, 1233–1240. [Google Scholar] [CrossRef]
- O’Sullivan, J.; Bruen, M.; Purcell, P.J.; Gebre, F. Urban drainage in Ireland—Embracing sustainable systems. Water Environ. J. 2011, 26, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Lashford, C.; Charlesworth, S.; Warwick, F.; Blackett, M. Deconstructing the sustainable drainage management train in terms of water quantity—Preliminary results for Coventry, UK. CLEAN Soil Air Water 2014, 42, 187–192. [Google Scholar] [CrossRef]
- Susdrain. Available online: https://www.susdrain.org/case-studies/ (accessed on 2 February 2020).
- Melville-Shreeve, P.; Cotterill, S.; Grant, L.; Arahuetes, A.; Stovin, V.; Farmani, R.; Butler, D. State of SuDS delivery in the United Kingdom. Water Environ. J. 2017, 32, 9–16. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Lamond, J.E.; Thorne, C.R. Recognising barriers to implementation of Blue-Green Infrastructure: A Newcastle case study. Urban Water J. 2017, 14, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Booth, C.; Charlesworth, S. An overture of sustainable surface water management. In Sustainable Surface Water Management Systems: A Handbook for SuDS, 1st ed.; Charlesworth, S., Booth, C., Eds.; Wiley Blackwell: London, UK, 2016; Chapter 1; pp. 3–10. [Google Scholar]
- Wade, R.; McLean, N. Multiple benefits of green infrastructure. In Water Resources in the Built Environment: A Handbook for SuDS, 1st ed.; Charlesworth, S., Booth, C., Eds.; Wiley Blackwell: London, UK, 2016; Chapter 24; pp. 319–335. [Google Scholar]
- Jones, P.; Macdonald, N. Making space for unruly water: Sustainable drainage systems and the disciplining of surface runoff. Geoforum 2007, 38, 534–544. [Google Scholar] [CrossRef]
- Stovin, V.; Moore, S.L.; Wall, M.; Ashley, R.M. The potential to retrofit sustainable drainage systems to address combined sewer overflow discharges in the Thames Tideway catchment. Water Environ. J. 2012, 27, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Housing, Communities & Local Government. Planning for the Future. 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/872091/Planning_for_the_Future.pdf (accessed on 5 June 2020).
- Lowe, J.A.; Bernie, D.; Bett, P.; Bricheno, L.; Brown, S.; Calvert, D.; Clark, R.; Eagle, K.; Edwards, T.; Fosser, G.; et al. UKCP18 Science Overview Report. 2018. Available online: https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Overview-report.pdf (accessed on 30 August 2020).
- Sayers, P.; Horritt, M.; Penning-Rowsell, E.; McKenzie, A. Climate Change Risk Assessment 2017 Projections of future flood risk in the UK. 2015. Available online: https://www.theccc.org.uk/wp-content/uploads/2015/10/CCRA-Future-Flooding-Main-Report-Final-06Oct2015.pdf.pdf (accessed on 30 August 2020).
- Bastien, N.; Arthur, S.; Wallis, S.; Scholz, M. The best management of SuDS treatment trains: A holistic approach. Water Sci. Technol. 2010, 61, 263–272. [Google Scholar] [CrossRef]
- Innovyze. MicroDrainage v2019.1; Innovyze: Newbury, UK, 2019. [Google Scholar]
- Kellagher, R. Preliminary Rainfall Runoff Management for Developments Report SC030219; Environment Agency: Bristol, UK, 2013. [Google Scholar]
- Boorman, D.B.; Hollis, J.M.; Lilly, A. Hydrology of Soil Types: A Hydrologically Based Classification of the Soils of the United Kingdom; IH Report No. 126; Institute of Hydrology: Wallingford, UK, 1995. [Google Scholar]
- Natural Environment Research Council. Flood Studies Report; NERC: London, UK, 1975. [Google Scholar]
- British Standard Institution (BSI) BS7533–13:2009. Pavements Constructed with Clay, Natural Stone or Concrete Pavers; British Standards Institution: London, UK, 2009. [Google Scholar]
- Stovin, V. The potential of green roofs to manage Urban Stormwater. Water Environ. J. 2009, 24, 192–199. [Google Scholar] [CrossRef]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Department for Environment, Food and Rural Affairs. Non-Statutory Technical Standards for Sustainable Drainage Systems. 2015. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/415773/sustainable-drainage-technical-standards.pdf (accessed on 3 February 2020).
- Yazdi, J. Optimal operation of urban storm detention ponds for flood management. Water Resour. Manag. 2019, 33, 2109–2121. [Google Scholar] [CrossRef]
- Scholz, M.; Grabowiecki, P. Review of permeable pavement systems. Build. Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Office for National Statistics. Rural Population and Migration. 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/862320/Rural_population_and_migration_Jan_20.pdf (accessed on 16 April 2020).
- Miró, A.; Hall, J.; Rae, M.; O’Brien, C.D. Links between ecological and human wealth in drainage ponds in a fast-expanding city, and proposals for design and management. Landsc. Urban Plan. 2018, 180, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Gaborit, E.; Muschalla, D.; Vallet, B.; Vanrolleghem, P.; Anctil, F. Improving the performance of stormwater detention basins by real-time control using rainfall forecasts. Urban Water J. 2013, 10, 230–246. [Google Scholar] [CrossRef]
- Potter, K.; Vilcan, T. Managing urban flood resilience through the English planning system: Insights from the ‘SuDS-face’. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190206. [Google Scholar] [CrossRef] [Green Version]
- Fenner, R.A.; Andrew, R.F. Spatial evaluation of multiple benefits to encourage multi-functional design of sustainable drainage in blue-green cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.B.; Lundy, L. Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. J. Environ. Manag. 2016, 183, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Wihlborg, M.; Sörensen, J.; Olsson, J.A. Assessment of barriers and drivers for implementation of blue-green solutions in Swedish municipalities. J. Environ. Manag. 2019, 233, 706–718. [Google Scholar] [CrossRef]
- Backhaus, A.; Dam, T.; Jensen, M.B. Stormwater management challenges as revealed through a design experiment with professional landscape architects. Urban Water J. 2012, 9, 29–43. [Google Scholar] [CrossRef]
- Tsavdaris, A.; Mitchell, S.; Williams, J.B. Computational fluid dynamics modelling of different detention pond configurations in the interest of sustainable flow regimes and gravity sedimentation potential. Water Environ. J. 2014, 29, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, Y.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C.; Harbor, J.M. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Sci. Total. Environ. 2019, 665, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Walker, S.; Harle, T.; Naismith, I. Cost-Benefit of SUDS Retrofit in Urban Areas. 2007. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290993/scho0408bnxz-e-e.pdf (accessed on 3 February 2020).
- Stovin, V.; Vesuviano, G.; Kasmin, H. The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol. 2012, 414, 148–161. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- De-Ville, S.; Menon, M.; Jia, X.; Reed, G.; Stovin, V. The impact of green roof ageing on substrate characteristics and hydrological performance. J. Hydrol. 2017, 547, 332–344. [Google Scholar] [CrossRef]
- Charlesworth, S. A review of the adaptation and mitigation of global climate change using sustainable drainage in cities. J. Water Clim. Chang. 2010, 1, 165–180. [Google Scholar] [CrossRef]
- Hoang, L.; Fenner, R.A. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water J. 2015, 13, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Stagge, J.H.; Jamil, E.; Kim, H. Hydraulic performance of grass swales for managing highway runoff. Water Res. 2012, 46, 6775–6786. [Google Scholar] [CrossRef]
- Winston, R.J.; Powell, J.T.; Hunt, W.F. Retrofitting a grass swale with rock check dams: Hydrologic impacts. Urban Water J. 2018, 16, 404–411. [Google Scholar] [CrossRef]
- Allen, D.; Olive, V.; Arthur, S.; Haynes, H. Urban sediment transport through an established vegetated swale: Long term treatment efficiencies and deposition. Water 2015, 7, 1046–1067. [Google Scholar] [CrossRef] [Green Version]
- Fach, S.; Engelhard, C.; Wittke, N.; Rauch, W. Performance of infiltration swales with regard to operation in winter times in an Alpine region. Water Sci. Technol. 2011, 63, 2658–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woznicki, S.A.; Hondula, K.L.; Jarnagin, S.T. Effectiveness of landscape-based green infrastructure for stormwater management in suburban catchments. Hydrol. Process. 2018, 32, 2346–2361. [Google Scholar] [CrossRef] [Green Version]
- García-Serrana, M.; Gulliver, J.S.; Nieber, J.L. Non-uniform overland flow-infiltration model for roadside swales. J. Hydrol. 2017, 552, 586–599. [Google Scholar] [CrossRef]
- Marsh, T.; Kirby, C.; Muchan, K.; Barker, L.; Henderson, E.; Hannaford, J. The Winter Floods of 2015/2016 in the UK—A Review; Centre for Ecology and Hydrology: Wallingford, UK, 2016. [Google Scholar]
- Ellis, J.B.; Viavattene, C. Sustainable Urban drainage system modeling for managing urban surface water flood risk. CLEAN Soil Air Water 2013, 42, 153–159. [Google Scholar] [CrossRef]
Device | Total Area (m2) | % of Total Land Take | Total Volume (m3) |
---|---|---|---|
Detention basin | 2189 | 4.38 | 4658 |
Green roof | 10,170 | 20.34 | 1017 |
Porous Pavement | 3380 | 6.76 | 1568 |
Swale | 1692 | 3.38 | 1322 |
Devices Used |
---|
Swale |
Green roof and swale |
Porous pavement and swale |
Green roof, porous pavement and swale Swale and detention basin |
Green roof, swale and detention basin |
Porous pavement, swale and detention basin |
Green roof, porous pavement, swale and detention basin |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashford, C.; Charlesworth, S.; Warwick, F.; Blackett, M. Modelling the Role of SuDS Management Trains in Minimising Flood Risk, Using MicroDrainage. Water 2020, 12, 2559. https://doi.org/10.3390/w12092559
Lashford C, Charlesworth S, Warwick F, Blackett M. Modelling the Role of SuDS Management Trains in Minimising Flood Risk, Using MicroDrainage. Water. 2020; 12(9):2559. https://doi.org/10.3390/w12092559
Chicago/Turabian StyleLashford, Craig, Susanne Charlesworth, Frank Warwick, and Matthew Blackett. 2020. "Modelling the Role of SuDS Management Trains in Minimising Flood Risk, Using MicroDrainage" Water 12, no. 9: 2559. https://doi.org/10.3390/w12092559
APA StyleLashford, C., Charlesworth, S., Warwick, F., & Blackett, M. (2020). Modelling the Role of SuDS Management Trains in Minimising Flood Risk, Using MicroDrainage. Water, 12(9), 2559. https://doi.org/10.3390/w12092559