
water

Article

Multivariate Analysis for Assessing Irrigation Water
Quality: A Case Study of the Bahr Mouise Canal,
Eastern Nile Delta

Mohamed K. Abdel-Fattah 1 , Sameh Kotb Abd-Elmabod 2,3,* , Ali A. Aldosari 4 ,
Ahmed S. Elrys 1 and Elsayed Said Mohamed 5,*

1 Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
mkabdelfattah@zu.edu.eg (M.K.A.-F.); Aselrys@zu.edu.eg (A.S.E.)

2 Soils and Water Use Department, Agricultural and Biological Research Division, National Research Centre,
Cairo 1262, Egypt

3 MED Soil Research Group, Department of Crystallography, Mineralogy and Agricultural Chemistry, Seville
University, 41012 Seville, Spain

4 Geography Department, King Saud University, 11451 Riyadh, Saudi Arabia; adosari@ksu.edu.sa
5 National Authority for Remote Sensing and Space Sciences, Cairo 11843, Egypt
* Correspondence: sk.abd-elmabod@nrc.sci.eg (S.K.A.-E.); elsayed.salama@narss.sci.eg (E.S.M.)

Received: 31 July 2020; Accepted: 9 September 2020; Published: 11 September 2020
����������
�������

Abstract: Water scarcity and suitable irrigation water management in arid regions represent tangible
challenges for sustainable agriculture. The current study aimed to apply multivariate analysis and
to develop a simplified water quality assessment using principal component analysis (PCA) and
the agglomerative hierarchical clustering (AHC) technique to assess the water quality of the Bahr
Mouise canal in El-Sharkia Governorate, Egypt. The proposed methods depended on the monitored
water chemical composition (e.g., pH, water electrical conductivity (ECiw), Ca2+, Mg2+, Na+, K+,
HCO3

−, Cl−, and SO4
2−) during 2019. Based on the supervised classification of satellite images

(Landsat 8 Operational Land Imager (OLI)), the distinguished land use/land cover types around
the Bahr Mouise canal were agriculture, urban, and water bodies, while the dominating land use
was agriculture. The water quality of the Bahr Mouise canal was classified into two classes based on
the application of the irrigation water quality index (IWQI), while the water quality was classified
into three classes using the PCA and AHC methods. Temporal variations in water quality were
investigated, where the water qualities in winter, autumn, and spring (January, February, March,
April, November, and December) were classified as class I (no restrictions) based on IWQI application,
and the water salinity, sodicity, and/or alkalinity did not represent limiting factors for irrigation
water quality. On the other hand, in the summer season (May, June, July, August, and October),
the irrigation water was classified as class II (low restrictions); therefore, irrigation processes during
summer may lead to an increase in the alkalinity hazard. The PCA classifications were compared
with the IWQI results; the PCA classifications had similar assessment results during the year, except
in September, while the water quality was assigned to class II using the PCA method and class I
by applying the IWQI. Furthermore, the normalized difference vegetation index (NDVI) around
the Bahr Mouise canal over eight months and climatic data assisted in explaining the fluctuations
in water quality during 2019 as a result of changing the crop season and agriculture management.
Assessments of water quality help to conserve soil, reduce degradation risk, and support decision
makers in order to obtain sustainable agriculture, especially under water irrigation scarcity and
the limited agricultural land in such an arid region.
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1. Introduction

Surface water quality is a very sensitive and global environmental issue that is important for
long-term economic development and environmental sustainability [1–3]. Awareness and attention to
water irrigation quality have increased worldwide in recent years, and new approaches have been
developed to achieve the sustainable management of water resources [4,5]. In the same context,
the shortage of water resources has become a big problem in many countries, particularly under
continued population growth, accelerated industrialization, rapid urbanization, and global climate
change [6,7]. Therefore, water scarcity and sustainable irrigation water management have become
global challenges for sustainable agriculture development in order to produce sufficient food to satisfy
the population’s food requirements [8–10].

Agricultural production in Egypt is largely dependent on the River Nile, which contributes 73% of
the total irrigation requirement (55 billion m3 per year) [11–13]. Egyptian agricultural land represents
only 3.8% (km2) of the total area (1.01 million km2), and the Nile delta provides 65% (24,700 km2)
of the total agricultural land [13,14]. Therefore, Egypt faces great challenges due to arid climate,
fixed Nile water share, limited agricultural land, and rapid population growth. The water renewable
resources per capita have dropped intensely to 700 m3/capita, which moved Egypt below the water
poverty level [15]. In this context, the amount of water shares per capita in Egypt may decrease to
500 m3/capita by 2025 [16]. Therefore, the limited and fixed water resources, as well as ever-increasing
water demands, are the main issues in accelerating the practice of agricultural drainage water reuse
as an alternative resource to fill the gap between water supply and demand. The Egyptian national
water strategy states that the practice of drainage water reuse would fulfil irrigation water demands
for newly reclaimed areas in the Eastern and Western Nile Delta regions [15,16].

Irrigation water contains several dissolved salts [17–19]. The characteristics and amount of
these dissolved salts depend on the water source and its chemical composition. The most ordinarily
dissolved ions in water are calcium (Ca2+), sodium (Na+), magnesium (Mg2+), sulfate (SO4

2−), nitrate
(NO3

−), chloride (Cl−), boron (Br), carbonate (CO3
2−), and bicarbonates (HCO3

−). The proportion and
concentration of these dissolved ions are used to determine the suitability of water for irrigation [20–22].
Water irrigation quality for agricultural use is determined based on its impact on crop yield (quality
and quantity), as well as its impact on soil physiochemical properties [23]. Most soil problems (e.g.,
salinity, sodicity, contamination, and restricted infiltration) are due to the use of low-quality water for
irrigation [24].

Nile river water is characterized by its high quality from the upper Nile countries to the mouth of
the river in Egypt. The annual average electrical conductivity (EC) is about 0.15 dS m−1 in the Victoria
and Atbara Lakes, while the EC increases to reach 0.70 dS m−1 in the Rosetta branch north of the Nile
delta. Accordingly, the EC values of the river Nile range from 0.27 to 0.46 dS m−1 in upper Egypt [25].
In addition, calcium and magnesium are the dominant cations in the water of the Nile river in upper
Egypt, while sodium and potassium are the dominant cations in the Nile water of lower Egypt [26].
The Bahr Mouise canal represents the main canal for irrigation and municipal water in the El-Sharkia
Governorate, Egypt [8]. The contamination of the Bahr Mouise canal is due to the brick industry in
close areas (Menia El-Kamh and Hehia), soup, and oil industries in El-Zagazig city, as well as human
settlement effluent [27]. Generally, the use of low-quality water causes several environmental impacts
on soil, plants, animals, and humans [28,29]. Urbanization and human activities impact almost all
freshwater bodies [30].

The low quality of irrigation water is characterized by a reduction of dissolved oxygen, a lower
transparency, a high electric conductivity, a high alkalinity, a water temperature increase, and high
levels of total dissolved solids [31]. The irrigation water quality index (IWQI) represent a gathering
of individual water parameters that are expressed in a single numerical expression in order to judge
the use of water for irrigation purposes [32].

Many researchers have used remote sensing and geographic information system (GIS) techniques
to study water quality and environmental contamination to find the relationship between water
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pollution and different land uses under diverse environmental conditions [33,34]. Different studies
have proven the negative impacts of urban and industrial areas on water quality [35,36]. Land
cover/land use (LCLU) changes are related to human activity, while rapid urbanization represents
a real threat to the most fertile soils and water quality in the Nile delta [37]. Therefore, creating LCLU
maps helps in monitoring the changes of land cover, and correlating the variation in water quality
with LCLU changes helps to obtain optimal solutions and to improve irrigation water quality [38–42].
The spatiotemporal data provided by remote sensing analyses play a vital role in observing and
investigating land cover changes over time [43]. The normalized difference vegetation index (NDVI)
has been used for monitoring vegetation [44,45], calculating crop cover [46,47], monitoring drought [48],
and assessing agricultural drought at the national level [49].

Principal component analysis (PCA) can convert multiple parameters into comprehensive
indicators based on dimensional reduction and can decrease the calculation complexity of using
many variables in a conventional statistical analysis [50–54]. In pervious study, various multivariate
statistical analyses were applied to assess the river water quality based on using 13 parameters, and
the cluster analysis (CA) method was used to group the 12 months of monitoring into three periods,
as well as to group 18 sampling sites into three groups [55]. The discriminant analysis (DA) aimed
to identify the significant parameters among the temporal and spatial groups, and the PCA method
aimed to standardize water quality, examine the differences between groups, identify the main sources
of contamination. Most former studies have used the PCA method to assess the water of rivers and
lakes for irrigation proposes [56,57]. On the other hand, many indices have been used for monitoring
recycled wastewater while considering wastewater reclamation standards [58–61].

The study objective was to assess the irrigation water quality of the Bahr Mouise canal at six
locations over the 12 months of 2019 using a multivariate analysis (i.e., the IWQI and the development
of a new classification method that depends on PCA and agglomerative hierarchical clustering (AHC)
technique methods). Additionally, the study aimed to link the changes in the NDVI, LCLU, water use,
and climate conditions with the fluctuations in water quality classifications in each month and site.

2. Materials and Methods

2.1. Study Area and Sampling

Bahr Mouise is the main irrigation canal located in the El-Sharkia Governorate (Egypt) between
a latitude of 30◦28′–30◦50′ N and a longitude of 31◦12′–31◦ 40′ E (Figure 1). The canal length is
about 83 km, and it passes through several villages, towns, and cities (Menia El-Kamh, El-Zagazig,
Hehia, and AwladSakr). The average daily discharge of the Bahr Mouise canal ranges between 5.0
and 12.5 million m3, and it provides the irrigation water requirements of 340,000 hectares [27]. To
assess the water quality of Bahr Mouise, monthly samples (from January to December, 2019) were
collected from six random sampling sites with irregular distances between one point and another
along the central part of the canal. At each sampling site, four samples were collected using a portable
water sampler, and all water measurements were carried out within 24 h after sampling. Samples were
prepared to analyze salinity (measured as electrical conductivity), pH, and major ions (i.e., Ca2+, Mg2+,
Na+, K+, HCO3

−, Cl−, and SO4
2−) following the standard methods [55].

2.2. Remote Sensing Data and Analysis

The supervised imaging classification of the Bahr Mouise canal basin was carried out using
the satellite image of the Operational Land Imager (OLI), which acquired data on 20 January 2019
with a spatial resolution of 30 m. The image preprocessing was done based on the radiometric and
atmospheric calibrations using the ENVI software 5.3 (Exelis Visual Information Solutions, Boulder,
CO, USA). The satellite image was classified using the supervised maximum likelihood classification
to obtain an LCLU map [62]. The classification determined the different and the dominant LCLUs on
the adjacent areas to the Bahr Mouise canal. Urban land use might have negative impacts on water
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quality [63]. The NDVI is a remote sensing measure that is used to identify crop growth status and
earth surface vegetation [47]. Vegetation indices also help to distinguish the distribution of vegetation
and soil based on the distinctive reflectance patterns of vegetation and other land surfaces [64,65].
The NDVI can be calculated by Equation (1) [66]:

NDVI =
(NIR−RED)

(NIR + RED)
(1)

where NIR is the near-infrared band and RED represents the red band. NDVI values range from −1
to 1.Water 2020, 12, x FOR PEER REVIEW 4 of 23 
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Figure 1. Location of the Bahr Mouise canal in the El-Sharkia Governorate, Egypt ((a) and (b)), as well
as the six sampling sites (c).

2.3. Traditional Irrigation Water Quality Criteria

Various traditional equations have been used to judge the suitability of water for irrigation based
on chemical parameters, such as the soluble sodium percentage (SSP) (Equation (2) [67]), the sodium
absorption ratio (SAR) (Equation (3) [67]), the magnesium adsorption ratio (MAR) (Equation (4) [68]),
the sodium-to-calcium activity ratio (SCAR) (Equation (5) [69], residual sodium carbonate (RSC)
(Equation (6) [67]), residual sodium bicarbonate (RSBC) (Equation (7) [29]), the permeability index (PI)
(Equation (8) [67,70]), and the Kelly ratio (KR) (Equation (9) [71]). Additionally, ion contents (i.e., Na+,
Cl−, HCO3

−, SO4
2−, and NO3

−), water electrical conductivity (ECiw), and pH were used in assessing
irrigation water quality. The equations used to evaluate the irrigation water quality are explained
below, and all ion concentrations are expressed in mmol L−1.

SSP =
Na+

Na+ + K+ + Ca2+ + Mg2+ × 100 (2)

SAR =
Na+√

Ca2++Mg2+

2

(3)
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MAR =
Mg2+

Ca2+ + Mg2+ × 100 (4)

SCAR =
Na+√
Ca2+

(5)

RSC =
(
HCO−3 + CO2−

3

)
−

(
Ca2+ + Mg2+

)
(6)

RSBC = HCO−3 −Ca2+ (7)

PI =
Na+ +

√
HCO−3

Na+ + Ca2+ + Mg2+ × 100 (8)

KR =
Na+

Ca2+ (9)

2.4. Irrigation Water Quality Index

The obtained water parameters of the Bahr Mouise canal, such as ECiw, Na+, SAR, HCO3
−, and

Cl−, were used in applying the IWQI that was developed by [72], as explained in Equation (10);

IWQI =
n∑

i=1

qiwi (10)

where qi and wi refer to quality measurement values and aggregation weights, respectively. The qi

value was calculated based on Equation (11):

qi = qimax −


(
xji − xinf

)
× qimap

ximap

 (11)

where qmax is the maximum value of qi for each class, xij is the observed value for parameter, xinf

is the lower limit of the class in which the parameter belongs, qiamp is class amplitude, and xamp

is class amplitude to which the parameter belongs. Regarding the wi (aggregation weights), each
parameter weight used in the IWQI was obtained via the methods of Meireles et al. [72]. The parameter
weights were 0.211, 0.204, 0.202, 0.194, and 0.189 for ECiw, Na+, HCO3

−, Cl−, and the SAR, respectively.
The IWQI is a dimensionless parameter ranging from 0 to 100. Following [72], irrigation water quality
was classified into four classes based on IWQI value: null (85–100), low (70–85), moderate (55–70),
high (40–55), and severe restriction (0–40).

2.5. Principal Component Analysis

PCA was used to assess the irrigation water quality. Before applying the PCA analysis, the variable
normality was checked using the Shapiro–Wilk test, and the correlation between different variables
was measured by the Pearson correlation. Bartlett’s sphericity and Kaiser–Meyer–Olkin (KMO) tests
were done to verify the data independency [73] before the PCA if the value of the KOM test was greater
than 0.5, indicating the adequacy of performing the PCA analysis [74,75] (Table S1). Then, the PCA
was performed using SPSS Software version 25 (SPSS Inc., Chicago, IL, USA) to obtain the principal
components (PCs) that had high correlation with the studied variables. According to [76], a principal
component can be explained using Equations (12) and (13):

Zk = ak1X1 + ak2X2 + . . . . . . . + aknXn (12)

Z = (z1V1 + z2V2 + . . . . . . . + znVn)/(V1 + V2 + . . . . . . . + Vm) (13)
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where z is the component score, a is the component loading, X is the measured value of a parameter,
k is the component number, n is the total number of parameters, Z is the comprehensive score, V is
the total variance of each component, and m is the total number of components.

The number of PCs was selected depending on the eigenvalue. The PCs that had an eigenvalue
greater than one were kept, and the rest were removed, and 70% or greater of the total variability
had to be expressed by the selected PCs. Subsequently, the correlations between the selected PCs and
the observed variables could be explained with factor loading. The factor loadings could be estimated
based on Equation (14):

Factor loadings = Eigenvectors×
√

Eigenvalue (14)

A factor loading of >0.3 is considered to be significant, >0.4 is more significant, and >0.50 is very
significant [77]. The factor scores represent PC contributions to explain each variable’s variance. Each
item’s contribution to the PC score depends on how strongly it relates to the PC.

Classification Method

Based on the principal component scores of each month, AHC, one of the most popular clustering
methods, was done using Ward’s method in order to obtain the water quality classification. A small
value of the sum of squared error (SSE) illustrates that all instances in the cluster are near to the cluster
mean and thus have high degrees of similarity. The two clusters that minimally increase the value
of the SSE were joined by Ward’s method. The SSE is a measure of the distance between a cluster’s
instance attribute and mean attribute values, according to Equations (15) and (16):

SSE =
Sx∑
i

Sy∑
j

∣∣∣Xij−Yi
∣∣∣2 (15)

D(x, y) = SSE(xy) − (SSE(X) + SSE(Y)) (16)

where Sx is the number of instances, Sy is the number of attributes, Xij is the value of attribute j in
instance i, Yi is the mean value of attribute j, D (x,y) is the SSE change after joining clusters x and y,
SSE(xy) is the SSE of joined clusters x and y, SSE(X) is the SSE of cluster x, and SSE(Y) is the SSE of
cluster y.

Lastly, the dendrogram is a part of AHC outputs that shows the progressive data grouping; thus,
it helps to group data in a suitable number of classes based on dissimilarity. The distances between
the class centroids, as well as distances between the central objects, were produced using the Euclidean
distance method. The Euclidean distance between two instances with k attributes is calculated using
Equation (17):

d(x,y) =

√√ n∑
k=1

(xk − yk)
2 (17)

where d(x,y) distance between the two instances, n is the number of dimensions (attributes), and xk and
yk are, respectively the k attributes (components) or data objects x and y.

3. Results

3.1. Land Use/Cover (LCLU)

Figure 2 shows the LCLU classes around the Bahr Mouise canal, where four classes were observed
(agriculture, urban, water bodies, and bare land) that generally represent the main classes in the Nile
Delta [78,79]. Agriculture (vegetation) land use is the dominant class, and urban (residential buildings
and industrial areas) is the second dominant class, as it represents about 25% of the total studied area.
Figure 2 shows that the Bahr Mouise canal is directed from the south towards the north. The water of
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the canal is affected by contamination sources from agriculture drainage and human effluent from
urban areas. Figure S1 illustrates the impact of different land uses on the irrigation water quality
of the Bahr Mouise canal, and the variations in variable concentrations (i.e., pH, ECiw, Ca2+, Mg2+,
Na+, K+, HCO3

−, Cl−, and SO4
2−), while the high concentration values were observed in the areas

that had mixed urban and agricultural LCLU, which may negatively impact the water quality of this
site location.
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Figure 3 illustrates the values of the NDVI for water bodies that had the lowest values (from
−0.1 to 0.0), bare land, and urban-occupied low values (0.0–0.1), while the higher NDVI values were
assigned to the cropland where the values ranges from 0.1 to 0.6.

Figure 3 demonstrates the changes in the NDVI values over time (eight months during 2019). In
May, farmers were preparing farmland (sowing and planting the summer crops); thus, the majority of
the agricultural land had low NDVI values compared with the NDVI values in August and September
where the summer crops were fully grown. Following the same trend, the winter crops were cultivated
from October and November, and till January, the crops were still in the primary growth stage. As
such, the NDVI values were low in January. On the contrary, the values were increased in February
and March as a result of the growth stage development of the winter crops.

3.2. Climate and Water Use

The monthly climate parameters (i.e., mean temperature (Tmean), precipitation, and the annual
potential evapotranspiration (ET0)) of the representative meteorological station of the El-Sharkia
Governorate are presented graphically in Figure 4A. The mean annual temperature reached 21.3 ◦C,
with an annual rainfall of 57 mm. In the same context, the ET0 had a value of 1045 mm, and according
to the aridity index, the twelve months of the study period had arid climate conditions (in which
the ET0 exceeded the actual precipitation) [11].
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The agricultural water requirements in the El-Sharkia Governorate for summer crops (cultivated
from February to May), winter crops (cultivated from September to November), Nili crops (cultivated
from July to August), and fruits were 2.47, 1.22, 0.31, and 0.03 billion m3, respectively [11]. The major
summer crops are maize, rice, sorghum, cotton, sunflower, sesame, sugarcane, soybean, and onions.
The major winter crops are beans, wheat, sugar beet, barley, onion, alfalfa, garlic, and lupine. The Nili
crops are sunflower, maize, rice, sorghum, and onions. Consequently, the summer crops had the greatest
water irrigation requirements (Figure 5B).
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sampling site (B).

3.3. Validity of Bahr Mouise Water based on Traditional Criteria Analysis

Water pH: According to the Food and Agriculture Organization (FAO) [80], the acceptable level of
pH for irrigation water is 6.0–8.5. The pH of the Bahr Mouise canal water was within the recommended
ranges, varying from 6.89 to 7.95 over the twelve months with an average of 7.41 ± 0.39 (Figure 5 and
Table S2).

Salinity hazard: The United States Department of Agriculture (USDA) [67] classified the irrigation
water based on ECiw into four classes: low salinity (C1: <0.25 dS m−1), medium salinity (C2 ranged
from 0.25 to 0.75 dS m−1), high salinity (C3 ranged from 0.75 to 2.25 dS m−1), and very high salinity
(C4: >2.25 dS m−1). Therefore, the EC of the Bahr Mouise canal water was assigned to the medium
salinity class where the values of ECiw ranged from 0.38 to 0.55 dS m−1 with an average of 0.46 dS m−1

(Figure 5 and Table S2).
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Another classification of irrigation water based on ECiw was provided by Gupta [69]: low salinity
(C-1: ECiw 0.2–1.5 dS m−1), medium salinity (C-2: ECiw 1.5–3.0 dS m−1), high salinity (C-3: ECiw
3.0–5.0 dS m−1), and very high salinity (C-4: ECiw 5–10 dS m−1). Accordingly, the EC of the Bahr
Mouise canal water was assigned to the low salinity class. Moreover, the ECiw values were converted
to total dissolved solid (TDS) values based on the equation TSD, mg L−1 = EC, dS m−1

× 640 that was
expressed by the authors of [69]; the TDS ranged between 243 and 352 mg L−1 with an average of
294 mg L−1.

Sodicity hazard: The most important indicators of sodicity water irrigation hazard are the SSP
(Equation (2)) and the SAR (Equation (3)). When there is a high concentration of sodium ions in
irrigation water, Na+ ions tend to be absorbed by clay particles, displacing Mg++ and other cations.
Water with an SSP greater than 60% breaks down the soil’s physical properties, which may occur due
to sodium accumulation [81]. The calculated SSP values varied from 19.96% to 37.32% with a mean
value of 31.40%, indicating a low restriction degree on using the water for irrigation. Kumar et al. [82]
note that water with an SSP < 50% is good quality and suitable for irrigation purposes.

The USDA [67] classifies irrigation water based on the SAR into four classes: low (S1: SAR <10),
medium (S2: SAR 10–18), high (S3: SAR 18–26), and very high (S4: SAR >26). Thus, the SAR values of
the Bahr Mouise canal were in the low class and ranged from 0.67 to 1.56 mmol L−1 with an average of
1.19 mmol L−1 (Figure 6 and Table S3).

Another classification of irrigation water based on the combination of EC and the SAR is provided
by the USDA [67]. The classes of this classification are: very good water (C1S1), good water (C1S2,
C2S2, and C2S1), usable water (C1S3, C2S3, C3S3, C3S2, and C3S1), and usable water with caution
(C1S4, C2S4, C3S4, C4S4, C4S3, C4S2, and C4S1). The water of the Bahr Mouise canal was assigned to
the good water C2SI class (Figure 6 and Table S3).

Regarding the SAR/SCAR ratio (the SCAR was calculated as shown in Equation (5)), the irrigation
water was classified into six classes of sodicity [83]: non-sodic water (S-0: SAR/SCAR < 5), normal
water (S-1: SAR/SCAR 5–10), low sodicity water (S-2: SAR/SCAR 10–20), medium sodicity water (S-3:
SAR/SCAR 20–30), high sodicity water (S-4: SAR/SCAR 30–40), and very high sodicity water (S-5:
SAR/SCAR > 40). Accordingly, the water of the Bahr Mouise canal was found to fall in the non-sodic
water (S-0) class, where the values of the SAR/SCAR ratio ranged from 1.22 to 1.27 with an average of
1.25 (Figure 6 and Table S3).

Alkalinity hazard: According to the USDA [67], irrigation water is classified based on RSC
(Equation (6)) into three classes: 1—safe for irrigation (RSC < 1.25); 2—medium hazard (RSC ranged
from 1.25 to 2.5); and 3—extreme hazard (RSC > 2.5). Thus, the water of the Bahr Mouise canal was
found to be safe for irrigation, and the values of RSC ranged between −1.83 and −0.96 mmol L−1 with
an average of −1.22 mmol L−1 (Figure 6 and Table S3).

Moreover, using the RSC/RSBC ratio (the RSBC was calculated as shown in Equation (7)),
the irrigation waters could be classified into six classes of alkalinity [83]. The six classes of the RSC/RSBC
ratio are non-alkaline water (A-0: RSC/RSBC equals a negative value), normal water (A-1: RSC/RSBC
equals zero), low alkalinity water (A-2: RSC/RSBC equals 2.5), medium alkalinity water (A-3: RSC/RSBC
ranges from 2.5 to 5), high alkalinity water (A-4: RSC/RSBC ranges from 5 to 10), and very high
alkalinity water (A-5: RSC/RSBC > 10). Accordingly, 83.33% of the studied water samples were
assigned to the A-2 class, 16.67% were allocated to the A-3 class, and the values of the RSC/RSBC ratio
were ranged between 1.66 and 3.09 with an average of 2.12 (Figure 6 and Table S3).

Permeability index: The PI value is used as an indicator of irrigation water suitability (Equation
(8)). The PI can be classified into three classes: excellent (class I: >75%), good (class II: 25–75%), and
unsuitable (class III: <25%) [84]. The PI values of the Bahr Mouise canal ranged between 55.48 and
67.91, so the water of the Bahr Mouise canal was in the good water class for irrigation.
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Figure 6. Spatiotemporal assessment of the Bahr Mouise canal water using traditional criteria—monthly
(A) and spatially in each sampling site (B). RSBC: residual sodium bicarbonate; SSP: soluble sodium
percentage; SAR: sodium absorption ratio; PI: permeability index; SCAR: sodium-to-calcium activity
ratio; KR: Kelly ratio; MAR: magnesium absorption ratio; and RSC: residual sodium carbonate.

Magnesium ratio: The magnesium hazard of irrigation water is evaluated using the MAR [85].
The MAR can be classified into two classes: safe water (Class I: <50) and water with Mg2+ hazard
(Class II: >50). The water of the Bahr Mouise canal is safe for irrigation as the values of MR ranged
from 19.28% to 25.59% with an average value of 21.48% (Figure 6).

Kelly ratio: The KR is calculated based on the measurement of sodium against calcium and
magnesium (Equation (9)). If the KR > 1, this indicates an excess of sodium in the water [71].
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Therefore, water with a KR < 1 is suitable for irrigation, while a greater ratio (KR > 1) is unsuitable [86].
The KR values of the Bahr Mouise canal water ranged from 0.27 to 0.64 with an average value of 0.50;
consequently, the water is suitable for irrigation (Figure 6).

Specific ion toxicity: Sodium (Na+), chloride (Cl−), bicarbonate (HCO3
−), and nitrate (NO3

−) ions
are considered to be the most common toxic ions in irrigation water. According to guidelines of water
quality for irrigation presented by the FAO [80], the Na+, Cl−, and NO3

− ions of the Bahr Mouise canal
were found to be at levels characterized as safe for irrigation purposes. The values were Na+ < 3
(expressed as the SAR), Cl− < 3, and NO3

− < 5 mg L−1. On the other hand, the HCO3 concentrations
ranged between slight and moderate concentrations, from 1.33 to 2.26 mmol L−1 with an average of
1.69 mmol L−1 (Figure 6 and Table S3).

3.4. Irrigation Water Quality Index (IWQI)

The IWQI evaluation results of the Bahr Mouise canal indicated that the water quality was
assigned to class I—“No restriction”—for January, February, March, April, September, November,
and December, when the IWQI values ranged between 85 and 100 (Figure 7A). Therefore, the water
can be used in almost types of soil and crops, and it cannot cause any long-term salinity/sodicity
problems [72]. The water quality in May, June, July, August, and October was assigned to class II—“Low
restriction”—(Figure 7A). Consequently, the water can be safely used to irrigate soils with coarse and
medium textures (high contents of sand and silt) and a with moderate permeability status.
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the Mouise canal.

On the other hand, to avoid soil sodicity in heavy textures (high clay content) due to irrigation
with low quality water, soil leaching is recommended because the water may cause an elevated risk to
salinity-sensitive plants. Only sampling site VI was classified as class II—the rest of the studied sites
were classified as class I (Figure 7B).
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3.5. Principal Component Analysis (PCA)

3.5.1. Correlation Between the Chemical Constituents of Irrigation Water

The normality of the data was checked using the Shapiro–Wilk test, which indicated that
most of the studied variables, except for Cl− and SO4

2−, followed a normal distribution (Table S2).
The correlation matrix between all variables of the Bahr Mouise canal water is presented in Table S4.
The correlation matrix shows a positive correlation between ECiw and Ca2+ (0.90), Mg2+ (0.68), Na+

(0.72), K+ (0.77), HCO3
− (0.57), Cl− (0.77), and SO4

2− (0.52). There was a positive correlation between
Ca2+ and Mg2+ (0.78), Na+ (0.35), K+ (0.83), HCO3

− (0.79), Cl− (0.68), and SO4
2− (0.23). More positive

correlations existed between Mg2+ and K+ (0.89), HCO3
− (0.88), Cl− (0.34), and SO42− (0.19); between

Na+ and Cl− (0.65), and SO4
2− (0.64); and between K+ and HCO3

− (0.75). Figure 8A illustrates
the correlations between different variables through a biplot, and the angles between the vectors
indicate the status of the correlations between each variable. When two vectors are positively correlated,
a small angle between the two variables was observed, and if they meet each other at 90◦, they are not
likely to have been correlated. On the contrary, a big angle (close to 180◦) indicates a negative correlation.
The majority of the observed correlations were significant (p < 0.05) and indicated the presence of
these variables in one or more of the major general components. Therefore, the PCA gave better results
under these conditions of correlations, based on the verification of Bartlett’s sphericity test where
small p values (p < 0.05) indicated that the PCA was a convenient method for the current data because
the observed p value of the data was lower than 0.001 [73]. The Bartlett’s sphericity test results are
illustrated in Table S1.

3.5.2. Validity of Water for Agricultural Irrigation

A summarization of the PCA output based on SPSS software is presented in Table 1. Generally,
seven principal components (PCs) were obtained from PCA. The PCs that had an eigenvalue greater
than one were kept, and the rest were removed [46].

Table 1. Summarization of the principal component analysis (PCA).

PC1 PC2 PC3 PC1 PC2 PC3

Eigenvalue 4.99 1.84 1.30
Variability (%) 55.42 20.49 14.49
Cumulative % 55.42 75.91 90.39

Factor loadings Component Score Coefficient
X1 (pH) 0.46 0.01 −0.70 0.092 0.017 0.539

X2 (ECiw) 0.95 0.28 0.10 0.191 0.155 −0.072
X3 (Ca2+) 0.95 −0.14 0.19 0.192 −0.070 −0.142
X4 (Mg2+) 0.85 −0.48 −0.02 0.172 −0.248 0.029
X5 (Na+) 0.50 0.85 0.03 0.099 0.459 −0.026
X6 (K+) 0.89 −0.22 0.02 0.178 −0.139 −0.021

X7 (HCO3
−) 0.76 −0.57 −0.13 0.156 −0.298 0.103

X8 (Cl−) 0.64 0.36 0.63 0.128 0.194 −0.484
X9 (SO4

2−) 0.45 0.54 −0.59 0.087 0.297 0.449

Thus, there were three PCs that had an eigenvalue > 1 (Table 1). A scree plot (Figure S2) was
used to determine the number of PCs. The three PCs explained about 90.39% of the total variance of
the water variable data. PC1 represented about 55.42% of the total variance, whilst 20.49% and 14.49%
of the total variance were represented by PC2 and PC3, respectively (Table 1).
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monthly variation, and (D) the final classification of water quality.

Table 1 and Figure S3A show the factor loading of the three PCs, indicating the higher loading and
contribution of the corresponding components [77]. Based on the factor loading of the variables in PC1,
the contributing descriptors were ECiw, Ca2+, Mg2+, K+, HCO3

−, and Cl−, where the contributions of
the variables were 18.28%, 18.25%, 14.55%, 15.83%, 11.71%, and 8.14%, respectively. PC2 was highly
correlated with Na+, where the contribution of the variable was 39.27%. Regarding PC3, the effective
contributing descriptors were pH and SO4

2− (negative correlation), where the contributions of
the variables were 37.92% and 26.68%, respectively.

A biplot analysis (PC1 vs. PC2) was used to visualize water variables correlations (Figure 8A),
and three major groups of water properties were obtained based on the AHC technique (Figure 8B).
Therefore, AHC was done to visualize the water variable grouping based on the three PCs that had
an eigenvalue greater than 1.

The first group that affected by PC1 was constituted by ECiw, Ca2+, Mg 2+, K+, HCO3
−, and

Cl−; therefore, PC1 represents an indicator for salinity and alkalinity hazards because it includes
the ECiw, which is normally used to estimate salinity hazard [87]. The ions (i.e., Ca2+, Mg2+, and
HCO3

−) were used to estimate the alkalinity hazard based on the calculations of many criteria such
as RSC and RSBC [37,69]. The second group that was affected by PC2 was constituted by Na+; thus,
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the PC2 is related to the sodicity hazard where the given hazard indicates the relationship of Na+ with
the other cations (i.e., Ca2+, Mg2+, and K+) that expressed various criteria such as the SSP, the SAR,
and the SCAR [69]. The third group was affected by PC3 and constituted by pH and SO4

2−; therefore,
it may indicate water acidity.

The principal component scores for each month were calculated, and they are presented in Table 2
and Figure S3C, where a higher score indicates lower quality of water. Table 2 and Figure S3C illustrate
that all months except January, February, March, November, and December had a high PC1 score
(ranged between −2.59 and 3.30); therefore, Bahr Mouise water had some limitations in the months
with high PC1 scores. The high PC2 scores were observed in January, February, June, July, August,
September, October, November, and December (ranged from −0.31 to 1.49).

Table 2. Component score of different months.

Month PC1 PC2 PC3 PC Comprehensive Score

January −2.97 0.17 −0.06 −1.62
February −3.1 0.49 0.2 −1.59

March −0.96 −0.37 −0.42 −0.67
April 0.04 −2.65 −0.56 −0.6
May 3.3 −2.77 0.96 1.4
June 3.09 0.9 −2.7 1.5
July 1.4 1.42 0.54 1.15

August 2.62 1.49 2.42 2.11
September 0.25 1.02 −0.57 0.27

October 0.86 0.87 −0.37 0.6
November −2.59 −0.26 0.54 −1.41
December −1.95 −0.31 0.01 −1.14

Generally, the limitations (high PCs scores) were observed from May to December.
The comprehensive scores were calculated, they are presented in Table 2 and Figure S3C, where
August is shown to have had the highest score (2.11) January is shown to have had the lowest score
(−1.62). Moreover, Table 1 and Figure S3B,C show the correlations between PC1, PC2, and PC3 with
the different variables.

The PC scores could be calculated based on the following equations (Equations (18)–(20)):

PC1=0.09X1 + 191X2 + 0.192X3 + 0.172X4 + 0.099X5 + 0.178X6 + 0.156X7+ 0.128X8 + 0.087X9 (18)

PC2=0.017X1 + 0.155X2 − 0.070X3 − 0.248X4 + 0.459X5 − 0.139X6−0.298X7 + 0.194X8 + 0.297X9 (19)

PC3=0.539X1 − 0.072X2 − 0.142X3 + 0.029X4 − 0.026X5 − 0.021X6 + 0.103X7 − 0.484X8 + 0.449X9 (20)

where X1 to X9 represent the measurement of each parameter: X1 is the pH, X2 is the ECiw, X3 is
the Ca2+, X4 is the Mg2+, X5 is the Na+, X6 is the K+, X7 is the HCO3−, X8 is the Cl−, X9 is the SO42−

The comprehensive score can be calculated as shown in Equation (21):

PC = 0.5542 PC1 + 0.2049 PC2 + 0.1449 PC3 (21)

Table S4 represents the correlation components matrix that indicates that there was no correlation
between the components; therefore, each component represents a discrete component.

Lastly, AHC was done to classify the water quality based on PC score results (Figure 8C,D).
The class centroids and central objects for each cluster are shown in Table S5. Based on the AHC water
quality classification, three water quality classes were obtained; Class 1 was the water quality that
was allocated to class I was observed in January, February, March, April, November, and December.
The quality of water during the given months did not have salinity, sodicity, and/or alkalinity limitations
and could be used for irrigation without any restrictions. Class 2 was water quality that was allocated
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to class II that was observed during June, July, August, September, October, and December, and
an alkalinity hazard may occur as a result of the continued irrigation during the given months. No
months were allocated to class III. If one of the months had class III, the farmers would have to consider
proper water management (e.g., providing a good drainage system and calculating the water leaching
requirements) to prevent salt accumulation in the soil.

4. Discussion

The increasing demand for high-quality water for irrigation in Egypt in the last few decades
has led to the use of poor-quality water for irrigation purposes in farmland, while the continuous
usage of the low-quality water could cause a decline in crop productivity [88–92]. The current study
shows that the water of the Bahr Mouise canal was classified as a moderate salinity hazard; this type
of water has low limitations and is suitable for most agriculture crops [69]. Moreover, moderately
salt-tolerant plants can be grown in most cases without special management, based on the guidelines
for water quality for irrigation presented by the authors of [80]. The water of Bahr Mouise has a low
and moderate salinity, but salt accumulation in soil may occur over the long term, and it may cause
soil degradation and negatively impact crop productivity [92,93].

Phogat et al. [94] used the traditional criteria in order to evaluate the long-term impact of recycled
water irrigation on soil chemical properties and crop yield. Irrigation with recycled water can potentially
increase the soil solution salinity, the sodium adsorption ratio, and the exchangeable sodium percentage
in the soil. The increased soil salinity reduces the potential almond yield by 12–20% in various soils.
At the local farms that are irrigated by the Ethiopian Leyole River, the grown crops such as onion,
carrot, potato, and cucumber would be sensitive to the concentration of chemical parameters such
as BO3−, Na+, and the SAR. Higher Na+ and SAR values would lead to soil permeability problems.
High SAR levels in irrigation water can cause soil problems such as soil surface crust formation, poor
drainage, and poor soil tilth [80,91,95,96]. An excess of HCO3

− concentration in irrigation water
negatively affects the plant uptake and metabolism of nutrients. The excess of Na+ concentration in
irrigation water leads to an increase adsorbed exchangeable sodium, which may cause dispersion
in soil aggregates, blocking pores and reducing the water infiltration [20]. Soil function is generally
threatened by increased food demands, human influence, and its activities (such as the continuous
irrigation with low quality water), as well as land use and climate change [97,98]. This may lead to
physical and chemical degradation processes and negatively affect soil sustainability [99,100].

Monitoring land use/land cover changes is fundamental for sustainable irrigation water
management plans. The authors of [101,102] showed the importance of using the remote sensing
techniques in order to detect LCLU changes and their impact on surface water in Nile Delta. Urban
sprawl and rapid LCLU changes in the Nile Delta have a negative impact on water irrigation quality by
increasing the concentration of contaminants [103,104]. In addition, using agricultural drainage water
for irrigation causes degradation to the most fertile soils [6,27,37]. The NDVI assists in the detection
of cultivation changes and crop growth during the year, while variations in crop types and growth
consequently lead to fluctuations in irrigation water demand, where summer crops need more water
compared with winter crops [105]. Moreover, in summer, the temperature and evapotranspiration are
higher than other cultivation seasons, so the concentrations of some elements may raise and lead to
an increase in the salinity and alkalinity hazards [106,107]. The high air temperatures during the year
in arid regions negatively impact crop evapotranspiration, water irrigation requirements, and soil
salinity level. Consequently, the plant growth and crop yield are significantly affected [107].

Here, the IWQI was used to assess the suitability of water bodies for different usage purposes, e.g.,
irrigation, aquatic life, and drinking. Furthermore, it can provide good information to decision makers
in order to make suitable decisions about alternative water usage and conserving water bodies [108].
El Shemy et al. [109] applied the Canadian Council of Ministers of the Environment Water Quality
Index (CCME-WQI) according to the Egyptian water quality standards for surface waterways Law
48/1982—Article No. 60 [110,111] to assess the overall water quality status of Lake Nubia (southern
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Egypt). Seven water quality parameters were integrated into the CCME-WQI and followed the Egyptian
water quality standards (e.g., pH (7–8.5), dissolved oxygen (>5 mg L−1), nitrate–nitrite (>45 mg L−1),
total phosphorus (>1 mg L−1), total dissolved solids (>500 mg L−1), ammonium (>0.5 mg L−1), and
fecal coliforms (<2000 N/100 mL)); the obtained results indicated that the water quality ranged from
92% to 100% (good and excellent) according to the CCME-WQI.

Several studies around the world have applied PCA to evaluate and classify water quality for
irrigation purposes, including China [112], Turkey [113], Nigeria [114], and Brazil [115]. China applied
PCA to the Tongjiyan irrigation area, and the given study indicated that the PCA classification had
similar results with other methods such as fuzzy evaluation, the Nemerow index, and improved
Nemerow index methods. The authors of [116] identified four principal components in order to
evaluate overall water quality. On the other hand, the seasonal and temporal variations of irrigation
water quality in the Ajakanga area, Ibadan, Nigeria were examined by Ganiyu et al. [117] using PCA,
and they reported that 95.7% (dry seasons) and 88.7% (wet seasons) of the total variance of the data set
were represented by five principal components. The seasonal alterations in water quality were related
to the weathering process, mineral dissolution, groundwater–rock interaction, and anthropogenic
activities. Thus, the PCA represents a new approach to achieving the sustainable management of
water resources [4,5]. In the same trend, cluster analysis (CA) and PCA were applied to analyzing
36 physicochemical parameters of water samples that were collected from a polluted lake in order to
group five sampling sites into three clusters of similar water quality characteristics. The PCA method
can be used for identifying physiochemical parameter correlations and the factors responsible for water
quality variations [56,118].

As in many studies of water irrigation quality assessments, this study had some limitations. For
example, the applied methods and the developed simplified water quality assessment were applied
to an irrigation canal with a good water quality; therefore, further studies should be conducted in
irrigation and drainage canals with diverse water qualities in order to justify and observe the variations
between the applied methods. Nevertheless, the current research showed that temporal analysis is
more important than spatial analysis for the same irrigation canal and that more changes were observed
in water quality in different studied months than from one site to another.

5. Conclusions

The proper management of irrigation water depends on understanding irrigation water quality,
as it assists in determining suitable crops and the potential agriculture uses. Irrigation water quality is
affected by human activities, agricultural practices, and environmental conditions (e.g., urbanization,
use of agrochemicals, and climate conditions). The irrigation water quality of the Bahr Mouise canal
(El-Sharkia Governorate, Egypt) at six site locations over the twelve months of 2019 were assessed by
using multivariate analyses (i.e., IWQI), as well as by developing a new classification method based on
analyzing water chemical composition using the PCA and AHC techniques. The PCs of PCA explained
90.39% of the total variance of water data. The quality of Bahr Mouise canal water was decreased to
class II in summer (June, July, August, September, and October), while the highest quality (class I) was
observed during the winter (January February, March, April, November, and December).

The new approach of classification based on the PCA water quality as a statistical-based method
had similar results to the IWQI method, except for in the assessment of water in September, which
was assigned to class II when applying the PCA method but assigned to class I by the IWQI method.
The dominant LCLU around the Bahr Mouise canal was agriculture use, and the variations in NDVI
values indicated the dissimilarities of crop types and growth stages during the different cultivation
seasons. Therefore, the variations in crop types and the status of growth stage were related to crop
water requirements and irrigation water quality. Generally, the Bahr Mouise canal was found to have
a good water quality for irrigation, but the decline in water quality during the summer indicated
that continued irrigation (over the long term) during this season may cause salinization problems
and, consequently, negatively impact crop productivity; therefore, the suitable planning of irrigation
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water management is highly recommended. Finally, irrigation water represents a principal issue for
sustainable agricultural production in Egypt; hence, irrigation water quality must be monitored during
the year, and good-quality irrigation water should be used to sustain soils and agricultural productivity.
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and Bartlett’s sphericity tests, Table S2: Annual average of chemical composition analysis of Bahr Mouise canal
water, Table S3: Criteria for judging the validity of Bahr Mouise canal water, Table S4: Correlation components
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