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Abstract: Over the past several decades, urban flooding and other water-related disasters have
become increasingly prominent and serious. Although the urban rain flood model’s benefits for
urban flood simulation have been extensively documented, the impact of rainfall input to model
simulation accuracy remains unclear. This systematic review aims to provide structured research on
how rain inputs impact urban rain flood model’s simulation accuracy. The selected 48 peer-reviewed
journal articles published between 2015 and 2019 on the Web of Science™ database were analyzed by
key factors, including rainfall input type, calibration times and verification times. The results from
meta-analysis reveal that when a traditional rain measurement was used as the rainfall input, model
simulation accuracy was higher, i.e., the Nash–Sutcliffe efficiency coefficient (NSE) of traditional
technology for rain measurement was higher than the 0.18 for the new technology rain measurement
with respect to flow simulation. In addition, the single-field sub-flood calibration model was better
than the multi-field sub-flood calibration model. NSE was higher than 0.14. The precision was better
for the verification period; NSE of the calibration value showed a 0.07 higher verification value on
average in flow simulation. These findings have certain significance for the development of future
urban rain flood models and propose the development direction of the future urban rain flood model.
Finally, in view of the rainfall input problem of the urban storm flood model, we propose the future
development direction of the urban storm flood model.

Keywords: urban rain flood model; meta-analysis; rainfall input; model accuracy; model development

1. Introduction

The frequent occurrence of urban flood events has caused severe losses to human life and property
worldwide [1]. Climate change and the urban rain island effect have exacerbated the problem via
increasing occurrence of extreme rainfall events [2]. Continuous development and expansion of
cities have led to the transformation of natural permeable surfaces into impervious underlay surfaces,
which accelerate the formation of runoff [3]. At the same time, continuous economic development has
led to more severe flood losses [4]. The increasing complexity and harmfulness of urban flood events
have made urban rain and flood issues important research topics. The basis of the study of urban rain
and flood problems is to establish urban rain and flood models, calibrate and verify the models by
simulating and reproducing historical flood events, and then providing technical support for urban
hydrological forecasting, urban planning, and water resource utilization. The goal is to alleviate or
even solve the problem of urban flooding.
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Scholars have developed hundreds of urban rain and flood models. Model development can
be divided into three stages (Figure 1): the foundational stage (1890–1971), the development stage
(1972–1990), and the modern stage (1991–today) [5]. The introduction of mathematical formulas
into urban drainage design calculations in 1889 marked the beginning of the foundational stage [6].
This phase mainly used empirical equations based on physical mechanisms to meet the needs of
urban runoff calculations. The establishment of the US Environmental Protection Agency in 1971
marked the beginning of the development phase of the storm water management model (SWMM) [7].
The SWMM is a semi-distributed model that integrates surface runoff, surface confluence, and pipe
network confluence. Its development is an important sign of the maturity of urban hydrological
models [8]. At this stage, the research is mainly focused on urban hydrological processes and
hydrodynamic process simulation. With algorithmic innovation, the model is able to meet the basic
needs of urban rain and flood simulation. Since 1991, or the modern stage, developments in science and
technology have provided a solid foundation for rapid development of urban rain and flood models,
and comprehensive integration is now a remarkable feature of current models. The simulation method
is more comprehensive, and the modeling process is more convenient. New methods, technologies,
and models have been gradually introduced into urban rain and flood simulation, making simulation
methods more accurate and complete [9]. Many scholars have conducted detailed systematic reviews
of the performance of rain and flood models over time.

Verworn et al. [10] examined today’s basic principles of urban drainage, potential future advances,
and their relevance to flood protection. Boughton et al. [11] systematically review the development and
application of water balance models in Australia over a 40-year period. Winz, Ines et al. [12] traced the
theoretical and practical evolution of system dynamics over a period of 50 years. From a review of the
literature and selected case studies, the authors identified and discussed a number of the best practices
and common pitfalls in the application of system dynamics simulation. Summarizing the calculation
methods for urban rainwater discharge and examining development of urban rainwater models,
Xia Jun et al. [13] compared commonly used urban rainwater models; with respect to the problems of
insufficient data and investigative mechanisms in urban rainwater models, future development and
improvement of the urban rainwater model are discussed. These review articles on urban rain flood
models have discussed and evaluated the application effects of models in terms of structure principles,
application characteristics, and development prospects, and they are all qualitative descriptions.
However, there is little work on quantitative and intuitive descriptions of model application effect.
In addition, there is almost no discussion about the influence of rainfall input on the effect of
model application.

The accuracy of the urban rain flood model is determined by rainfall input, model structure,
and model parameters [14,15]. Analysis and research have determined that uncertainty in rainfall
input is the greatest source of model error. Based on a literature search of the Web of Science™ database,
the present study, using a meta-analysis method, screens published research results on the urban rain
flood model over the past five years, extracting model simulation accuracy data. The main analysis is
divided into traditional rainfall input (rainfall station observations) and new technology rainfall input
(radar rain measurement, numerical forecasting, and Web crawling). This study also systematically
reviews the research and model development [16] work regarding recent urban rain flood models.
Rainfall observation from rainfall stations has the advantage of high observation accuracy, but the
spatiotemporal effect is poor [17]. New technology of rainfall measurement is designed to improve the
spatial and temporal resolution of rainfall input to the model, but its observation accuracy is far from
sufficient [18]. These limitations are the main reasons that rainfall input affects model accuracy [5].
In addition, rainfall duration, magnitude, model calibration times, and model verification times all
have some impact on model accuracy.

Since the 1980s, meta-analysis has been recognized by researchers in different disciplines such
as medicine, psychology, and pedagogy [19]. The research idea is to calculate the average effect of
the data generated through experimental research and quasi-experimental research, so it belongs to
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the category of quantitative research methods. Sohn W et al. quantitatively evaluate the relationship
between climate and low impact development (LID) effectiveness, which provides new ideas for
rainwater management policies [20].

This study summarizes the development process behind urban rain flood models and points out
the development characteristics of different stages of development, along with characteristics and
model application. Further, it combines meta-analysis methods, quantitatively evaluating the impact
of such factors as rainfall input type, calibration times, and verification times on model accuracy,
developing quantitative analysis improvements. Finally, this study examines possible applications of
emerging technologies in further development of urban rain flood models.
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Figure 1. Urban rain flood model research progress graph [21]. (The figure is adapted from
reference [21]).

2. Materials and Methods

This review of the impact of rainfall input on the accuracy of urban rain flood models involves two
review steps: (1) systematic selection and review of 58 peer-reviewed journal articles for study areas in
15 countries, published in 42 journals, and (2) employment of a meta-analysis [20] method to build a
framework to quantitatively evaluate the simulation results of the model based on rainfall input.

2.1. Study Search and Selection

To search and select the literature comprehensively and extensively, a research entry point was
established, along with determination of which factors most strongly affect the simulation accuracy
of urban flood models. After selection and final determination, rainfall as the input condition of
the model was determined to be the main factor. The study theme was then determined to be
the influence of different rainfall input conditions on the simulation accuracy of urban rain flood
models. Four keywords were selected: urban pluvial flood model, urban rain flood model, urban
storm water model, and urban hydrological model. To highlight research trends in the urban rain
flood model, five years were chosen as the study period. The search was conducted on the Web of
Science™ database. The next step was to screen the literature. The keyword search yielded 3464
published papers; 2265 of these were filtered out to complete the first article screening. The second
screening yielded 621 related papers. A third screening produced 195 additional papers. Additionally,
104 papers were obtained through full-text review. Finally, according to the research topic of the impact
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of key variables (rainfall input type, calibration times, and verification times) on model simulation
accuracy and the requirements of meta-analysis methods, 48 documents were finalized (Figure 2).
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Figure 2. Review structure of literature search and selection.

To explore the impact of rainfall input on the simulation results of urban rain and flood models, we
must clarify the types of rainfall. This study divides rainfall into two categories according to method
of observation: (1) traditionally observed rainfall, i.e., ground stations (hydrological stations, rainfall
stations; 41 studies use ground-based observed rainfall as the model input); (2) new technology for
rain measurement, i.e., rainfall data obtained via emerging technologies such as remote sensing, radar,
numerical weather forecasting, and Web crawling (seven articles employed this method). Urban flood
modeling has been an area of great research interest in recent years (Figure 3). The present study
represents a systematic review of comprehensive observation of rainfall methods and research trends.
Thus, the selected research period is 2015–2019. At the same time, to further enrich the content,
10 reference-related papers were included.
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2.2. Model Performance Indicator Selection

Performance of different urban flood models is assessed via statistical error measures and
characteristics of flood process error indicators, including Nash–Sutcliffe efficiency (NSE) [22], root mean
square error (RMSE) [22], coefficient of determination (R2) [23–25], relative error (RE) [24,25], mean
absolute error (MAE) [24], error of time to peak discharge (ETp) [26,27], and error of peak discharge
(EQp) [19]. This study uses NSE, RMSE, R2, and RE as model performance indicators. These evaluation
indicators are explained below.

2.2.1. Nash–Sutcliffe Efficiency

The Nash–Sutcliffe efficiency (NSE) is a traditional model performance indicator for evaluating
the goodness-of-fit between simulated and observed values. The value of NSE varies between −∞ and
1, with higher values indicating better performance. If NSE > 0.5, then the simulated discharge can be
regarded as satisfactory [22].

2.2.2. Root of the Mean Square Error

Root of the mean square error (RMSE) represents the error between the simulated and
observed values. RMSE is non-negative, the smaller the value, the better the model simulation
effect [22].

2.2.3. The Coefficient of Determination

The coefficient of determination (R2) is often used to describe the degree of fit between data.
When R2 is closer to 1, it means that the reference value of the related equation is higher; on the contrary,
when it is closer to 0, it means that the reference value is lower [23–25].

2.2.4. Relative Error

Relative error (RE) refers to the value obtained by multiplying the ratio of the absolute error caused
by the measurement to the measured (conventional) true value by 100%, expressed as a percentage.
Generally speaking, the relative error can better reflect the credibility of the measurement. It is mostly
used in the evaluation of urban rain and flood models to indicate the credibility of the simulated value
of flood peak discharge [24,25].

2.3. Data Analysis

The selected 48 peer-reviewed articles (Table 1) are characterized by the quantitative relationship
description of different key variables to model accuracy, such as rainfall input type, calibration times,
and verification times. We analyze the research trend by counting the frequency of related articles
appearing in each year. To explain the influence of various factors on the accuracy of the model, we
conducted a quantitative analysis of the accuracy problems corresponding to each key variable in
the model. Different key variables are used as classification conditions, and evaluation indicators,
such as NSE, RMSE, R2 and RE, are unified as data sources for meta-analysis. In accordance with the
classification of research objects, data on research methods were selected from the 48 articles, including
research locations, study area scales, model calibration, verification of rainfall events, and model
accuracy evaluation indicators. The reviewed literature reveals the effect of different rainfall inputs on
model application.

The application effect or model accuracy of an urban rain and flood model is usually determined
by comparing the flow process, flood peak flow, total runoff, or water depth of the model with the
observed values [28]. However, the number of quantitative indexes between studies is inconsistent.
To select the quantitative verification indexes, a weighted average method was used to determine the
verification accuracy of the model.
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Table 1. Information of 48 peer-published articles.

Number Author Journal Year Location Model Rainfall Input

1 Zhu, Zhihua Journal of Environmental Management 2019 Guangzhou, China EPA SWMM Rainfall station
2 Thrysoe, Cecilie Journal of Hydrology 2019 Melbourne, Australia MIKE urban Rainfall station
3 Tanouchi, Hiroto Hydrology 2019 Malmo, Sweden HYPEcor and HYPEua Rainfall station
4 Su, Boni Hydrology Research 2019 Beijing, China UPFLOODand LISFLOOD-FP and JFLOW Rainfall station
5 Roodsari, Babak K. Journal of Flood Risk Management 2019 New Jersey, US SAC-SMA and ANFIS Rainfall station
6 Nkwunonwo, U. C. Journal of African Earth Sciences 2019 Lagos, Nigeria CA Rainfall station
7 Mengjing, guo IOP Conference Series: Earth and Environmental Science 2019 Xiaoyi, China MIKE 21 and MIKE URBAN Rainfall station
8 Kolerski, Tomasz Acta Scientiarum Polonorum-Formatio Circumiectus 2019 Gdańska, Poland HEC-HMS Rainfall station
9 Kim, Hyun Il Water 2019 Seoul, Korea NARX and SVNARX Rainfall station
10 Jamali, Behzad Water Resources Research 2019 Melbourne, Australia CA-ffe and HEC-RAS and TUFLOW Rainfall station
11 Huang, Minmin Natural Hazards 2019 Zhangzhou, China SWMM Rainfall station
12 Yang, Gang Journal of Beijing Normal University (Natural Science) 2018 Beijing, China SWMM Rainfall station
13 Szymczak, Tomasz Acta Scientiarum Polonorum-Formatio Circumiectus 2018 Poland SWMM Rainfall station
14 Rujner, Hendrik Journal of Hydrology 2018 Lulea, Sweden Mike SHE Rainfall station
15 Rangari, Vinay Ashok Hydrologic Modeling 2018 Hyderabad Metropolitan, India ANN and SWMM Rainfall station
16 Luo, Pingping Scientific Reports 2018 Hanoi, Vietnam Calibrated flood inundation model Rainfall station
17 Her, Y. Transactions of the Asabe 2018 Texas, US SWAT+ and AWAT2012 Rainfall station
18 Chang, Che-Hao Water 2018 Taiwan, China SOBEK Rainfall station
19 Babaei, Sahar Physics and Chemistry of the Earth 2018 Urmia, Iran SWMM Rainfall station
20 Yoon, Seong-Sim Water 2017 Gangnam, Korea QPE Rainfall station
21 Rai, Pawan Kumar Hydrology Research 2017 Orissa, India GIS+SWMM Rainfall station
22 El Alaoui El Fels Arabian Journal of Geosciences 2017 Tahanaout, Morocco GIS+(Horton/SIG) Rainfall station
23 Chen, Wenjie Water Science and Technology 2017 Haikou, China SWMM+GIS Rainfall station
24 Carson, Tyler Urban Water Journal 2017 New York, US CN and CRE and SWMM and HELP Rainfall station
25 Cai, Qingni Water Resources Protection 2017 Guangzhou, China SWMM Rainfall station
26 Alamdari, Nasrin Water 2017 Fairfax, US SWMM Rainfall station
27 Zhu, Zhihua Water 2017 Guangzhou, China SWMM Rainfall station
28 Akter, A. International Journal of Sustainable Built Environment 2017 Chittagong, Bangladesh HEC-HMS Rainfall station
29 Zhao, Gang Journal of Hydroelectric Engineering 2016 Beijing, China SWMM Rainfall station
30 Peng, Haiqin Environmental Earth Sciences 2016 Fuzhou, China Infoworks Rainfall station
31 Liu, Ning-ning Water Resources and Power 2016 Jinan, China Lattice Boltzmann Rainfall station
32 Li, Chunlin Polish Journal of Environmental Studies 2016 Shenyang, China SWMM Rainfall station
33 Granata, Francesco Water 2016 Merate, Italy SWMM Rainfall station
34 Chen, Hao Engineering Journal of Wuhan University 2016 Wuhan, China D8 algorithm Rainfall station
35 Chang, Xiaodong Journal of Hydroelectric Engineering 2016 Beijing, China SWMM Rainfall station
36 Akhter, Muhammad Saleem Water 2016 Adelaide, Australia PCSWMM Rainfall station
37 Russo, Beniamino Journal of Hydroinformatics 2015 Barcelona, Spain 1D/2D coupled model Rainfall station
38 Peng, Hai-Qin Environmental Science and Pollution Research 2015 Shanghai, China InfoWorks Rainfall station
39 Liu, L. Natural Hazards and Earth System Sciences 2015 Guangzhou, China CA Rainfall station
40 Guan, Mingfu Hydrological Processes 2015 Espoo, Finland SWMM Rainfall station
41 Baek, Sang-Soo Desalination and Water Treatment 2015 Gwangju, South Korea BMP Rainfall station
42 Woodson, David Water 2019 Virginia, US RDHM Radar observation
43 Habibi, Hamideh Journal of Hydroinformatics 2019 Fort Worth et al., US NWS Radar observation
44 Barszcz, Mariusz Pawel Geomatics Natural Hazards and Risk 2019 Warsaw, Poland SWMM Radar observation
45 Simari, G. R. Advances in Artificial Intelligence 2018 Tokyo, Japan USF Radar observation
46 Barszcz, Mariusz Pawel Water 2018 Warsaw, Poland SWMM Radar observation

47 Yoon, Seong-Sim Water 2017 Seoul, Korea SWMM Numerical
weather forecast

48 Yoon, Seong-Sim Remote Sensing 2019 Seoul, Korea SWMM and GIAM Remote sensing
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Table 1. Cont.

Number Title

1 An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives
2 Identifying fit-for-purpose lumped surrogate models for large urban drainage systems using GLUE
3 Improving urban runoff in multi-basin hydrological simulation by the HYPE model using EEA urban atlas: a case study in the Sege river basin, Sweden
4 An urban pluvial flood simulation model based on diffusive wave approximation of shallow water equations
5 A comparison of SAC-SMA and Adaptive Neuro-fuzzy Inference System for real-time flood forecasting in small urban catchments
6 Urban flood modelling combining cellular automata framework with semi-implicit finite difference numerical formulation
7 Stormwater simulation based on the concept of sustainable development of sponge city construction
8 Mathematical modeling of flood management system in the city of Gdansk, Orunski stream case study
9 Real-time urban inundation prediction combining hydraulic and probabilistic methods
10 A cellular automata fast flood evaluation (CA-ffe) model
11 A methodology for simple 2-D inundation analysis in urban area using SWMM and GIS
12 Simulating urban rainfall-runoff and assessing LID facilities by SWMM model in Dahongmen catchment
13 Prognostic model of total runoff and its components from a partially urbanized small lowland catchment
14 High-resolution modelling of the grass swale response to runoff inflows with Mike SHE
15 Simulation of urban drainage system using disaggregated rainfall data
16 Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions
17 SWAT plus versus SWAT 2012: comparison of sub-daily urban runoff simulations
18 A case study for the application of an operational two-dimensional real-time flooding forecasting system and smart water level gauges on Roadsin Tainan city, Taiwan
19 Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach
20 Effects of using high-density rain gauge networks and weather radar data on urban hydrological analyses
21 GIS-based SWMM model for simulating the catchment response to flood events
22 Combination of GIS and mathematical modeling to predict floods in semiarid areas: case of Rheraya watershed (Western High Atlas, Morocco)
23 Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model
24 Assessing methods for predicting green roof rainfall capture: A comparison between full-scale observations and four hydrologic models
25 Simulation of control efficiency of low impact development measures for urban stormwater
26 Assessing the effects of climate change on water quantity and quality in an urban watershed using a calibrated stormwater model
27 Evaluating the effects of low impact development practices on urban flooding under different rainfall intensities
28 Predicting urban storm water-logging for Chittagong city in Bangladesh
29 Impact of rapid urbanization on rainfall-runoff processes in urban catchment: Case study for Liangshui River basin
30 Urban stormwater forecasting model and drainage optimization based on water environmental capacity
31 Jinan urban rainstorm model based on lattice boltzmann method
32 Modeling the quality and quantity of runoff in a highly urbanized catchment using storm water management model
33 Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA’s storm water management model
34 Distributed simulation of urban storm water based on D8 algorithm
35 Urban rainfall-runoff simulations and assessment of low impact development facilities using SWMM model-A case study of Qinghe catchment in Beijing
36 The use of PCSWMM for assessing the impacts of land use changes on hydrological responses and performance of WSUD in managing the impacts at Myponga catchment, South Australia
37 Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain)
38 Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model
39 Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata
40 Modelling and assessment of hydrological changes in a developing urban catchment
41 Evaluation of a hydrology and run-off BMP model in SUSTAIN on a commercial area and a public park in South Korea
42 Precipitation estimation methods in continuous, distributed urban hydrologic modeling
43 High-resolution hydrologic forecasting for very large urban areas
44 Quantitative rainfall analysis and flow simulation for an urban catchment using input from a weather radar
45 Storm runoff prediction using rainfall radar map supported by global optimization methodology
46 Radar data analyses for a single rainfall event and their application for flow simulation in an urban catchment using the SWMM model
47 Effects of using high-density rain gauge networks and weather radar data on urban hydrological analyses
48 Adaptive blending method of radar-based and numerical weather prediction QPFs for urban flood forecasting
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3. Results and Discussion

3.1. Overview of Urban Rain Flood Model Research Trends

Since the 1970s, urban flood modeling has developed rapidly, and a variety of urban rain and
flood models have been developed [29,30]. Urban flood models can be divided into empirical models,
conceptual models, and physical models [31]. The empirical model, also known as the “black box
model”, only inputs and outputs sequences, but lacks physical mechanisms and sufficient analysis
of hydrological processes. The conceptual model is based on water balance construction and has a
certain physical significance. It is used in flood control planning and urban drainage and widely
used in design [32]. The physical model has a strong physical foundation, takes hydrodynamics as its
theoretical basis, requires a lot of data, and is complex to solve; however, it has the highest simulation
accuracy and wide application prospects.

As shown in Figure 3, the number of research articles related to urban flood models in the Web
of Science™ database has surged since 2000. There were three related articles in 2000, 177 in 2010,
and 746 in 2019, or 248.6 times the number of articles published in 2000. This is because, since 2000,
the urbanization process has seen unprecedented acceleration. On the other hand, human activity
and climate change are leading to more frequent extreme rainfall events, and the characteristics of
the urban rain island effect have become clear [33]. These two factors have led to increased rainfall
and reduced infiltration in urban areas, leaving them prone to water accumulation and exacerbating
frequent flooding disasters in cities [34]. Thus, urban rainwater models have been rapidly developed
and applied.

The selected articles involve more than 20 urban flood models. As shown in Figure 4, the SWMM
model has gradually become the most widely used model in the world since it emerged in 1971 [16,35,36].
It appears in our sample a total of 23 times, close to the total number of occurrences of all other models
combined. The SWMM model is easy to operate, has a wide range of applications, and the source
code can be shared [37,38]. These advantages make it one of the preferred models for studying urban
hydrology. In addition, MIKE, UFDSM, geographic information systems (GIS) + and other urban
rainfall runoff models are widely used [2,39].Water 2020, 12, x FOR PEER REVIEW 11 of 20 
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A rational formula was introduced into urban drainage design in 1889; this is considered the
beginning of study of urban flood models [21]; however, study of urban hydrology in the true sense
began in the 1960s. Continuous expansion of the scale of urban flooding brings ever greater attention
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to water problems caused by urbanization [40]. After 1980, with improvements in computing power
and the emergence of geographic information systems (GIS) and remote sensing technology (RS) in
hydrology, a series of urban hydrological–hydrodynamic models surfaced, including SWMM, STORM,
and HSPF [29]. Among the many urban flood models, SWMM is still the most widely used. Scholars
worldwide use the SWMM model to carry out in-depth research on storm flood simulation [41],
urban non-point source load estimation [42], and effective evaluation of low impact development
(LID) measures [16]. The applicability of this model has also been verified in some non-urban areas.
It can be said that SWMM is representative of the urban flood model. After model development
entered the modern stage, how to use emerging science and technology to improve the spatial
and temporal accuracy of the urban flood model simulation has become a key consideration [5].
GIS, remote sensing, Internet, and Big Data technologies provide multiple possibilities for urban
storm flood simulation and verification. Multi-data input, multi-method application, multi-technology
paralleling, and multi-method verification of Big Data-driven simulation may become the direction for
future development.

3.2. Influence of Rainfall Calibration and Verification Times on Model Accuracy

Rainfall input data are taken from the 41 articles with measured rainfall. Among these, 16 papers
use NSE as the index for model calibration and verification. These 16 articles involve 24 urban
flood models. Accuracy statistics for their calibration and verification are shown in Figure 5.Water 2020, 12, x FOR PEER REVIEW 12 of 20 
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Figure 5 shows that in the 24 research simulations [3,16,36,41,43–52], the accuracy of the model in
six verification periods was lower than that in the calibration period, and the accuracy of the model in
18 verification periods was higher than that in the calibration period. Calibration accuracy is 0.07 higher
than verification accuracy on average and the overall trend of model calibration accuracy is positive.

This study also summarizes the comparison articles to compare the accuracy of the models for
single-run (refers to a single historical flood to calibrate the model) and multiple-run (refers to calibrating
the model with multiple historical floods) rainfall–runoff event calibration. The results are shown
in Table 2. Among the 48 articles (Table 1), six articles (Su, Bon et al., 2019; Kim, Hyun Il et al., 2019;
Chen et al., 2017; Akter, A. et al. 2017; Chen, Hao et al., 2016; Liu, L et al., 2015) use a single flood to
calibrate the model. Analysis of these six articles finds that two articles (Kim, Hyun Il et al., 2019;
Liu, L et al., 2015) use NSE as the evaluation indicator for flow simulation, involving three simulations
with results, respectively, of 0.61, 0.81, and 0.85, the average is 0.76. Two articles (Akter, A. et al., 2017;
Liu, L et al., 2015) use R2, with results of 0.77 and 0.965, respectively, the average is 0.87. One article
(Su, Bon et al., 2019) uses RMSE, and with a result of almost 0, the outcome is very good. In an
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in-depth simulation, one article (Chen et al.,2017) uses the RE evaluation index, and with a result
of 14.50%. Another representative multi-stage rainfall calibration model research article is selected
for comparison, and the results are shown in Table 3. Note that in the simulation of flow, the six
representative articles selected have NSE values of 0.25–0.735, the average is 0.62, and the R2 value of
one article is 0.6975, significantly lower than the simulation effect of single-field calibration. There are
two articles (Zhao, Gang et al., 2016; Chang, Xiaodong et al., 2016) on simulation of flood peak flow.
RE was used to evaluate the effect in 10.5% and 29.90%, with large errors. Statistical analysis shows
NSE higher than 0.14 and R2 higher than 0.17 on flow simulation; but in water depth simulation, RE is
about 6% lower. Combining the two statistical tables, the single-run rainfall runoff event calibration
model has higher simulation accuracy than the multi-run calibration model.

Table 2. Single rainfall statistics [1,28,39,53–55].

Authors Location Model Calibration
Times

Study Area Scale
(km2)

Evaluation Index

NSE RMSE R2 RE

Su, Bon (2019) Beijing, China UPFLOOD
LISFLOOD-FPJFLOW Single 1.65 -

0.000026/0.0000285/
0.0000292 m3/s

(flow)
- -

Kim, Hyun Il (2019) Seoul, Korea NARX
SVNARX Single 7.4 0.61/0.81

(flow) - - -

Chen, Wenjie (2017) Haikou, China SWMM+GIS Single 13.8 - - - 14.2%
(depth)

Akter, A. (2017) Chittagong,
Bangladesh HEC-HMS Single 157 - - 0.77 -

Chen, Hao (2016) Wuhan, China D8DS Single 479.71 - - - 14.50%
(depth)

Liu, L. (2015) Guangzhou,
China CA Single 0.2 0.85

(flow) - 0.965 -

Table 3. Multiple rainfall statistics [16,43,44,47,49,56].

Authors Location Model Calibration
Times

Study Area Scale
(km2)

Evaluation Index

NSE RMSE R2 RE

Zhu, Zhihua (2019) Guangzhou,
China EPA SWMM 12 0.155 0.64

(flow) - - -

Tanouchi, Hiroto (2019) Malmo, Sweden HYPEcor Three consecutive
years 52 0.66

(flow) - - -

Rujner, Hendrik (2018) Lulea, Sweden Mike-SHE 4 0.000015 0.68
(flow) - - -

Rangari, Vinay Ashok (2018) Hyderabad ANN+SWMM 4 21.92 0.25
(flow) - 0.6975

(flow) -

Zhao, Gang (2016) Beijing, China SWMM 2 131.48 0.735
(flow) - - 10.5%

(peak flow)

Chang, Xiaodong (2016) Beijing, China SWMM 2 235.27 0.59
(flow) - - 29.90%

(peak flow)

The internal reason is that this phenomenon occurs because of insufficient understanding of
the urban hydrological process [13]. The study of urbanization hydrological effect is the basis for
discriminating urban water problems, exploring urban water cycle rules and forming the theory of urban
production and confluence. The mechanism of urban production and confluence is the theoretical basis
for constructing urban hydrological models. Fully understanding the process of urban hydrological
mechanism requires urban hydrological monitoring and forecasting. Perfect meteorological and
hydrological observation data have always been an important condition for people to understand
and study the laws of hydrology. Urban hydrological observation and forecasting are important
contents and key technologies for urban hydrological research [57]. Strengthening the understanding
of hydro-physical processes, conducting in-depth mechanism research and the dynamic calibration of
model parameters are of great significance to the improvement of urban rain flood models.

3.3. Influence of Rain Measurement Method on Model Accuracy

There are many methods for rainfall observation, divided into two types according to
observation technique. One is traditional rain measurement via rainfall stations, hydrological
stations, meteorological stations, and other facilities to record rainfall on the ground. Rainfall data
obtained via this method are the most commonly used rainfall data for rainfall input to urban
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flood models. However, this method has serious difficulties, including high station construction
cost and low spatial resolution [17]. The other method is new technology measurement, mainly
through radar, remote sensing, microwave, and numerical weather forecasting. An important feature of
this method is completion of observations prior to rainfall. This method has a wide range of space–time
observations [58,59]. Many studies have focused on increasing the time and space of rainfall input.
Resolution seeks to improve the accuracy of simulated predictions of urban rain flood models [60,61];
this is likely to remain a developing trend in precipitation measurement. However, the observation
accuracy of this method is not enough, and it usually needs to be corrected in conjunction with surface
rain measurement [17]. In addition, the observation data usually need to be downscaled and inferred to
be applied; this technology is very complex. Of the 48 articles screened for quantitative analysis, 41 use
rainfall input data for the urban rain flood model observed by traditional methods; the remaining
seven articles use new technology measurement. Figure 6 shows that current rainfall input to urban
rain and flood models is still based mainly on ground observation of rainfall; application of new
technology for rain measurement is less frequent but is a developing trend.
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Thus, the use of new technology for rain measurement attempts to improve the accuracy of urban
rain flood model simulation or forecast by increasing the spatial and temporal resolution of rainfall input.
However, how important are new technology methods? Seven articles (Woodson, David et al., 2019;
Habibi, Hamideh et al., 2019; Barszcz, Mariusz Pawel et al., 2019; Simari, G. R. et al., 2018;
Barszcz, Mariusz Pawel et al., 2018; Yoon, Seong-Sim et al., 2016; Yoon, Seong-Sim et al., 2017) that
use new technologies to observe rainfall as model inputs were systematically analyzed. Table 4
shows that in Habibi, Hamideh et al. (2019), the NSE of flow simulation was greater than 0.6 and
RE of flow simulation is as high as 131%. In the remaining five studies (Woodson, David et al., 2019;
Barszcz, Mariusz Pawel et al., 2019; Simari, G. R. et al., 2018; Barszcz, Mariusz Pawel et al., 2018;
Yoon, Seong-Sim et al., 2017), RE of hydrological element simulation is also 10–30%. Note that,
from the perspective of model accuracy, the application effect of rainfall measured via new
technology is not sufficient as a model input. To deeply demonstrate this problem, we have
chosen seven supporting cases with the same evaluation index and study area scale (Table 5).
Of these seven articles (Huang, Minmin et al., 2019; Roodsari, Babak K. et al., 2019; Thrysoe,
Cecilie et al., 2019; Zhao, Gang et al., 2016; Granata, Francesco et al., 2016; Akter, A. et al., 2017),
two (Roodsari, Babak K. et al., 2019; Thrysoe, Cecilie et al., 2019) use NSE as the evaluation index of
flow observation, with values of 0.79–0.96, the average is 0.88. One uses R2, with a value of 0.77 for
the observation of flood peak flow. Two articles (Huang, Minmin et al., 2019; Zhao, Gang et al., 2016)
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use RE, with values 5.69% and 7.5%, respectively. For observation of depth, one article uses both
RMSE and RE, with values 0.194 mm and 24.55%, respectively. NSE of traditional technology for rain
measurement is higher at 0.18 than new technology for rain measurement on flow simulation. Note that
for simulation on the same hydrological elements, the simulation results obtained via traditional rain
measurement input are better than that of new technology methods.

Table 4. New technology rain test statistics table [17,62–67].

Authors Location Model Method
Study Area

(km2)

Evaluation Index

NSE RMSE R2 RE

Woodson, David
(2019) Virginia, US RDHM Radar 19.4 - 2.69 m3/s

(flow)
- 131%

(peak flow)

Habibi, Hamideh
(2019) Fort Worth et al., US

The NWS
Research

Hydrologic
Distributed

Model

Radar 7.7–54.3 >0.6
(flow) - >0.8

(flow) -

Barszcz, Mariusz
Pawel (2019) Warsaw, Poland SWMM Radar 55.2 - - - 8.7%

(peak flow)

Simari, G. R. (2018) Tokyo, Japan USF Radar 7.7 - 0.0102 m3/s
(flow)

- 12.25%
(peak flow)

Barszcz, Mariusz
Pawel (2018) Warsaw, Poland SWMM Radar 16.5, 43.0 - - -

9.12%, 24.76%
(flow); 7.85%,

25.75% (Runoff)
Yoon, Seong-Sim

(2019) Seoul, Korea SWMM&GIAM Remote
sensing 7.4 - 0.22–1.02 m3/s

(flow)
0.01–0.95 -

Yoon, Seong-Sim
(2017) Seoul, Korea SWMM

Numerical
weather
forecast

605 - 0.194 mm
(depth) - 24.55%

(depth)

Table 5. Traditional technology rain test statistics table [2,3,26,35,47,54].

Authors Location Model Method
Study Area

(km2)

Evaluation Index

NSE RMSE R2 RE

Huang, Minmin
(2019) Zhangzhou, China SWMM Rain

station 6 - - - 5.69%
(peak flow)

Roodsari, Babak K.
(2019) New Jersey, US SAC-SMA/ANFIS Rain

station 17–150 0.79–0.83
(flow) - - -

Thrysoe, Cecilie (2019) Melbourne,
Australia MIKE urban Rain

station 45 0.96
(flow) - - -

Zhao, Gang (2016) Beijing, China SWMM Rain
station 60 - - - 7.5%

(peak flow)
Granata, Francesco

(2016) Merate, Italy SWMM Rain
station 11.35, 98.82 - - - 4.05–20.45%

(Runoff)

Akter, A. (2017) Chittagong,
Bangladesh HEC-HMS Rain

station 7.4 - - 0.77 -

Traditional rainfall measurement technology is not obsolete, because it continues to play an
irreplaceable role in the input layer of the model. However, rain measurement technology continues
to evolve, relying on the latest scientific and technological achievements to build a scientific and
complete meteorological and hydrological surface and underground monitoring network system.
Realizing comprehensive monitoring of urban rainfall, combined with multi-source information
technology and satellite remote sensing, meteorological radar, urban video monitoring, and sensor
equipment to obtain important information on the urban rainfall process from multiple angles is
a new trend in rain measurement technology [57]. In addition, improving the accuracy of rainfall
forecasting [68,69] is indirectly used as an effective means to improve the accuracy of urban storm
flood simulation.

3.4. Application of Web Crawling Rainfall Data in Model Input

In the current information explosion era, Big Data technology uses Big Data to effectively
crawl network data as the rainfall model input; this is a topic of intense interest in current urban
hydrological research [70]. Not a single selected article uses clear quantitative evaluation criteria;
however, a high-quality related paper was found. An article entitled “Critical rainfall thresholds for
urban pluvial flooding inferred from citizen observations” was published in 2019 in Science of the
Total Environment. The authors explore the possibility of using citizen flood observations to gain new
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insights [18] using a 10-year radar rain map dataset and 70,000 citizen flood reports in Rotterdam.
The investigators trained three binary decision trees based on Big Data and used them to predict flood
occurrence based on peak rainfall intensity at different time scales. They concluded that the decision
tree correctly predicted 37–52% of all flood events and 95–97% of all non-flood events. This shows that
Big Data fusion may be useful in studying urban flood simulation and forecasting. How to transform
unstructured data into structured data and use dense data to drive urban rain and flood models will
be a focus of future research.

Multi-source fusion of rainfall observations is an inevitable outcome of the combination of
ground-level rain measurement and new technology rain measurement to strengthen rainfall
observation and quantitative precipitation forecasting in the future [71]. This will further lead
to multi-source information coupling technology to achieve high rainfall observation accuracy, which in
turn improves the simulation ability of urban rain and flood models, providing a more accurate
basis for urban flood control and disaster reduction. The problems of short forecast periods and low
accuracy must be solved urgently to improve urban flood disaster forecasting and early warning.
The advantages of massive data and efficient processing of Big Data should combine with urban
flood disaster simulation principles to study urban flood disaster forecasting and early warning
theory and methods. This will become the very direction toward solving the problem of urban
rain and flooding events. It is necessary to construct urban flood forecast models and real-time
correction methods, coupled with urban storm forecasting models driven by Big Data. In addition,
urban flood dynamic simulation models and urban flood disaster loss assessment models are needed,
along with an urban flood disaster loss index system and disaster rating evaluation method. For urban
areas, developing a dynamic early warning mechanism for flood disasters is an urgent problem.

Next steps should include development of a multi-source data assimilation system and a
standardized basic database. Better cooperation with government agencies is required, as well as
scientific research institutions and network technology companies to build both a Big Data storage
and sharing system and a rainfall proximity forecasting system based on multi-source information
and data. This will provide short-term heavy rain forecasting. Another important issue is processing
high-precision forecasting information, so as to provide scientific and technological support for urban
rain and flood simulation, flood forecasting, flood control, and disaster reduction.

4. Conclusions

By using meta-analysis to evaluate the impact of rainfall input on the simulation effect of urban
rain flood models, we found that the accuracy of the calibration period is higher than that of the
verification period when the urban rainwater model is applied. NSE of the calibration value is a 0.07
higher verification value on average in flow simulation. This is because the model uses the measured
runoff as the target of model fitting during the calibration period, and only takes into account the
flood characteristics of the calibration period during the adjustment of the model parameters, while
the model parameters still retain the flood characteristics of the calibration period during the model
verification period, making the accuracy below calibration period. In the simulation results, the
single-rainfall runoff event calibration model has higher accuracy than the multi-field calibration model.
NSE is higher than 0.14 and R2 is higher than 0.17 on flow simulation; but in water depth simulation,
RE is about 6% lower. As this is caused by the parameter rate tending to average, the application of the
multi-field flood calibration model should be more reliable.

The variety of rain measurement methods leads to diverse rainfall inputs to the model. The current
urban rain flood model rainfall input is still based on ground rain measurement, supplemented by
emerging technology rain measurement. NSE of traditional technology for rain measurement is higher
by 0.18 than new technology for rain measurement on flow simulation. Given the problems analyzed
in this paper, the following guidance applies to the study of rainfall input in future urban rain and
flood models: (1) optimize the layout and construction of existing ground rainfall stations, as ground
rainfall measurement is still reliable and feasible as a method; (2) develop long-term accurate methods;
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(3) speed the development of radar, remote sensing satellites, and microwave technologies. These latter
technologies are effective methods for observing rainfall and can improve the spatial and temporal
resolution of rainfall measurement.

This paper conducts a meta-analysis of the literature on the impact of rainfall input on the accuracy
of urban rainfall models. Quantification and systematic evaluation are carried out on several aspects
of rainfall input type, calibration times and verification times. It further examines the feasibility of
network crawling rainfall input. Finally, it provides new ideas for future development of urban rain
and flood models.
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