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Abstract: The shortage of extreme rainfall data gives substantial uncertainty to design rainfalls and
causes predictions for torrential rainfall to deviate strongly from adopted probability distributions
used in river planning. These torrential rainfalls are treated as outliers which existing studies do
not evaluate. However, probability limit method test which its acceptance region expresses with
high accuracy the range where observed ith order statistics could realize. Confidence interval which
quantifies uncertainty of adopted distributions can be constructed by assuming that these critical
values in both sides of the adopted region follow the same function form applied to actual observed
data. Furthermore, its validity is proved through comparison of confidence interval derived from
ensemble downscaling calculations. In addition, these critical values are almost in accordance with
outliers in samples from the ensemble downscaling calculations. Therefore, prediction interval which
expresses the range that an unknown observed datum can take is constructed by extrapolating
the critical values for limit estimation of a future datum. In this paper, quantification method of
uncertainty of design rainfall and occurrence risk of outliers in the traditional framework, using the
proposed confidence interval and prediction interval, is shown. Moreover, their application to future
climate by using Bayesian statistics is explained.

Keywords: probability limit method test; confidence interval; prediction interval; uncertainty;
climate change; future projection database

1. Introduction

In traditional flood control management, probable rainfall is estimated by conducting statistical
analysis of extreme rainfall data accumulated through rainfall observation over several decades.
Extreme rainfall data can be divided into two types. An Annual Maximum Series is a statistical sample
constructed of annual maximum rainfalls extracted from observed time series of rainfalls. A Peaks Over
Threshold data set is a statistical sample constructed of extreme values exceeding a given threshold.
Statistical analysis of such data is called hydrological frequency analysis [1]. The mathematical part
of these hydrological frequency analysis methods is based on extreme value theory, whose basis
was constructed by Fisher and Tippet [2]. They proved that the maximum values of any sample
asymptotically approach one of three types of extreme value distribution. These three types of extreme
value distribution are the Gumbel distribution, the Frechet distribution, and the negative Weibull
distribution in the present. Gumbel [3] also adopted a type I maximum asymptotic distribution
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for expressing the probability distribution of flood discharge. This research of Gumbel’s pioneered
hydrological frequency analysis in the context of extreme value theory. Later, Gnedenko [4] proved
a necessary and sufficient condition in order for probability distributions to belong to a domain of
attraction of extreme value distribution. In addition, von Mises [5] and Jenkinson [6] proposed a
generalized extreme value distribution, which can express each of the three types of extreme value
distribution noted above. Gumbel’s “Statistics of Extremes” [7] summarized the main research results
of extreme value theory of that era. Coles [8] and de Haan [9] illustrated subsequent developments
of extreme value theory. Based on this previous research, modern hydrological frequency analysis is
conducted as follows. First, several probability distributions are selected as candidates for frequency
analysis. Second, probability distributions selected as candidates in the first step are applied to
extreme hydrological data such as extreme rainfall or extreme river discharge, and parameters of these
probability distributions are estimated. Third, estimated probability distributions are evaluated in a
comparative framework based on goodness-of-fit criteria and stability [10]. Through this procedure,
a single probability distribution is adopted for frequency analysis. Finally, a T-year hydrological
quantity is estimated based on the adopted probability distribution. Although this procedure is solidly
established, statistical estimation in hydrological frequency analysis involves substantial uncertainty
because the total number of observed extreme rainfall data are limited, ranging from about several tens
to 200. This shortage of extreme rainfall data makes it difficult to evaluate torrential heavy rainfalls.
Takara [11] pointed out that the observed data for torrential rainfalls deviate strongly from adopted
probability distributions in river planning. In addition, the return period for these observed data
calculated by the adopted probability distribution is thousands of years to tens of thousands of years,
which can be orders of the magnitude longer than the observation data set length. For an example of
this difficulty, Figure 1 shows observed data for the annual maximum daily rainfall for 36 years at Ikari
observatory in the Tone river basin of Japan, along with a Gumbel distribution fitted to these observed
data and an observed datum for a heavy rainfall event in 2015. Based on this figure, the observed
datum of heavy rainfall event deviates strongly from the adopted Gumbel distribution, and the return
period for this datum is 1000 years. Observed data with such a return period are often treated as
outliers [12], because major river planning in Japan is designed based on hydrological values with
return periods of about 100 to 200 years [11]. Design return periods in major river basins of various
countries are shown in Table 1 [13–18]. These data make clear that each case of river planning involves
difficulty in managing extreme hydrological events with return periods of several thousands of years,
especially in Japan. Furthermore, the estimation error increases by extrapolation of the probability
distribution when estimating probable hydrological quantities corresponding to long-term return
periods exceeding the observation period. Especially, the flood control management of The Netherlands
uses the traditional concept of return period, considering the effects of climate change and economic
development as global warming proceeds [19]. Meanwhile, in recent years in Japan, rainfall events of
heaviness exceeding recorded maximum have occurred frequently, causing severe damage to society.
Therefore, it is necessary to formulate flood control management in the face of the intensification of
heavy rainfall caused by climate change accompanied with global warming. Therefore, in this research,
we propose evaluation method of uncertainty of design rainfall and prediction method for torrential
rainfall. These methods are constructed by using the theory of probability limit method test [20] which
can theoretically estimate the range where observed data could realize (acceptance region), including
outliers in traditional hydrological frequency analysis. In addition, an application of these methods to
future climate by incorporation of ensemble climate projection data using Markov Chain Monte Carlo
method is shown in this paper.
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Figure 1. Observed data for annual maximum daily precipitation for 36 years at Ikari observatory in 
the Tone river basin, with a Gumbel distribution fitted to these observed data and an observed datum 
for a heavy rainfall event in 2015. 

Table 1. Design return periods in major river basins of various countries. 

Country Name Targeted River Basin Planned Return Period 
United States Lower basin of Mississippi river About 500 year 

England Thames river 
1000 year  

(Tidal area including London) 

Netherlands Primary flood defense 2000~10,000 year  
(Coastal area) 

Japan Ara river 200 year 
In existing studies, to evaluate heavy rainfalls treated as outliers or record-breaking rainfall, 

occurrence probabilities of these rainfalls are often analyzed. For example, Itokawa et al. [21] 
calculated the distribution of the number of new records from each observatory in Japan and 
compared the derived distribution to the theoretical one, demonstrating a good accordance between 
the two distributions. Yamada et al. [22] investigated the number of annual maxima for daily and 3-
day total precipitation measurements in Japan, discussing the effects of climate change. In addition, 
to manage torrential rainfall in future climate, a flood risk evaluation method using an ensemble 
climate projection database has been proposed to deal with the intensification of heavy rainfall 
accompanied by climate change [23–26]. An ensemble climate projection database contains numerous 
calculated results for meteorological values for past and future climate. Such database can be 
interpreted as rainfall data possibly experienced in the past and to be experienced in the future. 
Yamada et al. [23,25,26] conducted downscale calculations of the ensemble climate projection 
database d4PDF and constructed a horizontal, high-resolution database of resolution high enough to 
evaluate future rainfall characteristics. Ensemble downscaling calculations makes it possible to 
intercorporate actual observed data and simulation data to compensate for the shortage of observed 
data when considering flood control management. In traditional flood control management, the 
design rainfall is decided using only a sample of the observed data available. On the other hand, this 

Figure 1. Observed data for annual maximum daily precipitation for 36 years at Ikari observatory in
the Tone river basin, with a Gumbel distribution fitted to these observed data and an observed datum
for a heavy rainfall event in 2015.

Table 1. Design return periods in major river basins of various countries.

Country Name Targeted River Basin Planned Return Period

United States Lower basin of Mississippi river About 500 year

England Thames river 1000 year
(Tidal area including London)

The Netherlands Primary flood defense 2000~10,000 year
(Coastal area)

Japan Ara river 200 year

In existing studies, to evaluate heavy rainfalls treated as outliers or record-breaking rainfall,
occurrence probabilities of these rainfalls are often analyzed. For example, Itokawa et al. [21] calculated
the distribution of the number of new records from each observatory in Japan and compared the derived
distribution to the theoretical one, demonstrating a good accordance between the two distributions.
Yamada et al. [22] investigated the number of annual maxima for daily and 3-day total precipitation
measurements in Japan, discussing the effects of climate change. In addition, to manage torrential
rainfall in future climate, a flood risk evaluation method using an ensemble climate projection
database has been proposed to deal with the intensification of heavy rainfall accompanied by climate
change [23–26]. An ensemble climate projection database contains numerous calculated results for
meteorological values for past and future climate. Such database can be interpreted as rainfall data
possibly experienced in the past and to be experienced in the future. Yamada et al. [23,25,26] conducted
downscale calculations of the ensemble climate projection database d4PDF and constructed a horizontal,
high-resolution database of resolution high enough to evaluate future rainfall characteristics. Ensemble
downscaling calculations makes it possible to intercorporate actual observed data and simulation
data to compensate for the shortage of observed data when considering flood control management.
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In traditional flood control management, the design rainfall is decided using only a sample of the
observed data available. On the other hand, this horizontal, high-resolution database allows for rational
quantification of the design rainfall’s uncertainty caused by the shortage of observed data. The range
of this design rainfall uncertainty is defined as a confidence interval. As an example, Figure 2 shows
observed data of annual maximum 24-h rainfall in the Tokoro river basin (black points), a Gumbel
distribution fitted to the observed data (solid black line), a 95% confidence interval on past climate
(blue range), and a 95% confidence interval on future climate in which average global temperature
increases by 4K from the era of industrial revolution [23,25,26]. These confidence intervals can be
derived from a physical Monte Carlo method using
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Figure 2. Observed data for annual maximum 24-h rainfall in the Tokoro river basin (black points),
Gumbel distribution fitted to observed data (solid black line), 95% confidence interval on past climate
(blue range), and 95% confidence interval on future climate, based on downscale calculation. Data and
rendering based on previously published research [23,25,26].

Ensemble statistical samples from both the past and the +4K future of this horizontal,
high-resolution database. In the field of conventional mathematical statistics or frequency analysis,
confidence intervals are often expressed by numerical methods such as the jackknife or bootstrap
method [27]. Many of these conventional methods use an assumption of normality based on the central
limit theorem to estimate statistics. However, it can be difficult to treat a distribution of probable
rainfall as a normal distribution. It can also be problematic to assume a normal distribution for
T-year extreme rainfall given the limited extreme rainfall data available at present. Our proposed
confidence interval does not use above mentioned assumptions. On the other, to handle unsteadiness
caused by climate change, the nonstationary extreme value analysis is effective. Stationarity of
rainfall is assumed in traditional hydrological frequency analysis but prevents consideration of
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unsteadiness caused by climate change [27]. Therefore, in general, probability distributions that
dominate hydrological systems, such as rainfall, as modeled in traditional analysis, do not reflect
real-world change. In nonstationary analysis method, nonstationary extreme value distribution model
whose parameter is function of time is generally used. By this time-varying parameter, detecting
of unsteadiness of natural phenomenon and expressing time variation of T-year extremes can be
possible. However, increasing number of parameters concerning time might cause estimation error.
Detailed explanation of theory and models in nonstational frequency analysis are shown by Coles [8]
and Khaliq [28]. Recently, effectiveness of nonstationary analysis against climate change is shown
in existing studies through derivation nonstational T-year annual monthly temperature [29] and
future change of T-year annual maximum rainfall [30]. Moreover, large ensemble climate simulations
enable estimation of design hydrological quantity by using thousands of samples to delete substantial
uncertainty inherit estimated values. For example, Wiel et al. [31] simulates 2000 years by using global
climate model and global hydrological model for a present-day and 2 K warmer climate in the Paris
climate agreements [32] and evaluated T-year discharge by empirical distribution and stational extreme
value distribution constructed of simulated discharges to quantify future change of T-year discharge.
In addition, The Royal Netherlands Meteorological Institute [33] in the Netherlands has conducted
future projection for flood discharge in Rhine river and estimated T-year discharge based on empirical
distribution constructed of calculated discharge from large ensemble climate projections, according
to global warming scenarios. Here, we assume there still exists uncertainty in estimation, because
although ensemble climate projection data enable us to use thousands sample, initial conditions or
boundary conditions are reflected on actual observed information. Therefore, it can be said that
estimated values have uncertainty caused by finiteness of observed information. The frequency
analysis based on probability limit method test we propose can express this kind of uncertainty as
a form of acceptance region, for probability distribution constructed of a lot of data from ensemble
climate projections. On the other hand, there is the effective concept of prediction interval which can
evaluate observed data of torrential rainfall in future time. A prediction interval is defined as a range
determined by observed data into which future data are expected to fall. Considering this definition,
a prediction interval includes a distribution of a random variable expressing observed data for a
future time with a given confidence coefficient. Many parts of the theoretical framework of prediction
intervals are provided by Takeuchi [34]. On the other hand, little previous research has focused on
prediction intervals for extreme values. In previous research, prediction intervals for extreme values
have been constructed using the assumption of a normal distribution, a t-distribution, and so on,
for extreme values. However, as Kitano [35] pointed out, it may be preferable to adopt extreme value
distributions for probability distributions of extreme values, rather than a normal distribution or a
t-distribution. Recently, a construction method for prediction intervals of extreme values was provided
by Kitano [35]. The method proposed is superior to previous methods from the perspective that it
does not need an assumption of normality. Coles [36] and Kitano [37] proposed construction methods
for prediction distributions for extreme values by constructing a prior distribution for parameters of
the extreme value distribution and applying a Markov Chain Monte Carlo method to update more
rational prediction for extremes. In their research, outliers are considered as realized values in right tail
of prediction distribution or interval. Based on this concept, prediction possibility of outliers is shown
through prediction distribution or prediction interval constructed by MCMC which evaluates outliers
in prior information by incorporation of each obtainment of newly observed data. Considering these
previous studies, we newly incorporate ensemble climate projection data in MCMC method to make
rational estimation for heavy rainfall in future climate.

For solution against uncertainty caused by finiteness of observed extreme rainfall data, prediction
difficulty of torrential heavy rainfall in present and future situation, we used a probability limit
method test [20] to construct a new hydrological frequency analysis based on confidence intervals and
prediction interval that does not require any parametric assumptions as possible. The introduction
of confidence intervals allows risk in flood control management to be expressed by considering
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where a given rainfall datum lies within the confidence interval. In addition, this research, based
the construction methods for prediction intervals on the theory of the probability limit method test,
provides a theoretical framework for the estimation of scale and occurrence risk of heavy rainfall in
future. However, analysis based on confidence intervals and prediction intervals still requires an
assumption of stationarity, meaning that the probability characteristics of hydrological events do
not change as time proceeds. Therefore, confidence intervals and prediction intervals reflecting the
effects of climate change can be constructed by incorporating information from future projection data
into the updating of these intervals. This paper presents a method for deriving confidence intervals
and prediction intervals under a situation of progressive global warming by incorporating climate
projection data into extreme value distributions derived from past observed extreme rainfall data
currently available. Based on this update of confidence interval and prediction interval, uncertainty of
design rainfall and the magnitude of torrential rainfall itself in future climate is estimated.

The organization of this paper is as follows. Section 2 shows the mathematical theory of
confidence interval and prediction interval. Section 3 shows the detail of probability limit method
test and construction method of confidence interval and prediction interval based on this hypothesis
test theory. Section 4 shows estimation methods to construct extreme value distribution in future
climate, based on Markov Chain Monte Carlo method incorporating ensemble climate projection
data. Section 5 shows the results of validity evaluation of confidence interval based on the theory of
probability limit method test and the acceptance region of the theory through comparison of ensemble
climate projection data. Section 6 summarizes the main results of this research.

2. Formulation of Confidence Interval and Prediction Interval

This section provides the method of statistical estimation and prediction. The concepts of
confidence interval and prediction interval are also illustrated.

2.1. Method of Statistical Estimation

Statistical estimation is the estimation of characteristic values of populations based on an available
sample X = {X1, X2, . . . , Xn}. Among statistical estimation methods are point estimation and interval
estimation methods. Point estimation assigns parameter θ an estimated statistic θ̂ derived from an
available sample. On the other hand, interval estimation derives an interval constructed from a lower
confidence limit value LC.I.(X) and an upper confidence limit value UC.I.(X) based on an available
statistical sample. Interval estimation verifies that this interval includes true value of parameter with
a probability of more than (1 − p), where p (0 < p < 1) is defined as a significance level. An interval
[LC.I.(X), UC.I.(X)] is defined as a 100(1 − p)% confidence interval for parameter θ as follows [38]:

P(LC.I.(X) ≤ θ ≤ UC.I.(X)) ≥ 1− p (1)

where (1 − p) is a confidence coefficient.
We next illustrate in detail the definition and usage of confidence intervals for probability

distributions. A confidence interval for a probability distribution D(X;θ̂) is defined as follows.
Here, X represents a random variable, θ expresses a parameter of the probability distribution of
random variable X, and n expresses the total number of observations. The confidence interval of
the probability distribution is then the range over which probability distributions fall when derived
by fitting the same function to each of N ensemble samples and estimating the parameter, for N
experiments or observations under the same conditions. Here, the sample size of each N-ensemble
sample X j

ens. (where j = 1, 2. . . , N) is n, the same as the total number of observations. For example,
a 95% confidence interval of probability distribution D(X;θ̂) is the range on which about 95% of N
probability distributions D(X;θ̂ j) (where j = 1, 2,. . . , N) fall. Here, j expresses the sample number,
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while FX(x) expresses a cumulative density function of the probability distribution fitted to the observed
data. The confidence interval for cumulative density function FX(x) is shown in Equation (2).

P(LC.I.(X) ≤ FX(x) ≤ UC.I.(X)) ≥ 1− p (2)

2.2. Method of Statistical Prediction

Statistical prediction predicts the future values of an unknown random variable Y. In hydrology,
this method is used to predict extreme rainfall Y at a future time using past observed data
X. Among statistical prediction methods are point prediction and interval prediction methods.
Point prediction predicts future data Y by assigning one predicted value Ŷ derived from a sample X to
an unknown random variable Y. On the other hand, interval prediction predicts by positing that future
data exist with an arbitrary probability within an interval constructed from the lower prediction limit
value LP.I.(X) and the upper prediction limit value UP.I.(X) derived from sample X. The prediction
interval for future values of an unknown random variable Y is [34]

P(LP.I.(X) ≤ Y ≤ UP.I.(X)) ≥ 1− p, (3)

where interval [LP.I.(X), UP.I.(X)] verifies that Y is included in this interval with a probability at least
as great as (1 − p), called the 100(1 − p)% prediction interval. When estimating the range on which the
adopted probability distribution derived from sample X falls, the confidence interval should be used.
On the other hand, when prediction of future extremes themselves is needed, a prediction interval
should instead be used.

3. Methodology

The probability limit method test [20] is a hypothesis test theory that improves the weak power of
the Kolmogorov–Smirnov test [39,40] at the tail of an assumed probability distribution. In addition,
Anderson–Daring test [41,42] gives more weight to the tails than does Kolmogorov–Smirnov test.
Kolmogorov–Smirnov test is a nonparametric test in the sense that the distribution of test statistics
is theoretically decided, without setting assumption of parametric distribution to test statistics.
Anderson–Darling test makes use of the specific distribution in calculating critical values [43]. This has
the advantage of allowing a more sensitive test and the disadvantage that critical values must be
calculated for each distribution. In addition, probability limit method test has an advantage whose
acceptance region can be constructed with no assumption of specific distribution concerning a variable
in its region. The power of a test is the probability of rejecting a null hypothesis. The greater the power
of the test of the adopted hypothesis, the narrower the confidence interval and prediction interval based
on this test and the greater the accuracy of estimation and prediction. In the probability limit method
test, a critical line of the probability limit method, called the probability limit line, is constructed on each
side of an assumed probability representing function. Significant difference with the null hypothesis is
found when observed data fall outside the interval defined by the limit lines. Here, the probability
representing function is defined as the inverse function of the cumulative density function [44].

In the following, D(X;θ) represents an assumed probability distribution, FX(x) represents the
cumulative density function of D(X;θ), and χX(u) represents the probability representing function of
D(X;θ). As above, X represents a random variable, while random variable U (= FX(x)) represents the
cumulative probability of X. The forms of the cumulative density function (FX(x)) and the probability
representing function χX(u) are respectively shown in Equations (4) and (5).

u = FX(x) (4)

x = χX(u) (5)
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3.1. Kolmogorov–Smirnov Test

Kolmogorov [39] proposed a maximum difference between the “cumulative density function of an
assumed distribution” and the “empirical cumulative density function” as test statistics. Smirnov [40]
showed tables of realized values of the test statistics Kolmogorov proposed. Through these analyses,
the theoretical framework of Kolmogorov–Smirnov test was developed. The Kolmogorov–Smirnov
test is one of the hypothesis test theories for testing goodness-of-fit between an assumed cumulative
density function FX(x) and an observed sample X when a sample X (= {x1,x2,. . . , xn}) is treated as an
independent sample from an unknown population which has continuous cumulative density function
FT(x). In this context, null hypothesis H0 and alternative hypothesis H1 are described as follows.

H0 : FT(x) = FX(x) (6)

H1 : FT(x) , FX(x) (7)

The Kolmogorov–Smirnov test is a nonparametric goodness-of-fit test, so any continuous
probability distribution can be assumed. In the Kolmogorov–Smirnov test, an empirical cumulative
density function is constructed by order statistics derived from observed sample X (= {x1,x2,. . . , xn})
that follows continuous independent and identically distribution. Here, order statistics are defined as
a statistical sample constructed of observed data in ascending order. The empirical cumulative density
function (Fn(x)) is expressed as

Fn(x) =


0

i/n
1

x < x(1)
x(i) ≤ x ≤ x(i+1)

x(n) ≤ x
, (8)

where n is sample size and i is the ascending order of each datum in observed sample X.
The Kolmogorov–Smirnov test statistic dn in the case of a two-sided test expressed by Equation (9).

dn = sup
x

∣∣∣FX(x) − Fn(x)
∣∣∣ (9)

For a sufficiently large sample size n, the limiting distribution of Kolmogorov–Smirnov test statistics is
expressed by Equation (10) [39,40,45].

P
(
dn ≤ zn−

1
2

)
→ 1− 2

∞∑
r=1

(−1)r−1 exp
(
−2r2z2

)
(10)

In the following, the critical value zn−1/2 is alternatively described as εn. Massy [46], Birnbaum [47]
and Miller [48] showed tables of critical values zn−1/2 for rejection probabilities P(dn ≤ zn−1/2) in the
case that sample size n is finite. When a Kolmogorov–Smirnov test with two-sided probability of p
is conducted, an acceptance region of ith-order statistics X(i) derived from the observed sample X is
expressed by Equation (11). In Equation (11), the critical value is expressed as εn,(1−p). Here, p is a
significance level, and (1− p) is a confidence coefficient. In the Kolmogorov–Smirnov test, the hypothesis
is rejected when observed order statistics x(i) fall outside the range of this acceptance region.

χX
(
u− εn,(1−p)

)
≤ χX(u) ≤ χX

(
u + εn,(1−p)

)
(11)

Here, χX(u−εn,(1−p)) is the lower critical value, while χX(u + εn,(1−p)) is the upper critical value.
By using plotting position formula, critical values can be plotted on both sides of an assumed probability
distribution as critical points. Critical lines can be constructed by interpolating critical points for the
lower and upper sides. This framing leads to a more concrete procedure for the Kolmogorov–Smirnov
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test: critical lines are constructed based on the significance level, and the hypothesis is rejected if
observed data fall outside the range of the acceptance region.

We now explore the case of the Kolmogorov–Smirnov test for 5% two-sided probability. The critical
value in the case of 5% two-sided probability is the 95%ile value of the Kolmogorov–Smirnov test
statistic distribution. Here, Equation (12) embraces the critical value in the case of 5% probability,
expressed as εn,0.95. The critical value εn,0.95 is expressed in turn by Equation (13) [47]. Therefore,
in this case, an adopted X(i) region is defined by Equation (14).

P(dn ≤ εn, 0.95) = 0.95 (12)

εn,0.95 = 1.3581 n−1/2 (13)

χX
(
u− 1.3581n−1/2

)
≤ χX(u) ≤ χX

(
u + 1.3581n−1/2

)
(14)

Next, we detail the power of test characteristics of the Kolmogorov–Smirnov test. Figure 3 shows
observed data for annual maximum total rainfall for 41 years from 1977 to 2018 in the Kusaki dam
basin, a Gumbel distribution that these observed data are assumed to follow, and critical lines in the
case of a 5% two-sided probability Kolmogorov–Smirnov test. Here these annual maximum total
rainfalls are defined as total rainfall during a 72-h period. In this figure, the acceptance region is
narrow in the central part of an assumed distribution. This result illustrates the strong power of the
Kolmogorov–Smirnov test at the central part of an assumed probability distribution and its weak
power at the tail of the distribution.
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Figure 3. Observed data for annual maximum total rainfall from 1977 to 2018 in the Kusaki dam basin,
with a Gumbel distribution that these observed data are assumed to follow and a critical line for the
case of 5% two-sided probability in the Kolmogorov–Smirnov test.

3.2. Probability Limit Method Test

This section provides a detailed outline of the probability limit method test. Here, cumulative
probability U (= FX(x)) follows a uniform distribution on interval [0,1]; this uniform distribution is also
described as a standard uniform distribution or U [0,1]. We also consider order statistics {u(1), u(2),
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. . . , u(n)} constructed of realized values of random variable from U [0,1]. The probability distribution of
ith-order statistics from standard uniform distribution becomes a beta distribution with parameter
(i, n − i + 1). In Equation (15), FU(i) (u) expresses the cumulative density function of ith-order statistics
U(i), Iu (i, n − i + 1) representing the cumulative density function of the beta distribution with parameter
(i, n − i + 1):

FU(i)(i) = P
(
U(i) ≤ u

)
= Iu(i, n− i + 1)

(15)

Here, probability α is defined as the probability used for derivation of probability limit values [20].
The occurrence probability of an extreme U(i) value is the probability that U(i) falls in the tail of
the beta distribution with parameter (i, n − i + 1). Solution u of equation FU(i)(u) = α is defined as
the lower probability limit value zL(i) under a standard uniform distribution, while solution u of
equation FU(i)(u) = 1 − α is defined as the upper probability limit value zU(i) under a standard uniform
distribution. Therefore, zL(i) is the 100α%ile value of the beta distribution with parameter (i, n − i + 1),
and zU(i) is the 100(1 − α)%ile value of the beta distribution with parameter (i, n − i + 1). Probability
αmin is defined as

αmin = min
1≤i≤n

Min
[

Iu(i, n− i + 1)
I1−u(n− i + 1, i)

]
u=u(i)

, (16)

where Iu(i, n − i + 1)|u = u(i) is the nonexceedance probability of ith-order statistics u(i),
and I1 − u (n − i + 1, i)|u= u(i) is the exceedance probability of ith-order statistics u(i), following
the beta distribution with parameter of (i, n − i + 1). Equation (16) expresses a mathematical process
to derive probability αmin. The nonexceedance probability and exceedance probability of the order
statistics {u(1), u(2), . . . , u(n)} are compared, and the smaller of the two probabilities is extracted.
As a result, a set of n probabilities is obtained. Probability αmin is the minimum value of these n
probabilities. Here, a set of n probabilities is described as {α’1, α’2,. . . , α’n}, so probability αmin can be
described as αmin =Min{α’1, α’2,. . . , α’n}.

Next, the construction method and distributional characteristics of probability αmin are illustrated
in detail. Firstly, a set of n random values under the standard uniform distribution are generated,
and ensemble sample Uens.

j = {u j
1, u j

2, . . . , u j
n} is constructed from these random values. This procedure

is repeated N times, obtaining N sets of samples {Uens.
1, Uens.

2, . . . , Uens.
N}. Here, j expresses the

sample number (j = 1, 2,. . . , N). For a sample of Uens.
j, the ith-order statistics Uj

(i) under the standard
uniform distribution follow a beta distribution with parameter (i, n − i + 1). In the below, the u j

(i) that
occurs farthest down either tail of the beta distribution with parameter (i, n − i + 1) in a sample of Uens.

j

is described as u j
(i)’ to help clarify the explanation. When u j

(i)’ falls in the left tail of the beta distribution
with parameter (i, n − i + 1), the nonexceedance probability of u j

(i)’ is extracted, so this nonexceedance
probability is defined as αmin (j). On the other hand, when u j

(i)’ falls in the right tail of beta distribution
with parameter (i, n − i + 1), the exceedance probability of u j

(i)’ is extracted, and this exceedance
probability is defined as αmin (j). The mathematical procedure shown in Equation (16) is applied to
the set of N ensemble samples {Uens.

1, Uens.
2, . . . , Uens.

N}, obtaining a sample of αmin values {αmin(1),
αmin(2), . . . , αmin(N)}. Here, the order of αmin is so small that αmin is converted to a form of −log10(2αmin)
for convenience. For example, the average order of αmin is about 10−2. Figure 4 shows a 1000-member
set of −log10(2αmin) values and the cumulative probability of u(i) that gives αmin (F(u (i)) (= i/n)). In this
figure, αmin, which is given by Iu(i, n−i + 1) and the nonexceedance probability, is shown as [×]; αmin,
which is given by I1−u(n−i + 1, i) and the exceedance probability, is shown as [O]. This figure makes
clear that αmin is distributed uniformly, and that αmin takes on the value of the nonexceedance and
exceedance probabilities with almost equal frequency. To describe probability α corresponding to
arbitrary significance levels, empirical representing function χemp(u), i.e., the probability representing
function of the empirical distribution, is constructed using N − log10(2αmin). An example of this
empirical representing function χemp(u) for N = 1000 is shown in Figure 5. In the empirical representing
function shown in Figure 5, the probability α near the cumulative probability of 1.0 represents the



Water 2020, 12, 2554 11 of 31

nonexceedance probability or exceedance probability, whichever ith-order statistic occurs more farther
down either tail of the beta distribution with parameter (i, n − i + 1). Here, probability α corresponds
to a two-sided probability of p representing the elimination of 100(p/2)% from the smaller probability
αmin of the nonexceedance probability or exceedance probability, since αmin takes on the value of the
nonexceedance and exceedance probabilities with almost equal frequency.Water 2020, 12, x FOR PEER REVIEW 11 of 30 
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Next, we illustrate the derivation method of probability α corresponding to a 5% two-sided
probability in the probability limit method test. Probability α corresponding to a 100(1−α)% two-sided
probability is obtained by solving equation χemp. (p) = −log10(2α) for α. For example, probability
α corresponding to a 5% two-sided probability is derived by solving χemp.(0.95) = −log10(2α) = 2.5,
resulting in an α value of about 1.5 × 10−3 in Figure 5.

The lower probability limit and upper probability limit values under a standard uniform
distribution can be derived by using probability α calculated by the method outlined above. Here,
in Equation (15), the event (U(i) ≤ u) means that a value less than u occurs more than i times. Therefore,
Equation (17) provides an easier way to calculate the probability limit value in the probability limit
method test:

FU(i)(u) =
n∑

j=i

(
n
j

)
u j(1− u)n− j (17)

The lower probability limit value corresponding to the two-sided probability of p is the one
eliminating the occurrence probability of the more extreme (i.e., smaller) ith-order statistics in the beta
distribution with parameter (i, n − i + 1). Similarly, the upper probability limit value corresponding to
the two-sided probability of p is the one eliminating the occurrence probability of the more extreme
(i.e., larger) ith-order statistics in the beta distribution with parameter (i, n − i + 1). Values derived
by applying the precise cumulative probability FU(u(i)) to the probability limit value are defined as
the lower probability limit point (FU(u(i)), zL(i)) and the upper probability limit value (FU(u(i)), zU(i))
under the standard uniform distribution. Here, FU(u(i)) is defined as i/n. In the standard uniform
distribution, the lower probability limit line is defined as an interpolated line of lower probability limit
points, while the upper probability limit line is defined as an interpolated line of upper probability
limit points for i = 1, 2, . . . , n. Figure 6 shows probability limit lines for a standard uniform distribution
for a 5% two-sided probability and a sample size of 41. This figure shows the range that the ith-order
cumulative probability U(i)(= FX(X(i))) can take.
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Next, we provide a derivation procedure for the probability limit values of the assumed probability
distribution D(X;θ). U follows a standard uniform distribution, and probability limit values are treated
as cumulative probability. Therefore, the lower probability limit value in the assumed probability
distribution is described by χX(zL(i)), while the upper probability limit in assumed probability
distribution is described by χX(zU(i)). Figure 7 shows the construction process of the probability
limit line for a 5% two-sided probability for an assumed Gumbel distribution of annual maximum
total rainfall for 41 years from 1977 to 2018 in the Kusaki dam basin, Japan. This figure shows that
acceptance regions [zL(i), zU(i)] for the ith cumulative probability are converted to acceptance regions
[χX(zL(i)), χX(zU(i))] for ith-order annual maximum total rainfall X(i) itself through the representing
function of an assumed probability distribution.
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3.3. Power Comparison between Kolmogorov–Smirnov Test and Probability Limit Method Test

Figure 8 shows the critical lines of the Kolmogorov–Smirnov test and probability limit method
tests for 5% two-sided probability using the same data. An acceptance region, i.e., the area between
the limit lines, expresses how broadly the data are distributed under the adopted hypothesis-testing
theory. Based on this figure, the range of the Kolmogorov–Smirnov test’s acceptance region is infinite
at the tail of the assumed probability distribution. This means that infinite values of rainfall or river
discharge are allowed under Kolmogorov–Smirnov test. The existence of infinite values of rainfall or
river discharge does not accord with the real world. On the other hand, the acceptance region in the
probability limit method test narrows at the tail of an assumed probability distribution. This means
that extreme values corresponding to the tail of an assumed probability distribution can be estimated
as an acceptance region with high accuracy. Thus, the power, confidence interval, and prediction
interval are interrelated. In general, the greater power the adopted hypothesis-testing theory has,
the more precise the confidence and prediction intervals based on the adopted hypothesis-testing
theory. The design level for a given hydrological quantity fluctuates dramatically depending on the
tail of the adopted distribution. Therefore, since the probability limit method test shows high accuracy
at the distribution tails, confidence intervals and prediction intervals in this research are constructed
based on probability limit method test to evaluate uncertainties in hydrological statistics.
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3.4. Construction of Confidence Intervals and Prediction Intervals Based on Probability Limit Method Test

In this section, the construction method for confidence intervals and prediction intervals based
on probability limit method tests is illustrated in detail [49]. In this research, probability α is derived
from the extreme value distribution fitted to N − log10(2αmin). We note that probability α as used
herein differs from that of Moriguti [20]. The reason to adopt an extreme value distribution for a
sample of −log10(2αmin) is as follows. Suppose that a sample {α’1, α’2,. . . , α’n} is converted to a sample
{−log10(2α’1), −log10(2α’2), . . . , − log10(2α’n)}. In this case, the following relation holds: −log10(2αmin)
=Max{−log10(2α’1) −log10(2α’2), . . . , − log10(2α’n)}. Then −log10(2αmin) is the maximum value of any
sample of the form {−log10(2α’1) − log10(2α’2), . . . , −log10(2α’n)}. Maxima of a sample approximately
follow an extreme value distribution as sample size increases. Therefore, it is rational to adopt an
extreme value distribution for fitting of a sample of−log10(2αmin) values. Figure 9 shows the probability
representing function χα(u) fitted with a 1000-member set of−log10(2αmin) values. As seen in this figure,
χα(u) andχemp.(u) almost coincide. Therefore, by deriving χα(u), confidence intervals can be constructed
for arbitrary significance levels. For example, In the case of 5% two-sided probability, probability α
for construction of a 95% confidence interval can be obtained by solving χα(0.95) = −log10(2α) = 2.5,
resulting in an α value of about 1.5 × 10−3.

Water 2020, 12, x FOR PEER REVIEW 14 of 30 

 

 
Figure 8. Critical lines of probability limit method test and Kolmogorov–Smirnov test in the case of 
5% two-sided probability and sample size 41. 

3.4. Construction of Confidence Intervals and Prediction Intervals Based on Probability Limit Method Test 

In this section, the construction method for confidence intervals and prediction intervals based 
on probability limit method tests is illustrated in detail [49]. In this research, probability α is derived 
from the extreme value distribution fitted to N − log10(2αmin). We note that probability α as used herein 
differs from that of Moriguti [20]. The reason to adopt an extreme value distribution for a sample of 
−log10(2αmin) is as follows. Suppose that a sample {α’1, α’2,…α’n} is converted to a sample {−log10(2α’1), 
−log10(2α’2), …, − log10(2α’n)}. In this case, the following relation holds: −log10(2αmin) = Max{−log10(2α’1) 
−log10(2α’2) …, − log10(2α’n)}. Then −log10(2αmin) is the maximum value of any sample of the form 
{−log10(2α’1) − log10(2α’2) …,−log10(2α’n)}. Maxima of a sample approximately follow an extreme value 
distribution as sample size increases. Therefore, it is rational to adopt an extreme value distribution 
for fitting of a sample of −log10(2αmin) values. Figure 9 shows the probability representing function 
χα(u) fitted with a 1000-member set of −log10(2αmin) values. As seen in this figure, χα(u) and χemp.(u) 
almost coincide. Therefore, by deriving χα(u), confidence intervals can be constructed for arbitrary 
significance levels. For example, In the case of 5% two-sided probability, probability α for 
construction of a 95% confidence interval can be obtained by solving χα(0.95) = −log10(2α) = 2.5, 
resulting in an α value of about 1.5 × 10−3. 

 
Figure 9. Empirical representing function constructed from a 1000-member set of −log10(2αmin) values 
and a probability representing function of a Gumbel distribution fitted to a 1000-member set of 
−log10(2αmin) values. 

Figure 9. Empirical representing function constructed from a 1000-member set of −log10(2αmin) values
and a probability representing function of a Gumbel distribution fitted to a 1000-member set of
−log10(2αmin) values.



Water 2020, 12, 2554 15 of 31

The interval [zL(i), zU(i)] is the mathematical range that the cumulative probability of the ith-order
statistics derived from random variable series {X1, X2, . . . , Xn} takes. By substituting probability
limit values under a standard uniform distribution into the probability representing function χX(u),
the acceptance region of X (i) can be constructed in the form [χX (zL(i)), χX (zU(i))]. Therefore, χX (zL(i))
and χX (zU(i)) are the lower and upper probability limit values, respectively, of X(i), following an
adopted probability distribution.

The construction procedure of the 100(1-p)% confidence limit line is as follows. The function form
of the adopted probability distribution D(X;θ) is applied to “sample XL = {χX(zL(1)), χX(zL(2)), . . . ,
χX(zL(n))}, constructed of lower probability limit values” and “sample XU = {χX(zU(1)), χX(zU(2)), . . . ,
χX(zU(n))}, constructed of upper probability limit values.” This procedure allows parameter θ to be
estimated. Considering parameter θ̂L derived from sample XL and parameter θ̂U derived from sample
XU, the probability distribution D(X;θ̂L) derived from these estimated values is established as the
lower confidence limit of D(X;θ), and D(X;θ̂U) is established as the upper confidence limit of D(X;θ).
Therefore, in this research, D(X;θ̂L) is defined as the 100(1 − p)% lower confidence limit line, and
D(X;θ̂U) is defined as the 100(1 − p)% upper confidence limit line. In addition, the interval between
these limit lines is defined as the 100(1 − p)% confidence interval of D(X;θ). In traditional hydrological
frequency analysis, the confidence interval is derived from profile likelihood, parametric method, etc.
The profile likelihood method assumes that statistics constructed of profile log-likelihood follow a
chi-square distribution [50]. Our proposed confidence intervals based on probability limit tests have
the advantage of not requiring any assumption, relying instead on analytical construction as much as
possible. In addition, hydrological frequency analysis using confidence intervals can be applied to
runoff analysis regarding infiltration on a slope [51–53].

We next show the construction method for prediction intervals for probability distributions [54].
The acceptance region of the probability limit method test estimates with high accuracy the range of
extreme rainfall that could possibly be experienced. Probability limit values can be interpreted as limit
values of extreme rainfall at a given significance level. Therefore, when a probability distribution fitted
with the greatest number of probability limit values is selected, this probability distribution gives the
limiting range of observed data. In addition, it is possible to use this probability distribution to obtain
the limit of data as a form of the extrapolated value. This use expresses the prediction of the limit
of observed data in future observations, beyond the limits of past concrete observations. Therefore,
the probability distribution with the highest goodness-of-fit to probability limit values is defined as the
prediction limit line. When the value of the confidence coefficient is near 1.0, the exceedance probability
of the upper probability limit value is approximated as p/2 [53]. Because prediction limit values are
extrapolated values of probability limit values, it can be assumed that the exceedance probability of the
upper prediction limit is almost p/2. Therefore, introducing the risk calculated by the above framework,
it is possible to compare the occurrence risk of heavy rainfall to risk in some other fields. In addition,
the occurrence risk of a heavy rainfall event can be quantified using the prediction interval. The risk is
expressed as a product of the targeted return period and the one-sided probability of the prediction
interval [54]. Here, Knight [55] defined risk as the phenomenon whose uncertainty is quantified as a
form of the probability distribution. Considering this definition, risk is expressed as the occurrence
risk of heavy rainfall that falls near any part of the upper prediction limit line with a high confidence
coefficient and is evaluated as a phenomenon corresponding to the tail distribution of probable rainfall
itself, which can be estimated using the prediction interval.

4. Update of Extreme Value Distribution Using Markov Chain Monte Carlo Method

This section presents a method for updating the extreme value distribution derived from the past
observed data. The update provides an extreme value distribution for future climate and constructs
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its confidence interval and prediction interval by using a Markov Chain Monte Carlo method [56].
Here, Bayes’ theorem is used to express the posterior distribution f (θ|x) of parameter θ is expressed as

f (θ|x ) =
f (x|θ) f (θ)∫

Θ f (x|θ) f (θ)dθ
∝ f (x|θ) f (θ) (18)

where f (θ) is the prior distribution of θ, and f (x|θ) is the likelihood function. Equation (18) shows
that a prior distribution, which expresses prior information, is updated to a posterior distribution
as information for parameter θ accumulates as each additional datum is observed. In general,
the posterior distribution of an extreme value distribution of parameter θ cannot be derived from its
prior distribution analytically using Bayes’ theorem. Therefore, in this research, a Markov Chain Monte
Carlo method is adopted to numerically derive posterior distributions of parameters. In addition,
the posterior distribution of the parameter of the Gumbel distribution fitted to observed data is derived
using the Metropolis method, one of the Markov Chain Monte Carlo methods [57]. Observed annual
maximum 24-h rainfall data for the Tokoro river basin, Japan, over 49 years from 1962 to 2010 are used
as the analytical data.

4.1. Outline of Metropolis Method

The Metropolis method procedure is as follows [57]:

(1) Set initial value of parameter θ.
(2) Select random value θ’ from proposed distribution q(θ), which provides candidate values for

the parameter.
(3) Calculate probability γ as expressed by

γ = Min
{

f (θ ′|x)
f (θ|x )

, 1
}

. (19)

(4) Transition θ to θ’ with probability γ, updating θ to θ’. This update is conducted with
probability (1−γ).

(5) Repeat steps (2) through (4), inclusive.
(6) When convergence of sample series of θ is recognized, iterative calculation is stopped.

Here, θ is the parameter of interest, f (θ) is the prior distribution of θ, f (x|θ) is the likelihood
function, and f (θ|x) is the posterior distribution.

4.2. Outline of Ensemble Climate Projection Data

In this research, dynamical downscaled data of the regional experiment from the database for
Policy Decision making for Future climate change (d4PDF [58,59]) constructed by Yamada et al. are
used [23,25,26]. This regional experiment of d4PDF was constructed of ensemble data calculated
from a regional climate model with a horizontal resolution of 20 km. More precisely, this regional
experiment was constructed from past experiments targeting the 60 years from 1951 to 2010 and
the +4K experiment, which assumes a condition of increasing of global average temperature by 4K
from the era of industrial revolution and targets the 60 years from 2051 to 2110. The past experiment
included 50 ensemble members perturbing sea ice conditions, sea surface temperatures, and initial
conditions, for a total of 60 years × 50 members = 3000 years. The +4K experiment included 6 sea
surface temperature patterns and 15 ensemble members perturbing of these patterns of sea surface
temperature, for a total of 60 years × 6 sea surface patterns × 15 members = 5400 years. The horizontal,
high-resolution database this research used was composed of ensemble data derived by dynamical
downscaling the regional experiment’s data of d4 PDF to a horizontal resolution, 5 km. In this research,
the geographic subset corresponding to the position of the Tokoro river basin was extracted from the
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+4K experiment’s annual maximum 24-h rainfall data and used for Bayesian update of the Gumbel
distribution fitted to past observed data. The 6 patterns of sea surface temperature were calculated by
6 main models used for Coupled Model Inter Comparison Project Phase 5 (CMIP5). In this research,
observed data were treated as a sample of a population of past climate. Here Table 2 shows meanings
of acronyms in Section 4.

Table 2. Meaning of acronym.

Acronym Meaning

d4PDF a database for Policy Decision making for Future climate change
CMIP5 Coupled Model Inter-comparison Project Phase 5

4.3. Results from Metropolis Method

Initial values of parameters in the Metropolis method, estimated by maximum likelihood,
were derived by fitting a Gumbel distribution to observed data. The prior distributions for each
parameter are assigned as noninformative uniform distribution. This research assumes that initial
value of MCMC is decided reliably from past observed data as most likelihood estimated value,
although detailed information of prior distribution is unknown. Figure 10 shows the results of
the Metropolis method. Here, 5400 years of annual maximum 24-h rainfall data from the +4K
experiment were substituted into the likelihood function. Figure 10 shows a sample series of posterior
distributions of parameters becoming almost stable, with very few rejection values to be deleted from
the calculation (burn-in). Therefore, verification of the application of the Metropolis method is shown.
In the future research, identification of prior distribution will be analyzed in the perspective of past
observed information. More concretely, ensemble climate simulations are conducted for past climate,
and prior distribution could be estimated by using parameters from a lot of simulated rainfalls in the
past experiment.
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4.4. Construction of Predicted Distribution for Future Climate

The predicted distribution for extreme values can be expressed as

P
(
Y ≤ y

∣∣∣x) = ∫
Θ

F
(
Y ≤ y

∣∣∣θ) f (θ|x)dθ, (20)

where Y is a random variable which representing extremes in future climate, P(Y ≤ y|x) represents the
cumulative density function of the predicted distribution for extreme values, F(Y ≤ y|θ) represents the
cumulative density function of random variable Y given θ, f (θ|x) represents the posterior density of
the parameter derived from observed data, and χY(u) represents the probability representing function
of the predicted distribution for extreme values. When sample series of the parameter are derived
using the MCMC method, a predicted distribution for extreme values is expressed by Equation (21).

P
(
Y ≤ y

∣∣∣x) ≈ 1
s

s∑
i=1

FY(y
∣∣∣θi) (21)

Here FY(y) is an assumed probability distribution of a population of unknown future data.
Equation (21) shows that the cumulative density function P(Y ≤ y|x) of the predicted distribution for
extreme values can be derived from approximately the average of cumulative probability of future
observed data y. More precisely, the average can be obtained by dividing the summation of each
cumulative probability of future observed data FY(y|θi) with total number of adopted parameters.
Here, θi is a generated parameter by MCMC, s is the number derived by subtracting the number of
rejected samples from the total number of MCMC trials.

In this research, a Gumbel distribution was adopted as the population distribution of unknown
future data. The MCMC iteration number was 41,000, and the total number of burn-in intervals
was 1000. Therefore, s was 40,000, which is the number derived by subtracting 1000 from 41,000.
The confidence interval of the Bayesian probability distribution updated by MCMC (i.e., the predicted
distribution of probability distribution fitted to past observed data) can be also constructed by the
method based on the probability limit method test shown in Section 4. Figure 11 shows the construction
process of the 95% confidence interval of the Gumbel distribution, which is Bayesian-updated by
MCMC, incorporating the +4K annual maximum 24-h rainfall data. In this figure, probability limit
values under the standard uniform distribution are green points, while those of the +4K experiment
are light red points. The Gumbel distribution, which is Bayesian-updated by applying the MCMC
method to the +4K experiment, is a solid red line, and the 95% confidence limit line of this Gumbel
distribution is a dotted red line. The probability limit values under the standard uniform distribution
were determined based on the total number of observed data points. Therefore, probability limit values
under the standard uniform distribution were subject to the same conditions under past climate and
future climate.
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distribution based on probability limit method test for future climate. Y is the probability variable
expressing Annual maximum 24-h rainfall in future climate.

5. Results and Discussion

5.1. Update of Confidence Interval Based on Bayesian Method Using Ensemble Climate Projection Data

Figure 12 shows the analytical data (black points), Gumbel distribution fitted to the observed
data (blue solid line), 95% confidence interval of this Gumbel distribution for past climate (blue
range), Bayesian-updated Gumbel distribution, and 95% confidence interval of this Bayesian-updated
Gumbel distribution. From the overlapping range of the past and future climate intervals’ distributions,
it is probable that rainfall maxima observed in past climate could occur in future climate. Notably,
the confidence interval of future climate is wider than that of past climate, and probable rainfall will
increase in future climate. Moreover, considering the return period of 100 years, which is often used as
the design level in Japan, the 100-year annual maximum 24-h rainfall in future climate (224.6 mm) is
about 42% greater than in past climate (157.7 mm). In addition, the 95% upper confidence limit value
in future climate (294.4 mm) is an about 48% greater than in past climate (198.8 mm). By quantifying
the future change ratio for the design level rainfall, it becomes clear that by updating the confidence
interval, we can improve the feasibility of future rainfall predictions under climate change accompanied
by global warming.

Moreover, the uncertainty of T-year rainfall is quantified in river planning of a return period
of T years, and record rainfall, which cannot be meaningfully evaluated using traditional methods,
is interpreted as a phenomenon within the confidence interval. In other words, the confidence interval
can rationally evaluate the return period of heavy rainfall. Furthermore, the exceedance probability
of the upper confidence limit value is expressed as the product of the targeted return period and
the exceedance probability of confidence limit value [49]. In river plannings, whose design level
is T-year, the risk of rainfall exceeding a 100(1 − p)% upper confidence limit value is quantified as
[(1/T) × (p/2)] [49]. For example, the probability of exceedance of the 95% upper confidence limit
value of a 100-year annual maximum total rainfall is 1/100 × 2.5% = 0.025%. Like this framework of
confidence interval, the risk of occurrence of heavy rainfall which cannot be evaluated in the traditional
way is quantified. In addition, the risk derived from the above mentioned framework can be compared
with risk in another fields because the order of risk derived from above mentioned risk is almost the
same order of risk in other fields such as death by traffic accident, airplane accident, etc. This result
proposes a feasibility of relative evaluation in river planning corresponding to climate change.
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5.2. Goodness-of-Fit Evaluation of Both Confidence Intervals Based on Probability Limit Method Test and
Physical Monte Carlo Method

To clarify the uncertainty of probable rainfall, histograms of probable rainfall value in both past
climate and future climates were used. To compare the goodness-of-fit of confidence intervals for both
past and future climate, statistical resampling was conducted to both the past experiment data and
the future data. More precisely, 5000 resampled samples were generated by the following process.
For the past data, annual maximum 24-h rainfall data for 3000 years were resampled into 49-year
timelines, equal in length to the total number of observed years. Five thousand such resampled samples
were generated. The same process was conducted on the future data. Next, by fitting a Gumbel
distribution to these resampled samples for both past and future climate, a probability evaluation was
conducted. Figure 13 shows the Gumbel distribution fitted to observed data (solid blue line), the 95%
confidence interval of this Gumbel distribution in past climate (interval between dotted blue lines),
and Gumbel distributions fitted to each of the 5000 resampled samples for past climate (thin green
lines). Figure 14 also shows the Bayesian-updated Gumbel distribution for future climate (solid red
line), the 95% confidence interval of this Bayesian-updated Gumbel distribution (interval between
dotted red lines), and Gumbel distributions fitted to each of the 5000 resampled samples for future
climate (thin orange lines).
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Based on Figures 13 and 14, the uncertainty of probable rainfall is clarified as a range, and this
range fits a theoretical confidence interval derived by applying the probability limit method test.
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In particular, the confidence interval for past climate was derived by a completely theoretical method of
the probability limit method test and does not use the information from the horizontal, high-resolution
database [23,25,26]. Therefore, the good fit between the confidence interval based on the probability
limit method test and that based on the physical Monte Carlo method suggests the usefulness of
this test. Here, the confidence interval based on the physical Monte Carlo method is constructed
from the lower confidence limit 100(p/2) %ile value and the upper confidence limit 100(1 − p/2)
%ile value. These confidence limit values are derived from an empirical distribution of quantiles
of probability distributions fitted to the abovementioned resampled samples. Next, goodness-of-fit
for each confidence interval was evaluated in terms of coverage probability. Coverage probability
is defined as the proportion of targeted estimated statistics falling within the confidence interval.
Therefore, coverage probability as used here was the proportion of the distribution of probable rainfall
that fell within the confidence interval based on the probability limit method test. The accuracy of
the confidence interval could be quantified by calculating the coverage probability. More precisely,
a confidence interval with a rational coverage probability whose value is close to an adopted confidence
coefficient is desirable [60]. For example, when a 95% confidence interval is constructed, and its
coverage probability is about 95%, then the accuracy of this confidence interval is quite good. Figure 15
shows the empirical probability distribution of 100-year probable annual maximum 24-h rainfall
derived from resampled samples of past data vs. the 95% confidence interval based on the probability
limit method test for past climate using actual observed data. The coverage probability of the 95%
confidence interval (the range between the two blue dotted lines) in Figure 15 is 95.5%. Figure 16 shows
the empirical probability distribution of 100-year probable annual maximum 24-h rainfall derived from
resampled samples of future projected data vs. the 95% confidence interval based on the probability
limit method test for future climate. For future climate, the coverage probability is 94.3%. Moreover,
in the cases of other return periods, confidence intervals based on the probability limit method test
included distributions of probable rainfall derived with high accuracy from the physically based Monte
Carlo method using the horizontal high-resolution database [23,25,26].
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5.3. Update of Prediction Interval Based on a Bayesian Method Using Ensemble Climate Projection Data

To construct the prediction interval, it is necessary to adopt probability distribution with the
best goodness-of-fit for the sample of probability limit values. For that reason, the relation between
probability limit values, past experiment data, and future experiment data were analyzed. The validity
of the prediction interval proposed herein can be demonstrated by showing that the acceptance region
estimating the degree of instability of ith-order statistics of extreme rainfall as a range based on
the probability limit method test fit the distribution of calculated order statistics derived from the
ensemble database.

The comparison between probability limit values derived from observed data and the regional
experiment’s past experiment data was conducted via a probability plot. Figure 17 shows a Gumbel
distribution fitted to observed data (blue line), probability limit values with 5% two-sided probability
for past climate (blue points), and empirical distributions of resampled samples of the regional
experiment’s past data (green points; 500 examples are shown). Figure 18 shows a Bayesian-updated
Gumbel distribution for future climate (solid red line), probability limit values for 5% two-sided
probability for past climate (blue points), probability limit values for 5% two-sided probability for
future climate (red points), and empirical distributions of resampled samples of regional experiment’s
future data (brown points; 500 examples are shown). Figure 17 shows that most of the instability
derived from the regional experiment’s past data is included in the acceptance region constructed
from both lower and upper probability limit values. In addition, based on Figure 18, the degree of
instability derived from the regional experiment’s future data almost coincides with the acceptance
region of the probability limit method test with 5% two-sided probability. For that reason, the range of
distribution of order statistics derived from the physical Monte Carlo method and from the acceptance
region of the probability limit method test are almost identical. These results mean that the magnitude
of outliers which we could have experienced in the past or will experience in the future are estimated
by the theory of probability limit method.
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is possible to construct the degree of instability of probable rainfall beyond the observation period; 
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Figure 18. Gumbel distribution for future climate (predicted distribution of Gumbel distribution fitted to
analytical data), with probability limit values of this Gumbel distribution with 5% two-sided probability
and 500 empirical distributions constructed from resampled samples of future experiment data.

To clarify the goodness-of-fit between the two ranges, the coverage probability of distribution of
order statistics within an acceptance region for 5% two-sided probability was calculated. When coverage
probability of an acceptance region for 5% two-sided probability was near 95%, the goodness-of-fit
between the two ranges was high. Figure 19 shows an acceptance region for 5% two-sided probability
derived from a Gumbel distribution fitted to observed data vs. a frequency distribution of 49th-order
statistics derived from 5000 resampled samples of the regional past experiment’s data. In this case,
the coverage probability was 99.9%, showing the usefulness of the probability limit method test.
Furthermore, Figure 20 shows an acceptance region for 5% two-sided probability derived from a
Bayesian-updated Gumbel distribution vs. the frequency distribution of 49th-order statistics derived
from 5000 resampled samples of the regional experiment’s future data. The coverage probability
of the acceptance region for 5% two-sided probability derived from the Bayesian-updated Gumbel
distribution was 98.7%, again showing the usefulness of the probability limit method test even for
future climate. These findings demonstrate that an acceptance region of probability limit method
can estimate the degree of instability with high accuracy. For that reason, it is possible to construct
the degree of instability of probable rainfall beyond the observation period; this is defined as the
prediction limit line in this research by extrapolation of the probability distribution that shows the best
goodness-of-fit for probability limit values.
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Here, Figure 21 provides the construction process for the 95% prediction interval for future climate.
This figure shows, the probability limit values (green points), the Gumbel distribution that has been
Bayesian-updated by applying the MCMC method to the +4K experiment (solid red line), and the
95% limit line for future observed data (a dot-dashed red line). From this figure, it is clear that the
prediction limit lines constructed by fitting probability distributions coincide well with probability
limit values.
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Figure 21. Construction process of 95% prediction interval based on probability limit method test for
future climate. y is the probability variable expressing future extremes.

Next, we estimate prediction interval in future climate and analyze characteristics of it. Figure 22
shows observed data (black points), a Gumbel distribution fitted to observed data (blue line),
a 95% prediction interval based on the probability limit method test for past climate (blue range),
a Bayesian-updated Gumbel distribution derived by applying the MCMC method to a Gumbel
distribution fitted to observed data (solid red line), and a 95% prediction interval based on the
probability limit method test for future climate (red range). From the overlapping range of the two
prediction intervals, it can be recognized that annual maximum 24-h rainfall values from past climate
could well occur in future climate with some probability. In addition, the prediction interval for
future climate takes on a wider range than that of past climate, showing the occurrence risk of heavy
rainfall increases in future climate. Moreover, considering the return period of 100 years, the 95%
upper prediction limit value for future climate (437.9 mm) is about 56% greater than for past climate
(280.7 mm). By updating the prediction interval, we can evaluate the future scale and occurrence risk
of heavy rainfall while accounting for continuing global warming.
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6. Summary

Confidence intervals quantify the degree of instability of the adopted probability distribution,
and risks in river planning can be expressed by considering confidence interval ranges. Prediction
intervals quantify the range that future observed data could take, making it possible to estimate the
future occurrence risk and scale of heavy rainfall. This paper provided a construction method for
confidence intervals and prediction intervals based on the probability limit method test, illustrating its
actual application. This research also showed harmonic relation between confidence intervals based
on a physical Monte Carlo method using high-resolution database and confidence intervals based on
mathematical theory, namely the probability limit method test. This result suggests the validity of
results of ensemble climate simulations from the perspective of theory. It also implies the feasibility of
introducing ensemble climate projection data into flood control management.

The main results of this research are as follows.

(1) A construction method of confidence intervals and prediction intervals based on the probability
limit method test is shown. This method has the advantage of constructing both intervals
analytically as much as possible, rather than from parametric assumptions.

(2) In traditional hydrological frequency analysis, probable rainfall is calculated deterministically.
On the other hand, by introducing confidence intervals and prediction intervals proposed herein,
it becomes possible to estimate the range of probable rainfall and the occurrence probability of
heavy rainfall that would otherwise be treated as unexpected in traditional analysis.

(3) Confidence intervals and prediction intervals make it possible to evaluate the risk of heavy rainfall
and compare it meaningfully to risks in other fields.
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