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Abstract: Globally, many shallow lakes have shifted from a clear macrophyte-dominated state to a
turbid phytoplankton-dominated state due to eutrophication. Such shifts are often accompanied
by toxic cyanobacterial blooms, with specialized traits including buoyancy regulation and nitrogen
fixation. Previous work has focused on how these traits contribute to cyanobacterial competitiveness.
Yet, little is known on how these traits affect the value of nutrient loading thresholds of shallow
lakes. These thresholds are defined as the nutrient loading at which lakes shift water quality state.
Here, we used a modelling approach to estimate the effects of traits on nutrient loading thresholds.
We incorporated cyanobacterial traits in the process-based ecosystem model PCLake+, known for
its ability to determine nutrient loading thresholds. Four scenarios were simulated, including
cyanobacteria without traits, with buoyancy regulation, with nitrogen fixation, and with both traits.
Nutrient loading thresholds were obtained under N-limited, P-limited, and colimited conditions.
Results show that cyanobacterial traits can impede lake restoration actions aimed at removing
cyanobacterial blooms via nutrient loading reduction. However, these traits hardly affect the nutrient
loading thresholds for clear lakes experiencing eutrophication. Our results provide references for
nutrient loading thresholds and draw attention to cyanobacterial traits during the remediation of
eutrophic water bodies.

Keywords: harmful algal blooms; regime shift; alternative stable state; resilience; hysteresis;
light limitation; nutrient limitation; critical nutrient loading

1. Introduction

Globally, many shallow lakes have shifted from a clear macrophyte-dominated state to a turbid
phytoplankton-dominated state due to eutrophication [1–3]. Such a shift in water quality state is often
accompanied by toxic cyanobacterial blooms and their subsequent nuisance properties [4,5]. Driven by
wind, these blooms can float to shoreline areas, threatening drinking water safety and deteriorating
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recreational values of lakes [6–8]. Therefore, lake managers aim to restore their lakes to a clear state
that can usually provide more societally relevant ecosystem functions compared to a turbid state [9–11].
However, restoration of these lakes is often challenging because of the lack of response of lakes to
measures such as reducing nutrients [12].

This lack of response of shallow lakes originates from the positive feedback between macrophytes
and phytoplankton, resulting in resistance to external pressures such as changing nutrient
loading [13–15]. Due to this resistance, a clear or turbid state of a lake can remain itself until a threshold
of nutrient loading, hereafter referred to as nutrient loading threshold, is crossed. This nutrient
loading threshold is also known as the critical nutrient loading [16–20]. In shallow lake ecosystems,
there are usually two values of nutrient loading thresholds. One value is identified during the
process of eutrophication when a lake shifts from clear to turbid. This value can assist managers and
decision-makers with setting limits on nutrient loading to prevent a lake shifting to a turbid state with
a typically inevitable loss of ecosystem services [11]. The other value is identified during the process of
oligotrophication when a lake shifts from a turbid to a clear state. This value can be used to set the
target of nutrient loading reduction in lake restoration actions aiming at improving the water quality
of a eutrophic lake [17]. Cyanobacteria as the dominant species in eutrophic shallow lakes have the
potential to challenge water quality improvement [21]. They have benefited from a long evolutionary
history during which traits have developed and provided them with competitive advantages such
as buoyancy regulation and nitrogen fixation [22]. These traits promote access to light and nutrients
accessibility for cyanobacteria and can have impacts on lake nutrient loading thresholds.

Buoyancy regulation is a trait that allows cyanobacteria to rapidly adjust their vertical position in
the water column [23,24]. The advantage of buoyancy regulation for cyanobacteria is well recognized,
as it supports cyanobacterial biomass by providing access to light at the surface and outcompetes the
other phytoplankton species through shading [5,25,26]. Buoyancy regulation is achieved in two ways
that involve cell- and colony-level processes. At the cellular level, buoyancy regulation is provided
by gas vesicles in cells of some cyanobacterial species, e.g., Microcystis, Dolichospermum (formerly
Anabaena), and Oscillatoria [27]. These gas vesicles allow cyanobacteria cells to have a lower density
than water so that they can float [27]. At a colonial level, buoyancy regulation is enhanced by a colony
formation that enlarges the colony radius, thereby increasing the buoyancy [28]. These colonies with
high buoyancy can persist at the surface for lengthy periods and enable cyanobacteria to become
dominant, especially in warm, eutrophic and stagnant water bodies [22,29].

Nitrogen fixation allows cyanobacteria to utilize atmospheric nitrogen as a source of nitrogen.
Therefore, nitrogen-fixing cyanobacteria have an advantage over non-nitrogen fixers when nitrogen
is deficient [30], which occurs when nitrogen loading is relatively low or when the denitrification
rate is high in the water column [25,31,32]. Nitrogen fixation is an energy-consuming process that
requires cyanobacteria to utilize sufficient light [26,33]. The aforementioned buoyancy regulation trait
provides cyanobacteria ample access to light, which may then facilitate energy-intensive nitrogen
fixation. Examples of cyanobacterial genera known for nitrogen fixation are Dolichospermum and
Aphanizomenon [34,35].

Previous work has mainly focused on how these traits contribute to cyanobacterial competitive
strength [5,24,28,36], yet there is little known about how these traits affect the value of nutrient loading
thresholds of shallow lakes. The values of nutrient loading threshold are typically obtained using
a modelling approach [17], since studies on critical transitions based on field data are rare due to
the requirements of long time series [37–40] and mesocosm experiments cannot represent the field
situation [41–43]. Moreover, models can analyse the nutrient loading threshold for almost unlimited
scenarios without disturbing the lake. Cottingham et al. [44] used a simple mathematical model to
show that cyanobacterial traits can reduce lake resistance to external nutrient loading and accelerate
eutrophication. Yet, their approach lacks real ecosystem processes such as food web interactions and
competition between phytoplankton and macrophytes, thus making a useful evaluation of the effect of
cyanobacterial traits on nutrient loading thresholds difficult. For this purpose, a process-based model
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that incorporates biogeochemical processes is needed as a good tool to study the effect of cyanobacterial
traits on the value of nutrient loading threshold [17,19].

In this study, we incorporated established knowledge from empirical research on buoyancy
regulation and nitrogen fixation into a process-based ecosystem model. Then, to account for different
combinations of cyanobacterial traits, we analysed four conceptual scenarios where cyanobacteria have
no traits, one of the two traits, or both traits, respectively. Because different N:P loading ratios lead to
different nutrient limitations [45], each scenario was simulated with a low (nitrogen-limited), a high
(phosphorus-limited) and an intermediate (colimited) N:P weight ratios. Through this modelling effort,
we evaluated how the cyanobacterial traits of buoyancy regulation and nitrogen fixation affect nutrient
loading thresholds during lake eutrophication and oligotrophication.

2. Methods

2.1. Model Selection

We used a modelling approach to explore the effect of cyanobacterial traits on nutrient loading
thresholds at the ecosystem level. We chose to use PCLake+ [46], which is the updated version of
PCLake [47], as the model is known for its ability to calculate nutrient loading thresholds. PCLake+ was
deemed suitable for our study for four reasons. First, PCLake+ can represent real lake ecosystems
because it incorporates complex biogeochemical processes, including nutrient cycling, phytoplankton
species and macrophyte competition, and zooplankton and fish food web interactions. Second,
processes and interactions of cyanobacteria developed in this model have been validated [17,47,48].
Third, PCLake+ can be used in bifurcation analyses to identify nutrient loading thresholds during lake
eutrophication and oligotrophication [17,19,47,49]. Finally, DATM (Database Approach To Modelling)
provides an interface where the framework of equations used in PCLake+ is explicitly presented.
This explicit framework enabled us to easily incorporate new processes by changing or adding
equations to the model [50,51].

2.2. Model Adaptation

Using established knowledge from empirical research, we expanded PCLake+ by adding and
modifying equations for the cyanobacterial traits buoyancy regulation and nitrogen fixation.

2.2.1. Buoyancy Regulation

To incorporate buoyancy regulation in PCLake+, we coded an additional surface layer on the top
of the existing epilimnion layer. Moreover, we developed a new state variable for cyanobacteria that
are present in the newly developed surface layer (hereafter referred to as “surface cyanobacteria”).
The equations for growth and mortality processes of the surface cyanobacteria were coded similarly
to the original equations of cyanobacteria in the epilimnion. The equation for light intensity in the
water column was adjusted to account for extinction caused by surface cyanobacteria. As a result,
surface cyanobacterial blooms can shade macrophytes and phytoplankton species such as chlorophytes
and diatoms while competing for nutrients in the water column. In addition, we included an equation
that accounts for reduced oxygen aeration rate when dense surface cyanobacteria hinder the interactions
between water and atmosphere [52]. This process was included in a similar method as the equation
applied for the floating plant Lemna in PCDitch [18,53].

Empirical research shows that buoyancy regulation by cyanobacteria depends on wind,
temperature, and biomass conditions [54,55]. Strong winds disable the formation of floating layers.
Studies have shown that wind speed above a certain threshold causes turbulence that can disperse
cyanobacterial colonies, thereby impeding buoyancy [56,57]. Temperature provides energy for
cyanobacteria to produce the protein-forming gas vesicles [58]. These gas vesicles can lower the
cyanobacterial cell density below water density, enabling cyanobacteria to float [58,59]. Conversely,
cyanobacterial cells start settling when the temperature is too low to support gas vesicle production,
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such as during autumnal sedimentation [60]. High levels of cyanobacterial biomass can indirectly
facilitate buoyancy regulation because of colony formation [25,61]. Cyanobacterial colonies have
higher buoyancy compared to individual cells [62], enabling cyanobacterial colonies to remain at the
surface for a longer period during summer compared to noncolony-forming species [56,63].

For these three processes, we defined the actual floating speed Ff (m d−1) of the planktonic
cyanobacteria in PCLake+ by using a maximum floating speed Fmax (m d−1) times three limitation
factors for wind speed (σW), temperature (σT), and biomass (σB), as shown in Equation (1).

F f = Fmax σW σT σB (1)

Each limiting factor was defined as a Hill equation, following a similar concept of a step function
as used in the book by Alon [64] (Equations (2)–(4)),

σW = 1−
Wb

Hb
W + Wb

(2)

σT =
Tb

Hb
T + Tb

(3)

σB =
Bb

Hb
B + Bb

(4)

in which W, T, and B are wind speed, temperature, and biomass, respectively; σW, σT, and σB are
limitation factors for floating caused by wind, temperature, and biomass, respectively; transition
constants HW, HT, and HB were defined to mark the transition between limited and unlimited
conditions for wind speed, temperature, and biomass, respectively; and b is the coefficient that defines
the smoothness of the Hill equation. Values of Equations (2)–(4) vary between zero and one where
a value of zero denotes serious limitation and one denotes no limitation. For example, the wind
limitation factor (Equation (2)) will approach zero if the wind speed W exceeds the transition constant
HW. Similarly, buoyancy regulation becomes limited if the temperature and biomass are below their
transition constants (note the sign of b).

Following empirical research (see for references Table 1), we set the transition constants for wind at
3 m s−1, for temperature as 15 ◦C, and for biomass at 10 mg chl-a m−3 (Table 1). We selected 10 m day−1

as the maximum floating speed (Table 1). Both biomass and temperature are dynamically calculated in
the model. We applied a constant wind speed of 2 m s−1, which is lower than the transition constant so
that the wind will not hinder buoyancy regulation in this study. Net floating speed Fnet (m day−1) was
defined by an actual floating speed Ff (m day−1) minus the settling speed S (m day−1) that depends on
resuspension and temperature (Equation (5)).

Fnet = F f − S (5)

Table 1. Applied transition constants and maximum floating speed for the calculation of actual floating
speed of cyanobacteria in PCLake+.

Parameter Description Reference Value Applied
Value Unit Model Notation

HW Transition constant of wind speed 3–4 [55,65–67], 2 [68,69],
2–3 [56], 4 [28] 3 m s−1 cVWindThrBlue

HT Transition constant of temperature 12–18 [60,70] 15 ◦C cTmThrBlue

HB

Transition constant of
cyanobacterial biomass

(expressed as chl-a level)

10–100 [55], 100 [71],
20 [16] 10 mg chl-a m−3 cChlaThrBlue

Wmax Maximum floating speed 1–10 [71], 4.5 [72], 6 [73],
0.2–250 [74], 10 [75] 10 m day−1 cVFloMaxBlueW
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2.2.2. Nitrogen Fixation

Besides available NH4
+ and NO3

− in the water column, nitrogen fixation generates additional
nitrogen loading from the atmosphere that is neglected in the original PCLake+ model. Here,
we developed equations to account for these extra sources of nitrogen in terms of dissolved N2 to
planktonic and benthic cyanobacteria. Therefore, cyanobacteria with nitrogen fixation in the expanded
PCLake+ can use the nitrogen pools of NH4

+, NO3
−, and dissolved N2.

Many empirical studies have shown that nitrogen fixation requires substantial energy and hence
is dependent on light intensity [35,76,77]. For this positive relationship between light intensity and
nitrogen fixation rates, we used the model from Ferber et al. [32], which expanded upon the model by
Levine et al. [78], as shown in Equations (6) and (7):

Ni = NS −NSe−a + D (6)

a = αN−1
S Iave (7)

in which Ni (µgN mgChl−1 day−1) is the fixation of nitrogen at certain light intensity Iave (J m−2 s−1),
NS (µgN mgChl−1 day−1) is fixation at light saturation, D (µgN mgChl−1 day−1) is fixation in the
dark, and α is the slope of the rising limb of the relationship between fixation and light intensity.
The parameter units used in Ferber et al. [32] were converted to the parameter units used in PCLake+.
To simplify the calculation of a (Equation (7)), we combined αNS

−1 ((J m−2 s−1)−1) as one constant
parameter. Original and applied values of parameters are provided in Table 2. In addition, the light
intensity Iave was calculated by averaging the integral of light intensity through depth according to the
Beer–Lambert law:

Iave =
Iin − Iine−kZ

kZ
(8)

in which Iin (J m−2 s−1) is the light intensity at the surface, k (m−1) is the total light extinction in the
water column, and Z (m) is the lake depth.

Table 2. Parameter values adopted in PCLake+ used for the nitrogen fixation process. The parameter
units used in Ferber et al. [32] were converted to be the parameter units that can be coupled with
current processes in PCLake+.

Parameter Description Reference Value * Applied Value Model Notation

NS
Nitrogen fixation rate

at light saturation
366 nmol N2

(106 heterocysts)−1 h−1 60 µgN mgChl−1 day−1 cNfixMaxBlue

D Nitrogen fixation rate
in the dark

58 nmol N2
(106 heterocysts)−1 h−1

9.5 µgN mgChl−1

day−1 cNfixDarkBlue

αNS
−1 Auxiliary parameter for

nitrogen fixation–light curve 2.16 (Ei m−2)−1 0.036 (J m−2 s−1)−1 cAlphNfix

Iave
The average of integral light

through depth
dynamically calculated

(Ei m−2)
dynamically calculated

(J m−2 s−1)

aLPARAveSurf,
aLPARAveEpi,
aLPARAveHyp

* For the conversion method from reference value to applied value see Supplementary material 1.

2.3. Bifurcation Analyses

To study the effect of buoyancy regulation and nitrogen fixation on the nutrient loading thresholds,
we used the bifurcation analyses [17,79] with the expanded version of PCLake+. A bifurcation analysis
is a mathematical tool to study large sudden changes in the output (here chl-a) as a result of small
changes in the input (here nutrient load). A large sudden change indicates a nutrient loading threshold.
Using bifurcation analyses to identify nutrient loading thresholds require several steps. Firstly, a range
of nutrient loadings along a wide gradient needs to be defined. Secondly, the model needs to be
run to equilibrium for each of these nutrient loadings in the selected range to calculate the chl-a at
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equilibrium. Thirdly, a curve can be drawn showing the response of chl-a levels to nutrient loading
using the results of the equilibrium chl-a level as the y-axis and the corresponding nutrient loading as
the x-axis. With this type of curve, a bifurcation plot can be obtained. Finally, the nutrient loading
thresholds can be thus defined as the point of a sudden change in chl-a level in the bifurcation plot.

A bifurcation plot for shallow lakes commonly shows two lines (for example, see Janse et al. [19,20]);
one line shows the results of simulations starting with a highly oligotrophic macrophyte-dominated
state and commonly has a high nutrient loading threshold. The other line shows the results of
simulations starting from a highly eutrophic phytoplankton-dominated state and commonly has a
low nutrient loading threshold. The initial states needed to calculate these two lines can be set by
using the values of state variables that represent an excessively clear and an excessively turbid state,
respectively. These values are calibrated by Janse [47]. The line with a high nutrient loading threshold
can show a sudden increase of the chl-a level during eutrophication and illustrate the process of a
lake shifting from a clear to a turbid state. The line with a low nutrient loading threshold can show a
sudden decrease of chl-a level during oligotrophication and illustrate the process of a lake shifting
from a turbid to a clear state.

In our study, each bifurcation analysis consists of 400 simulations for which 200 are used to
calculate the oligotrophication line and 200 to calculate the eutrophication line. Both lines are calculated
using a range of N-loads with 200 equal intervals between 0.0005 and 0.046 gN m−2 day−1. We verified
that the sudden changes in chl-a level are visible within this range of nutrient loadings. Each simulation
was run for 50 years to reach the equilibrium. We then calculated the yearly average of the fiftieth year.
From the 200 values for yearly averaged chl-a, we constructed one line of the bifurcation plot.

We performed the bifurcation analyses for scenarios with different combinations of the traits
buoyancy regulation and nitrogen fixation. The four scenarios that we used are (1) a control scenario with
neither buoyancy regulation nor nitrogen fixation (CT), (2) a scenario with only buoyancy regulation
(BR), (3) a scenario with only nitrogen fixation (NF), and (4) a scenario where the cyanobacteria could
both regulate buoyancy and fix nitrogen (BR + NF). We expect that the effects of cyanobacterial traits on
the nutrient loading thresholds depend at least in part on the N:P ratio of the incoming load, which in
return can lead to different nutrient limitations. We chose to set the N:P ratio at 5 for nitrogen-limitation,
20 for phosphorus-limitation, and 10 for colimitation. We applied the different N:P ratios by dividing
the N-loads by 5, 10, or 20, respectively, to set the P-loads. In total, we performed 12 bifurcation
analyses to assess all combinations of the four scenarios with the three N:P ratios.

We used the nutrient loading thresholds of the control scenario without traits as a benchmark
and calculated its differences with the other three scenarios with traits under different N:P ratios.
Besides the typical bifurcation plots that provide the nutrient loading threshold, we also reported
phytoplankton composition to interpret the role of cyanobacterial traits in their competition with other
algal species for different nutrient loadings. Because there are in total 12 scenarios and each of them
requires 400 simulations to obtain a bifurcation plot, an R script was used to automatically activate the
expanded PCLake+ under the DATM framework and perform these simulations (the script is shown
in Supplementary material 2).

All model analyses performed in this study used a lake depth of 2 m and assumed complete
vertical mixing. We note that PCLake+ is provided with an epilimnion and hypolimnion layer
that can stratify [46]. We did not use these functionalities for this study because a sudden shift
in the water quality state of deep lakes is less common [14]. Nevertheless, we implemented the
traits for both layers to cater to future studies of deep lakes. All equations, as well as state and
parameter values, are presented in Supplementary material 3. The full model can be downloaded
from https://github.com/pcmodel/PCModel/tree/master/Licence_agreement/I_accept/PCModel1350/

PCModel/3.00/Models/PCLake+/6.13.16/DATM/Chang_et_al_2020_Water/.

https://github.com/pcmodel/PCModel/tree/master/Licence_agreement/I_accept/PCModel1350/PCModel/3.00/Models/PCLake+/6.13.16/DATM/Chang_et_al_2020_Water/
https://github.com/pcmodel/PCModel/tree/master/Licence_agreement/I_accept/PCModel1350/PCModel/3.00/Models/PCLake+/6.13.16/DATM/Chang_et_al_2020_Water/
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3. Results

Bifurcation analyses with the expanded version of PCLake+ showed that cyanobacterial traits
affected nutrient loading thresholds (Figure 1). Compared with the control scenario, the results for
scenarios with traits show reduced nutrient loading thresholds for the shift from turbid to clear
(Figure 2). The reductions in the nutrient loading threshold vary between 12% and 46% (compared to
a control where cyanobacteria lack these traits) depending on the limiting nutrient and the different
cyanobacterial traits. The NF scenario showed the most reduction in the nutrient loading threshold
when the N:P ratio was 5 (Figure 2). The BR+NF scenario showed the most reduction when the N:P
ratio was 10. When the N:P ratio was 20, the NF scenario showed no effect on the nutrient loading
threshold and the BR and BR + NF gave a comparable reduction in the nutrient loading thresholds
during oligotrophication. Additionally, the chl-a levels of all scenarios with cyanobacterial traits
revealed a different biomass in the turbid state compared to the CT scenario, except for the NF scenario
under an N:P ratio of 20, where the two overlapped. Detailed results for each scenario are described
in the sections below. The nutrient loading thresholds for the shift from clear to turbid were similar
between all the scenarios (Figure 2). This suggests that once the cyanobacteria are dominant, the traits
enable cyanobacteria to withstand efforts to eliminate them through nutrient reduction, whereas their
emergence during eutrophication is hardly affected.
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Figure 1. Bifurcation plots of total chl-a concentration for different scenarios of cyanobacterial traits
(black lines) compared to the control (grey dashed lines: default PCLake+). The scenarios shown
in the figure are (a–c) buoyancy regulation (BR), (d–f) nitrogen fixation (NF), and (g–i) combination
of buoyancy regulation and nitrogen fixation (BR + NF). Simulations started from a turbid initial
state are marked by arrows downwards, simulations started from a clear initial state are marked by
arrows upwards.
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Figure 2. Differences in nutrient loading threshold between the control (CT) scenario and scenarios
with traits, including the buoyancy regulation (BR) scenario with diamonds, the nitrogen fixation
(NF) scenario with crosses, and the combination of buoyancy regulation and nitrogen fixation
(BR + NF) scenario with triangles. (a) The difference of nutrient loading threshold obtained during
oligotrophication and (b) the difference of nutrient loading threshold obtained during eutrophication.

3.1. Effect of Buoyancy Regulation (BR Scenario)

Inclusion of buoyancy regulation in the model led to a reduction of the chl-a levels from 9% to
40% just after the lake shifted from a clear to turbid state (Figure 1a–c). Yet, with increasing nutrient
loadings, the chl-a levels show a stronger increase in the BR scenario compared with the CT scenario.
Consequently, the chl-a level of the BR scenario surpassed the chl-a level of the CT scenario in the high
nutrient loading scenario (see N:P is 5 and 10 in the graph, N:P is 20 and off-graph). For the BR scenario
with different N:P ratios, the shape of the bifurcation plots showed three states. The first two are the
clear macrophyte-dominated state where chl-a level is low and a turbid phytoplankton-dominated
state where chl-a level is high. These two states are typically seen in shallow lakes [13]. The third is
an intermediate state where phytoplankton outcompete macrophytes (Figure S1) and chl-a level is
intermediately high (“I“ in Figure 1a). While the eutrophication line follows the typical pattern of a
bifurcation plot of shallow lakes, the oligotrophication line with an N:P ratio of 5 started with a turbid
state (“T“ in Figure 1a) and shifted to an intermediate state (“I“ in Figure 1a) before returning to a clear
state (“C“ in Figure 1a). Figure 3 demonstrates cyanobacterial dominance in the turbid state while
diatoms are dominant in both the intermediate and clear states. Further, surface cyanobacteria were
present when the scenario accounted for buoyancy regulation and they had higher biomass than the
cyanobacteria in the water column, except during the intermediate state.



Water 2020, 12, 2467 9 of 19
Water 2020, 12, 2467 9 of 19 

 

 

Figure 3. Composition of phytoplankton biomass in different scenarios during oligotrophication 

(Oligo) and eutrophication (Eutro) from bifurcation analyses. The grey box with dashed lines presents 

the results of the control (CT) scenario. Other scenarios shown in the figure are, from top to bottom, 

buoyancy regulation (BR), nitrogen fixation (NF), and a combination of buoyancy regulation and 

nitrogen fixation (BR + NF). Simulations started from a turbid initial state are marked by arrows 

towards the left; simulations started from a clear initial state are marked by arrows towards the right. 

3.2. Effect of Nitrogen Fixation (NF Scenario) 

As shown in Figure 1d–f, the addition of nitrogen fixation to the model increased the chl‐a level 

when nitrogen was limited for phytoplankton, i.e., with an N:P ratio of 5 and 10. The chl-a level of 

the NF scenario overlapped with the CT scenario when the N:P ratio was 20 because sufficient 

nitrogen was available. The phytoplankton composition of the NF scenario was similar to the CT 

scenario with an exception around the position of nutrient loading thresholds. In both NF and CT 

scenarios, buoyancy regulation was disabled in the model simulations and the surface cyanobacteria 

were absent. Cyanobacteria in the water column were dominant when the lake was in a turbid state 

and diatoms were dominant within the phytoplankton community when the lake was in a clear state 

(Figure 3). 

  

Figure 3. Composition of phytoplankton biomass in different scenarios during oligotrophication (Oligo)
and eutrophication (Eutro) from bifurcation analyses. The grey box with dashed lines presents the
results of the control (CT) scenario. Other scenarios shown in the figure are, from top to bottom,
buoyancy regulation (BR), nitrogen fixation (NF), and a combination of buoyancy regulation and
nitrogen fixation (BR + NF). Simulations started from a turbid initial state are marked by arrows
towards the left; simulations started from a clear initial state are marked by arrows towards the right.

3.2. Effect of Nitrogen Fixation (NF Scenario)

As shown in Figure 1d–f, the addition of nitrogen fixation to the model increased the chl-a level
when nitrogen was limited for phytoplankton, i.e., with an N:P ratio of 5 and 10. The chl-a level of the
NF scenario overlapped with the CT scenario when the N:P ratio was 20 because sufficient nitrogen
was available. The phytoplankton composition of the NF scenario was similar to the CT scenario
with an exception around the position of nutrient loading thresholds. In both NF and CT scenarios,
buoyancy regulation was disabled in the model simulations and the surface cyanobacteria were absent.
Cyanobacteria in the water column were dominant when the lake was in a turbid state and diatoms
were dominant within the phytoplankton community when the lake was in a clear state (Figure 3).
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3.3. Synergistic Effect of Buoyancy Regulation and Nitrogen Fixation (BR + NF Scenario)

For the BR + NF scenario, the model showed a strong reduction of the nutrient loading thresholds
during oligotrophication (Figure 1g–i). The triangles in Figure 2 showed that the combined effect of
buoyancy regulation and nitrogen fixation on the nutrient loading thresholds was largest when the N:P
ratio was 10, compared with all the other N:P ratios. As shown in Figure 2a, the difference between the
nutrient loading thresholds of the CT scenario and the BR + NF scenario during oligotrophication was
less than that of the NF scenario when the N:P ratio was 5, and identical to the BR scenario when the
N:P ratio was 20. Like the BR scenario, the BR + NF scenario showed an intermediate state when the
N:P ratio was 5 (Figure 1g). The intermediate state in the BR + NF scenario is shorter compared with the
BR scenario. However, similar to the BR scenario when chl-a was at an intermediate level, macrophytes
were absent (Figure S1) and diatoms were dominant (Figure 3). The chl-a level of the BR + NF scenario
was higher than the chl-a level in the CT scenario when the N:P ratio was 5, but lower than the chl-a
level in the CT scenario when the N:P ratio was either 10 or 20. Similarly to the BR scenario, in a turbid
state, the chl-a level of the BR + NF scenario showed a more rapid increase than the chl-a level in
the CT scenario as the nutrient loading increased. This led the chl-a level in the BR + NF scenario to
surpass the chl-a level in the CT scenario when high nutrient loadings were applied in the simulations.
Figure 3 shows that, under the BR + NF scenario, surface cyanobacteria were dominant when the lake
was in a turbid state. This phytoplankton composition was comparable to the BR scenario.

4. Discussion

Our results obtained through bifurcation analyses with the expanded PCLake+ model indicate
that the cyanobacterial traits of buoyancy regulation and nitrogen fixation reduce the value of nutrient
loading thresholds, especially during oligotrophication. These effects on the nutrient loading thresholds
differ between combinations of traits as captured in the four scenarios and with the limiting nutrients as
expressed by the three N:P ratios. These results suggest that cyanobacterial traits can impede the effect
of reducing nutrient loadings that are aiming to restore turbid lakes to their clear states. In contrast,
small differences in nutrient loading thresholds between the control scenario and scenarios with traits
suggest that cyanobacterial traits have a small effect on the shift in state during eutrophication.

4.1. Effect on Nutrient Loading Threshold

A reduction in nutrient loading threshold suggests an increase in the resistance of the turbid
phytoplankton-dominated state to efforts of nutrient loading reduction. The underlying mechanisms
of increasing resistance can be described with different feedback loops affected by cyanobacterial traits.

4.1.1. Feedback Loops due to Buoyancy Regulation

The inclusion of buoyancy regulation results in a positive self-reinforcing feedback loop illustrated
in Figure 4. In this positive feedback loop, the increase of cyanobacterial biomass results in lower light
intensity but facilitates cyanobacterial growth even more. The effect of photoinhibition on surface
cyanobacteria makes them less limited by light at high biomass and more limited by light at low
biomass (Figure S2 in Supplementary material 4). As a result, cyanobacteria capable of buoyancy
regulation are more resistant to nutrient reduction measures compared to cyanobacteria that do not
have this trait. In comparison, cyanobacteria without buoyancy regulation (Figure 2, black line) usually
experience a lower light intensity at which the increasing biomass will have a negative impact on itself,
as shown by the negative feedback loop in Figure 4b.
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Figure 4. The relation between cyanobacterial growth and light intensity and the resulting
feedback loop that self-reinforces or self-limits cyanobacterial biomass. (a) The cyanobacterial
photosynthesis-irradiance (PI) curve showing the effect of light on cyanobacterial growth. The light
blue bar is positioned at higher light intensity than the black bar because the cyanobacteria with
buoyancy regulation can float to the surface and achieve a higher light intensity than the cyanobacteria
staying in the water column. (b) The feedback loops of cyanobacterial biomass in response to light for
the situation with (blue) and without buoyancy regulation (black).

4.1.2. Feedback Loops due to Nitrogen Fixation

Nitrogen fixation provides biologically available nitrogen to cyanobacteria, allowing them to
achieve high levels of biomass [80]. In turn, higher cyanobacterial biomass increases the amount of
nitrogen that can be fixed from dissolved N2. As a result, nitrogen fixation leads to a positive feedback
loop (Figure 5) from which cyanobacteria can benefit by becoming less nitrogen-limited compared
to non-nitrogen fixers (Figure S3 in Supplementary material 4). Consequently, cyanobacteria that fix
nitrogen are more resistant to nutrient-reduction measures compared to cyanobacteria that do not have
this trait. This feedback loop provides most resistance in the nitrogen-limited system and is absent in
the nitrogen sufficient system.
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Figure 5. The relation between cyanobacterial growth and nitrogen concentration along with the
resulting feedback loop that self-reinforces or self-limits cyanobacterial biomass. (a) The curve shows
a positive relationship between nitrogen concentration and cyanobacterial growth. The yellow bar
and the black bar are in a similar position since both types of cyanobacteria contain similar nitrogen
concentrations in the water column. (b) The feedback loop of cyanobacteria with (yellow) and without
nitrogen fixation (black).

4.1.3. Feedback Loops due to the Combination of the Two Traits

The impact of the combined cyanobacterial traits on nutrient loading threshold depends on the
interplay of the two positive feedback loops of buoyancy regulation and nitrogen fixation (Figure 6).
Buoyancy regulation enables more light availability for cyanobacteria so that the nitrogen fixation rate
is maximized, thereby enhancing the nitrogen fixation feedback loop, as shown at the right in Figure 6.
The increased nitrogen availability from nitrogen fixation supports growth of cyanobacteria and
helps cyanobacteria approach the biomass needed to reduce photoinhibition, hence strengthening the
feedback loop of the buoyancy regulation, as shown at the left in Figure 6. Consequently, cyanobacteria
that have both traits are more resistant to nutrient-reduction measures compared to cyanobacteria that
do not have any traits. Moreover, in real-world situations, cyanobacteria are known to exhibit a suite
of other traits that make them more resistant to high light intensities at the surface (see e.g., [81,82]).
Besides these two positive feedback loops, which are individually caused by buoyancy regulation
and nitrogen fixation, the interplay between these two traits generate a third, negative, feedback
loop (middle of Figure 6). This negative feedback loop causes biomass of cyanobacteria to decrease
the light availability and lead to a reduction of nitrogen fixation rate, limiting the cyanobacterial
biomass. This negative feedback loop is especially relevant in cases where a relatively small part of the
cyanobacterial biomass is present at the surface layer; this small proportion of surface cyanobacteria
still shades the cyanobacteria in the water column, leading to sub-optimal nitrogen fixation. We found
that this negative feedback loop was present when the N:P ratio was 5. In this condition, cyanobacteria
rely on extra N from nitrogen fixation to compensate for the nitrogen limitation but are unable to
because of the lower light intensity (Figure S4). This interpretation is consistent with our results shown
in Figure 2a that when N:P was 5, the single nitrogen fixation (NF scenario) has a larger effect on
nutrient loading thresholds than the combination of two traits (BR + NF scenario).
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4.1.4. Effect on Lake Nutrient Loading Thresholds during Eutrophication

While these cyanobacterial traits reduced the nutrient loading thresholds during oligotrophication,
they had little effect on determining the nutrient loading threshold during eutrophication. These nearly
unaffected nutrient loading thresholds can be explained by the near absence of cyanobacteria in the
clear macrophyte-dominated state. This can be explained from the positive feedback loops (Figures 4–6)
that play a negligible role in the clear state. Also, the resistance of macrophytes to prevent a clear lake
to become turbid due to eutrophication remains nearly unchanged. In contrast, the previous finding
by Cottingham et al. [44] shows that cyanobacterial traits can reduce the resistance of a clear ecosystem
to eutrophication. The model used by Cottingham et al. [44] is a simple conceptual model that lacks
the effect of macrophytes and other food web components, whereas we simulated the nutrient loading
thresholds with a process-based ecosystem model. The difference in model structures may explain the
divergent conclusions of whether cyanobacterial traits can influence the resistance of a clear ecosystem
to eutrophication.

4.2. Comparison to Natural Conditions

In contrast to our modelling study, most cyanobacterial blooms are a mixture of different types of
cyanobacteria species that can fix nitrogen (e.g., Nostoc [31]), regulate buoyancy (e.g., Microcystis and
Oscillatoria [27]), or do both (e.g., Dolichospermum and Aphanizomenon [5,83]). Their composition can
be dynamic due to intraspecies competition under varying environmental conditions, such as light,
temperature, and nutrients [84]. Here, we aimed to specify the effect of each cyanobacterial trait on
determining the value of the nutrient loading thresholds. Our scenarios should, therefore, be seen as
representative of functional groups in a case where one of the types of cyanobacterial species becomes
dominant in the field. Simulations for intraspecies competition of cyanobacteria are outside the scope
of this study.

Cyanobacteria with only buoyancy regulation usually outcompete cyanobacteria that have both
nitrogen fixation and buoyancy traits (e.g., Dolichospermum) because they grow better under low light
and use combined nitrogen more efficiently [85]. Moreover, nitrogen fixation is an energy-demanding
process [80]. As a result of high energy costs, nitrogen-fixing cyanobacteria in a relatively N-rich
environment have no competitive advantage, as shown in laboratory and field studies [86,87].
In a highly nitrogen-limited situation, however, nitrogen fixation can be advantageous to cyanobacteria.
This is in line with our model results where we found that cyanobacteria with nitrogen fixation
only affected the value of nutrient loading threshold in a nitrogen-limited or colimited environment
(Figure 2). However, shallow lakes commonly appear to be phosphorus limited or colimited [88,89].
Our scenarios for phosphorus limited lakes show that cyanobacteria with buoyancy as traits have the
highest effect on the nutrient loading threshold during oligotrophication. Under colimitation, our
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results indicate that cyanobacteria with both traits have the largest impact on the nutrient loading
threshold during oligotrophication (Figure 2).

Despite the capacity of cyanobacteria with buoyancy regulation to reduce the value of the
nutrient loading thresholds during oligotrophication, our results also showed that their biomass
during this transition is lower compared to cyanobacteria that do not have buoyancy regulation.
Instead, these surface cyanobacteria obtained the highest biomass under hypereutrophic conditions
where light is limiting (Figure 1). This can be explained by the photoinhibition caused by high light
intensity on the surface that can only be reduced when surface blooms reach high biomass [90–92].
In reality, the photoinhibition caused by high light intensity may not be observed due to cyanobacterial
adaptation [82] or high turbidity that lower the light intensity in the water column [93]. Besides, there
is no spatial heterogeneity present in the surface layer in terms of cyanobacterial biomass (i.e., it is
assumed to be a homogenous layer that is continually mixed). This results in all of the cyanobacteria
in the surface layer negatively impacted by high light intensity due to photoinhibition. In the field,
buoyant cyanobacteria are distributed heterogeneously along with depth, hence the cyanobacteria
on the topmost surface can shelter other cyanobacteria from the high light intensity and eliminate
photoinhibition [94]. Considering these findings, photoinhibition simulated in this study leads to a
conservative prediction of cyanobacteria biomass compared with in situ conditions.

4.3. Modelling as a Tool for Lake Managers

The decrease in the value of nutrient loading thresholds due to the cyanobacterial traits, buoyancy
regulation and nitrogen fixation, hinders attempts to improve water quality. Models such as PCLake+

can assist lake managers by calculating the nutrient loading threshold for lakes worldwide [17,40,95,96].
The tool we have developed here—an extension to the PCLake+ model—allows both scientists and
managers to analyse a wide range of scenarios related to buoyancy regulation and nitrogen fixation,
and allows for calculations of relevant nutrient loading limits at the local and catchment scale [97].
Besides, the result of our study can be applied in the remediation of eutrophic lakes because it shows at
what N:P ratio the shallow lakes become either oligotrophic or eutrophic. Moreover, tools like PCLake+

can be used to study the effect of these traits on nutrient loading thresholds among a large variety of
lakes by applying different lake characteristics (e.g., area and sediment type). Finally, the expanded
PCLake+ model can be coupled with a hydrodynamic model to study cyanobacterial bloom dynamics
in networks of water bodies or to predict the cyanobacteria scum in a spatially heterogeneous system
(see e.g., Taihu [17]). Overall, this model enables scientists and managers to understand the underlying
mechanism of lake resistance and to predict required nutrient reduction as the remedy to lakes suffering
from cyanobacteria, thereby moving towards a sustainable future in the Anthropocene [98].

5. Conclusions

To mitigate cyanobacterial blooms, it is important to estimate the effects of cyanobacterial traits
on the effort that is needed to reduce nutrient loadings. Here we used a modelling approach and
found that nutrient loading thresholds of shallow lakes were lowered due to cyanobacterial buoyancy
regulation and nitrogen fixation, especially during oligotrophication. Moreover, we explained the
changes in nutrient loading thresholds by clarifying the positive feedback loops that involve buoyancy
regulation and nitrogen fixation. These results help explain how these traits enhance the resistance of a
lake’s turbid, phytoplankton-dominated state to nutrient-reducing measures intended to achieve a
clear macrophyte-dominated state. Our results point to the need to consider phytoplankton traits in
lake management because they can hinder the effectiveness of measures to improve the water quality.
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