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Abstract: The concentrations of dissolved organic carbon (DOC) and its light-absorbing fraction
(chromophoric dissolved organic matter; CDOM) in surface waters, particularly those draining
organic-rich peatlands, have dramatically increased over the past decade due to climate change and
human disturbance. To explore the spatiotemporal dynamics of DOC and CDOM in surface waters
of the northeastern Qinghai-Tibetan Plateau, we collected water samples from two rivers in the Zoige
alpine wetland and from two rivers in its adjacent alpine-gorge region, during wet and dry seasons.
DOC concentration ranged from 4.82 mg·L−1 to 47.83 mg·L−1, with a mean value of 15.04 mg·L−1,
2.84 times higher than the global average. The Zoige rivers had higher DOC concentration and highly
terrigenous CDOM. Significantly higher DOC concentration was observed for the Zoige rivers in the
wet season compared to the dry season. In contrast, the alpine-gorge rivers had higher DOC levels in
the dry season. No significant correlations were observed between DOC and CDOM at all rivers due
to the influence of autochthonous sources on the alpine-gorge rivers and intensive photochemical
degradation of terrigenous DOM in the Zoige rivers. Significant relationships between CDOM and
specific ultraviolet absorbance at 254 nm (SUVA254) and between CDOM/DOC and SUVA254 were
observed, indicating that the aromaticity of DOM in the rivers was mainly determined by CDOM.
Moreover, the DOC/CDOM properties of the Hei River indicate critical human-induced water quality
degradation. High DOC level and high browning degree were found in rivers in the Zoige alpine
wetland, indicating that large amounts of terrigenous DOC were released to the aquatic systems of
the region.

Keywords: chromophoric dissolved organic matter; UV-VIS absorption; peatland carbon export;
freshwater DOM; alpine river

1. Introduction

Dissolved organic matter (DOM), operationally measured as dissolved organic carbon (DOC)
and defined as the organic fraction in solution that passes through a 0.45 µm filter [1], is a ubiquitous
component in soils and natural waters which establishes a connection between terrestrial and aquatic
carbon pools [2,3]. DOC is related to the energy supply, light penetration, the biogeochemical cycles
of carbon (C) and elements coupled to C, and the transportation of metals and nonpolar organic
contaminants in waters [4–6], and thus plays an important role in environmental processes in aquatic
ecosystems. Moreover, DOC acts as the precursor of the carcinogenic by-products (e.g., trihalomethanes)
produced in the water disinfection process, exerting adverse effects on the quality of drinking water
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and human health [7]. Therefore, variation of the DOC concentration and composition may not only
impose change on physical, chemical, and biological features in aquatic ecosystems, but may also affect
the use of water by the local population.

Freshwater browning, referring to the phenomenon of brown, tea-stained color in waters caused
by the increase of dissolved organic matter (DOM) loads into aquatic water systems [8], is observed in
many areas throughout the northern Hemisphere, including northern Europe and northeastern United
States [3,9,10]. Generally, DOM consists of one fraction of low-molecular weight compounds, such as
carbohydrates and amino acids, and another fraction of complicated, high-molecular weight compounds
(i.e., humic substances) [3]. Humic substances absorb ultraviolet and short-wave visible light, and any
increase of them contributes to the brown coloration in waters [8,11]. Colored or chromophoric
dissolved organic matter (CDOM), defined by the component of DOM capable of absorbing light in
the range from the ultraviolet to visible wavelength in natural water systems, mostly consists of humic
substances [4,12]. CDOM is considered to be closely related to the photochemistry and ecology of the
aquatic system due to its special optical and chemical properties [4]. CDOM parameters, which can
be determined by ultraviolet-visible absorption and fluorescence measurements, have been widely
used to indicate the chemical composition, molecular weight, photochemical degradation degree of
DOM, and to trace sources [12–14]. DOM and CDOM in aquatic ecosystems may be autochthonous
(from microbial and phytoplankton processes) and/or allochthonous (from terrestrial natural and
anthropogenic inputs) [15,16]. Allochthonous sources, particularly terrigenous ones (mainly composed
of humic and fulvic acids), are the main sources of CDOM in river waters and thus, a major driver
of the spatiotemporal CDOM dynamics [15,17]. Terrigenous DOM contains more humus, aromatic,
and high-molecular-weight compounds than autochthonous DOM (which is mainly composed of
protein-like material) [18]. In contrast, algal-derived DOM contains fewer colored components than
DOM derived from the breakdown of vascular plants, and DOC of anthropogenic origin is mostly
uncolored [4]. Therefore, as an important component of DOM, CDOM provides a powerful optical
approach to investigate DOM dynamics and characteristics in aquatic ecosystems in the context of
climate change and human disturbances.

A growing number of studies are focused on the increase of DOC in aquatic ecosystems and its
potential drivers over the last decades [1,3]. It is broadly agreed that freshwater browning is driven by
the global change trends through mechanisms related to changes of deposition chemistry [9], land use
change [19], temperature increase [20], drought [21], etc. Among various ecosystems affected by global
change, the wetlands and peatlands in high latitude/altitude areas (or permafrost) stand out as being
very sensitive, as well as having the largest amounts of soil carbon stocks [22,23]. The Zoige alpine
wetland, located in the northeastern part of the Qinghai-Tibetan Plateau (QTP), is considered to have
the largest alpine peatland distribution area in the world [24,25], storing up to 0.206–0.672 Pg of
peat [23]. Moreover, the Zoige wetland serves as an important natural reservoir for the Yellow river [24],
thus the dynamics of DOC in the wetland surface waters influence the carbon cycle and water quality
of the downstream area. Nevertheless, according to a study by Chen et al. [23], which estimated the
carbon storage of Zoige peatlands, the total area of the peatland is 4605 km2, of which 1426 km2

has been degraded as a result of human activities and intense climate warming, accompanied with
substantial carbon being released from peatlands to the atmosphere through CO2 and to nearby waters
through particle organic carbon or DOC. To date, there have been few studies related to DOC in the
Zoige peatlands, most of which focused on C stocks or DOC dynamics or in soils [26–29], with only a
few focused on the C dynamics in the aquatic systems [30].

The purpose of this study is to explore the spatiotemporal dynamics of DOC and CDOM,
in relation to the browning of surface waters, in the Zoige wetland, northeastern Qinghai-Tibetan
Plateau. To broaden our understanding of the carbon pathways between terrestrial and aquatic
ecosystems, we sample 35 river sites in the Zoige wetland and its adjacent alpine-gorge areas in the
wet and dry seasons (June and November, respectively) of 2018. We specifically aim to (i) explore
the spatiotemporal distribution patterns of DOC and evaluate DOC concentration; (ii) determine
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the spatiotemporal variation of CDOM absorption spectral parameters (through ultraviolet-visible
absorption) and identify the characteristics and sources of DOM; (iii) evaluate the relationships between
DOC and CDOM absorption parameters, and further investigate DOM and CDOM quality, sources,
and their roles in environmental processes.

2. Materials and Methods

2.1. Study Area

Two rivers in the Zoige wetland, the Bai River and the Hei River (major tributaries of the Yellow
River), and two rivers in the alpine-gorge area of the northeastern QTP, the Zagunao River and the
Min River, were examined (Figure 1). With an average altitude over 3500 m, the Zoige wetland has a
cold, humid continental monsoon climate. The mean annual temperature is around 1 ◦C, with the
highest monthly mean temperature recorded in July (10.7 ◦C) and the lowest in January (−10.1 ◦C).
The mean annual precipitation is around 650 mm, 86% of which falls during April and October (data
were obtained from 1971–2000 climate data of the Zoige meteorological station). In the Zoige region,
the growing season is very short (May to September), and so is the non-frozen period (16–25 days) [25].
The main land cover types of the Zoige region are alpine meadow and swamp meadow [31]. The Min
River is the largest tributary in the upper reaches of the Yangtse River. In this study, we focused on the
upstream of the Min River (tracing to the headwater) and the Zagunao River (the largest tributary of the
Min River). Compared to the climate conditions of the Zoige wetland, this watershed region also has
distinct dry and wet seasons, but has slightly higher temperature and precipitation levels. In addition,
forests and scrubs are the main land cover types in the alpine-gorge river basins. Land vegetation
data were obtained from Resource and Environment Data Cloud Platform of Institute of Geographical
Sciences and Natural Resources Research, Chinese Academy of Sciences.
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2.2. Water Sample Collection

Water samples were collected from 35 sites across the four rivers in June and November
(representing wet and dry seasons) of 2018 (Supplementary Materials Table S1). Teflon sampling bottles
were washed once with soap water and then several times with ultra-pure water before being dried
in an oven at 60 ◦C [32]. After pre-rinsing the Teflon sampling bottles three times with the surface
water, we collected three parallel samples and preserved them in a dark refrigerator at 4 ◦C. After the
collection, the samples were immediately transported to the laboratory, and were filtered through
0.45 µm filters (PVDF, Millipore, MA, USA) before analysis.

2.3. DOC and CDOM Absorption Determination

A Milti N/C 2100S Total Organic Carbon (TOC) analyzer (Analytik Jena, Germany) was used to
measure the DOC and total dissolved nitrogen (TDN) concentrations (mg·L−1) [33]. Absorption spectra
of the samples were measured between 240 and 550 nm at 3 nm intervals using an Aqualog®

spectrophotometer (Horiba, HORIBA Instruments Incorporated, NJ, USA) with a 1 cm quartz
cuvette, with Milli-Q water used as reference [33]. The CDOM absorption coefficient a(λ0) (m−1) was
calculated from:

a(λ) = 2.303A(λ)/l, (1)

where A(λ) is the measured absorbance at wavelength λ and l is the cuvette path length 1 cm [12].
The absorption coefficient at 355 nm was selected to represent the relative concentration of
CDOM [33–35]. SUVA254 (L·mg C−1

·m−1) was defined as dividing the UV absorbance at λ = 254 nm
by the DOC concentration (mg·L−1), and higher values indicate greater aromaticity [14]. The spectral
slope parameter (S) was calculated from:

a(λ) = a(λ0) × es(λ0−λ), (2)

where a(λ) is the CDOM absorption coefficient at wavelength λ, a(λ0) is the absorption coefficient at
a reference wavelength λ0 [13]. The spectral slope ratio (SR) was calculated as the ratio of S275–295 to
S350–400, with higher values indicative of lower aromaticity and lower molecular weight [12].

2.4. Fluorescence Determination

Excitation-emission matrices (EEMs) fluorescence spectra were also measured on the Aqualog®

spectrophotometer (Horiba, HORIBA Instruments Incorporated, NJ, USA) with Milli-Q water as
reference [33]. The excitation wavelength (Ex) and emission wavelength (Em) ranged from 240 to
550 nm and 214 to 619 nm, respectively. The intervals and slits were at 3.0 nm and 2.5 nm, respectively.
The Raman scattering and Rayleigh scattering were automatically eliminated from analysis by the
system [33]. The fluorescence index (FI) was calculated by dividing the fluorescence intensity at
450 nm by that at 500 nm with Ex = 370, which can be used to distinguish between terrestrial DOM
(FI < 1.4) and microbial DOM (FI > 1.9) [36]. The humification index (HIX) was defined as dividing
the cumulative fluorescence intensity at 435–480 nm by that at 300–345 nm with Ex = 254, with higher
values indicative of higher humification degree of DOM [37]. Data of FI and HIX are presented in the
Supplementary Materials Figure S1 online.

Statistical analysis was carried out using the Python 3.7 software package and the IBM SPSS
Statistics 21 software (IBM, Armonk, NY, USA). The Shapiro-Wilk (SW) test was applied to determine if
the response variable of each group of data would have a normal distribution. Based on the distribution
pattern of each variable, ANOVA (for a normal distribution) or Mann-Whitney (for non-normal
distributions) were used to test for significance differences among groups, and Pearson’s correlation
(normal) or Spearman’s correlation (non-normal) was used for correlation analysis. Assuming that the
terrestrial DOM input and the microbial activity related with autochthonous processes were both high
in summer, data from June for all sampling sites were used to conduct the hierarchical clustering to
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determine the DOM types in the four rivers. Hierarchical clustering analysis was performed through
Ward’s method with squared Euclidian distance as the measurement of similarity, and the variables
involved in the process were DOC concentration, a (355), SUVA254, SR, TDN, FI, and HIX.

3. Results and Discussion

3.1. DOC Concentration

DOC concentration in rivers is affected by climate, land cover, soil characteristics and structure,
runoff, and anthropogenic activities [38–41]. In our study area, DOC concentration ranged from
4.82 mg·L−1 in the Zagunao River to 47.83 mg·L−1 in the Bai River, with a mean value of 15.04 mg·L−1.
(Figure 2). The mean DOC concentration in the rivers of our study area was not only higher than
that in other rivers of the Qinghai-Tibetan Plateau (1.16–6.57 mg·L−1) [42–44] and the global average
(5.3 mg·L−1) [45], but also higher than that in African (8.0 mg·L−1) [45] and Arctic rivers (12 mg·L−1) [46].
Although differences may exist in the research time scale between our study and others, it can be
concluded that the DOC levels in these examined rivers were relatively high in our study periods.
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Figure 2. Dissolved organic carbon (DOC) concentration in (a) the Zagunao River (sites Z1–Z7), (b) the
Min River (sites M1–M10), (c) the Bai River (sites B1–B10), and (d) the Hei River (H1–H8) in the wet
(June) and dry (November) seasons.

3.1.1. Spatial Variation

The Hei River had the highest mean DOC concentration (19.90 ± 8.85 mg·L−1), followed by the
Min (16.58 ± 5.32 mg·L−1), Bai (15.20 ± 9.38 mg·L−1), and the Zagunao rivers (8.20 ± 2.77 mg·L−1)
(Figure 2). The varying DOC concentrations could be partly attributed to the varying catchment land
cover types, which is further related to the stock of organic carbon in the adjacent terrestrial ecosystems.
It has been shown that in the Qinghai-Tibetan Plateau, rivers surrounded by wet meadows and
alpine meadows had a higher DOC concentration than those surrounded by alpine steppes and alpine
deserts [42]. Similar DOC patterns have been reported for Irish streams as follows: peatland and forest
dominated watershed > grassland dominated watershed > arable land dominated watershed [40].
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Our results further support these findings. The Hei and Bai rivers, flowing across the Zoige Peatland
with catchments dominated by wet meadows and alpine meadows, both had higher DOC levels
than the Zagunao Rivers, which is mainly surrounded by forests and scrubs. Besides, exhibiting
relatively high values in November, the Min River, which is mainly surrounded by forests and scrubs,
had similar mean DOC concentrations to the Bai River. This can be attributed to the high Lignin and
cellulose decomposition rates of forest litter during the freeze-thaw period (October to April) around
the catchments of the Min River [47], which results in abundant soil DOC being produced and exported
to surface streams in November.

As for the spatial fluctuation across sites, since the sites of a specific river have similar climatic and
hydrological conditions in a specific season, their variation of DOC concentration is mostly influenced
by land cover types and pollution sources (e.g., domestic sewage and other organic pollutants) [48].

3.1.2. Seasonal Variation

All examined rivers showed significant seasonal variation in DOC concentration (p < 0.05)
(Figure 2). Higher DOC concentrations were found in June and lower values were found in November
in the Zoige rivers (Figure 2c,d). This is consistent with the results reported by research on rivers
in a permafrost wetland catchment in northeastern China [49], which found that maximum DOC
concentration in rivers coincided with the maximum flood peaks (generally during spring and summer).
A study of DOM in several large Arctic Rivers also reported higher DOC concentration in June than
compared to November [50]. According to the study of Guo et al. [49], in wet and warm seasons,
more DOC in the upper organic soil layer is released to surface streams with the increase of rainfall
and fast runoff, and increased thawing depth enables deeper soil layers to release DOC into streams,
while in the catchments of alpine-gorge rivers where the carbon stock of the organic soil layer is lower
and limited, the terrestrial input of DOC is no longer the crucial factor in determining DOC levels in
waters. Thus, the dilution effect of the increased runoff in the alpine-gorge rivers, which contributes to
lower DOC concentrations in June, cannot be neglected anymore. In the meantime, the presence of
lower DOC concentrations in June than November in the alpine-gorge rivers may also result from the
greater influences of photochemical and microbial degradation, considering that the increased light
level and longer water residence time in June could both facilitate the degradation of DOM [35].

3.2. CDOM Absorption

3.2.1. CDOM and CDOM/DOC

Quantified as a(355), CDOM concentrations ranged from 0 to 15.895 m−1 in the examined rivers
(Figure 3a–d). The alpine-gorge rivers had an average a(355) level of 1.26 ± 1.08 m−1, which was close
to aquatic systems dominated by autochthonous sources (usually < 1.0 m−1) [51], while the Zoige
rivers had an average a(355) level of 8.37 ± 4.71 m−1, belonging to the terrigenous-dominated type
(usually > 5.0 m−1) [35]. The Bai River stands out as having the highest average a(355)/DOC, SUVA254,
and lowest average SR value of all examined rivers. The Hei river is also noteworthy as having the
highest average a(355). The observation of marked terrigenous feature in the Zoige rivers could be
attributed to the abundant terrigenous CDOM (DOM) input from the Zoige peatland, where large
amounts of peat and humus are stored. Meanwhile, the flat terrain characteristics along the Zoige
rivers allow a higher DOC leaching degree of the soil and more DOC release from the bank or
sediment into the water system [33]. Furthermore, owing to the high elevation (over 3 km) and low
temperature in the Zoige region, the decrease of microbial activity contributes to the accumulation
of high-molecular-weight and aromatic DOM in the rivers [17,33]. Seasonal variation of CDOM was
significant (p < 0.01) in the Zoige rivers, with higher values observed in June and lower values observed
in November (Figure 3c,d). This finding supports the former inference that Zoige rivers accept more
terrestrial derived DOC in June. Unlike the Zoige Rivers, the alpine-gorge rivers showed no significant
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difference in the seasonal variations of a(355) (Figure 3a,b), indicating that the increased precipitation
and runoff in June may dilute the terrestrial input of DOC (CDOM).

CDOM/DOC in the rivers was calculated as a proxy for the relative contribution of CDOM to
DOC, and covered the range from 0 to1.737 L·mg−1

·m−1 among all sampling sites (Figure 3e–h).
The Bai River exhibited the highest mean CDOM/DOC value of 0.61 ± 0.43 L·mg−1m−1, followed by
the Hei River (0.43 ± 0.18 L·mg−1

·m−1), the Zagunao River (0.19 ± 0.28 L·mg−1
·m−1), and the Min

River (0.08 ± 0.08 L·mg−1
·m−1), which was indicative of the great contribution of non-chromophoric

organic matter to DOC in the alpine-gorge rivers and the important contribution of CDOM to DOC in
the Zoige Rivers. For the alpine-gorge rivers, the spatial and temporal variabilities of CDOM/DOC
were similar to that of CDOM absorption, indicating that the fluctuation of non-chromophoric DOM
concentrations along sites may be quite stable.
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Figure 3. a(355) and a(355)/chromophoric dissolved organic matter (CDOM) in (a,e) the Zagunao River
(sites Z1–Z7), (b,f) the Min River (sites M1–M10), (c,g) the Bai River (sites B1–B10), and (d,h) the Hei
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3.2.2. SUVA254 and SR

It has been shown that the SUVA254 are positively correlated with the percentage aromaticity
of DOM as an effective tool to determine DOC characteristics [14]. The SUVA254 values of the
examined sites ranged from 0.17 L·mg C−1

·m−1 in the Min River to 7.19 L·mg C−1
·m−1 in the Bai

River (Figure 4a–d). The Bai River had the highest average SUVA254 level (2.53 ± 1.81 L·mg C−1
·m−1),

followed by the Hei (1.77 ± 0.78 L·mg C−1
·m−1), Zagunao (0.81 ± 0.53 L·mg C−1

·m−1), and the Min
rivers (0.45 ± 0.31 L·mg C−1

·m−1). The Zagunao, Min, and Hei rivers all showed that SUVA254 values
in June were higher than that in November (p < 0.05), indicating a larger input of terrestrial DOM
during the wet season.
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The spectral ratio SR (calculated as the ratio of S275–295 to S350–400) is suggested to be related to
the source and quality of DOM, with higher values indicative of a decrease in molecular weight and
aromaticity [12,13]. SR values tested in our sites ranged from 0 to 11.53, with the majority of the values
ranging from 2 to 5 (Figure 4e–h). The order of the average SR level in the rivers was the Bai River
(3.25 ± 0.55) ≤ the Hei River (3.36 ± 0.58) < the Zagunao River (4.26 ± 2.82) < the Min River (4.28 ± 1.92).
No significant difference was observed in the seasonal variation of SR in the Zagunao river, the Bai
River, and the Hei river (p > 0.05), although the alpine-gorge rivers had relatively higher SR values in
November, which suggests that SR and SUVA254 have different sensitivities towards DOM aromaticity.

Meanwhile, it is of interest that although the Bai River and the Hei River had similar average SR

and average a(355) levels, slightly higher SUVA254 levels were detected in the Bai River. Combined
with the presence of a higher average a(355)/DOC level in the Bai River than that in the Hei River
(Figure 3g,h), we can infer that the Hei River has a larger proportion of non-chromophoric DOM which
is of low-aromaticity. In addition, since S275–295 and S350–400 are corelated with different molecular
formulae of DOM [52], their ratio (i.e., SR) could be affected by the molecular formulae indicated by
any of these spectral slopes. Wagner et al. [52] also found that S275–295 provided similar information
to other indices, including SUVA254, while the molecular formulae negatively corelated with S350–400

were more oxidized and more aromatic than molecular formulae negatively corelated with S275–295.
The fact that SR provides different information from SUVA254 on some occasions may be induced by
the complex aromatic structures of DOM.

3.2.3. Spatial Fluctuations Along Rivers

Concluding from the research conducted by Liu et al. [33] and our results, the wide fluctuation
ranges of CDOM and CDOM properties along the Bai River can be attributed to the unequal input
intensity of terrigenous sources, while the autochthonous impacts on the Zagunao River and the Min
River are more significant. However, exhibiting extremely high DOC concentration in June but normal
a(355) and low SUVA254 values (Figures 2c, 3c and 4c), B4 is also influenced by autochthonous or
anthropogenic sources. Furthermore, the fluctuations of a(355) and SR among the sampling sites of the
Hei River were relatively stable, which may be due to the similar topographic, climatic, and hydrological
conditions of these sites.

3.3. Correlations Between DOC and CDOM

Positive and significant relationships between the CDOM absorption coefficients and DOC
concentrations have been observed in many inland water systems like rivers, lakes, and reservoirs in
recent years, indicating the possibility of estimating DOC from in-situ or remote monitoring of CDOM
absorption [4,13,17,40,53]. However, this does not apply to different river systems under various
spatial and temporal backgrounds, and decoupled CDOM-DOC relationships were more common
in our study (Figure 5), noting that significant correlation was only observed in November for the
Zagunao river (r = −0.929, p = 0.003). It was reported that river systems with CDOM parameters
indicative of autochthonous or anthropogenic, or photochemically degraded allochthonous sources
had weaker CDOM-DOC relationships than other typical rivers systems in America [13]. In addition,
autochthonous (i.e., microbial/algae) produced DOM is easily removed from DOC pools through
microbial activities in the water systems [18,54], and CDOM or high-aromaticity DOM are suggested
to be more sensitive to photo-irradiation than bulk DOC in waters [55–57], dissociating CDOM from
DOC to some extent. It was also reported that highly polluted tributaries derived from anthropogenic
sources could weaken the CDOM-DOC relationships in the main stream of the Songhua River in
Northeast China [48]. Thus, considering that the fluctuation of non-chromophoric DOM is quite stable
along the alpine-gorge rivers (will be discussed later), the disassociated CDOM-DOC relationships
may be attributed to the impact of autochthonous sources on DOC pools in these rivers. However,
as for the Zoige rivers with distinct terrigenous feature, the presence of disassociated CDOM-DOC
relationships may have resulted from the intensive photochemical degradation of terrestrial DOM
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(CDOM), which is supported by research on bog water, arctic lakes and rivers, and even estuarine
rivers, suggesting that the role of photodegradation on terrestrial DOM is higher than previously
thought and an increased fraction of low-aromaticity and low-molecular-weight organic matter is
produced during the process [56–58].
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3.4. Correlations Among DOC and Light Absorption Characteristics

Although positive DOC-SUVA254 correlation was evidenced in some cases, there was overall
negative correlation between DOC and SUVA254, which was significant in November in the Zagunao
River (p < 0.01), in June in the Bai River and the Hei River (p < 0.05, p < 0.01, respectively) (Table 1).
The significantly negative correlation between SUVA254 and DOC indicates that the increase of DOC in
the river is mainly induced by low-aromaticity components, for example, microbial or algae derived
organic matter (in the alpine-gorge rivers) and some photochemically produced organic matter (in the
Zoige rivers).

Significantly positive correlation between CDOM and SUVA254 existed in many cases (especially
in the Bai river), suggesting that the increase of aromaticity in DOC was closely related to the input of
CDOM. However, no CDOM-SUVA254 correlation was found in the Hei River, suggesting that river
CDOM concentration was not the only critical factor of DOC aromaticity. The SUVA254-CDOM/DOC
relationship tended to be significant and strong on many occasions and was somehow dependent on the
SUVA254-CDOM relationship. However, the independence of the SUVA254-CDOM/DOC relationship
from the SUVA254-CDOM relationship observed in June in the Hei River (r = 0.993, p < 0.01 and
r = −0.071, p > 0.05, respectively) indicates that the aromaticity percentage of DOC is not only
determined by CDOM but can also be diluted by non-chromophoric DOM. Regardless of the few
occasions exhibiting not significant CDOM-CDOM/DOC relationships (e.g., the Hei River), significantly
positive CDOM-CDOM/DOC relationships were common across the four rivers, and were independent
of spatiotemporal differences. The simultaneous presence of these two results (the dependence of
SUVA254-CDOM/DOC on SUVA254-CDOM relationship and significantly positive CDOM-CDOM/DOC
relationship) demonstrates that the fluctuation of non-chromophoric DOM is quite stable along the
rivers. Combining the discussed relationships of the parameters in the Hei River, we inferred that the
Hei River may be profoundly affected by anthropogenic sources, as the fluctuation of non-chromophoric
DOM in the Hei River is not as stable as that in the alpinegorge rivers and the Bai River.
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Table 1. Correlation coefficients for dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) parameters across sites and seasons.

Rivers and Month Parameters DOC CDOM SUVA254 SR Rivers and Month Parameters DOC CDOM SUVA254 SR

CDOM 0.324 CDOM −0.929 **
Zagunao SUVA254 0.214 0.739 Zagunao SUVA254 −0.929 ** 1 **

Jun SR 0.571 −0.414 −0.143 November SR −0.143 −0.036 −0.036
CDOM/DOC 0.324 0.993 ** 0.739 −0.414 CDOM/DOC −0.929 ** 1 ** 1** −0.036

CDOM −0.443 CDOM 0.176
Min SUVA254 −0.200 0.590 Min SUVA254 −0.286 0.790 **
Jun SR 0.224 0.097 0.467 November SR 0.018 0.648 * 0.699 *

CDOM/DOC −0.457 0.997 ** 0.571 0.061 CDOM/DOC −0.467 0.733 * 0.936 ** 0.612

CDOM −0.129 CDOM 0.467
Bai SUVA254 −0.680 * 0.637 * Bai SUVA254 0.285 0.976 **
Jun SR −0.648 * −0.127 0.188 November SR 0.515 0.079 0.006

CDOM/DOC −0.673 * 0.830 ** 0.998 ** 0.103 CDOM/DOC 0.055 0.891 * 0.952 ** −0.176

CDOM 0.476 CDOM 0.381
Hei SUVA254 −0.762 * −0.071 Hei SUVA254 −0.333 0.524
Jun SR 0.071 −0.024 0.357 November SR 0.333 −0.262 0

CDOM/DOC −0.762 * −0.071 0.993 ** 0.357 CDOM/DOC −0.595 0.357 0.500 −0.833 *

Note: ** p < 0.01 level; * p < 0.05 level.
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3.5. DOC Classification

All of the samples were divided into two main classes (A, B), and each class was subdivided into
two subclasses (expressed as Type 1, Type 2, Type 3, and Type 4) (Table 2). Samples collected from the
Zoige rivers (except for B1) belonged to class A, exhibiting significant terrigenous feature in a(355)
and HIX, while samples collected from the alpine-gorge rivers were classified as class B, with a(355)
and HIX indicative of autochthonous feature. In class A, Type 1 waters (including most samples
from the Hei River) exhibited higher DOC concentrations, lower SUVA254 values, and higher TDN
concentrations in comparison with Type 2 waters, indicating that Type 1 waters may be intensively
influenced by anthropogenic sources, as increased TDN may result from wastewater discharge and
fertilizer use in the river basins [43]. In class B, Type 3 waters had lower a(355), higher SR, and lower
HIX values than Type 4 waters, which demonstrates the autochthonous feature in Type 3 waters was
more significant than the average level in the alpine-gorge rivers.

Table 2. Water types determined by hierarchical clustering and statistics of relevant variables.

Main Class Water Types and Samples Variables Min.–Max. Mean ± SD

Type 1 DOC 19.65–47.83 29.62 ± 8.05
a(355) 4.36–15.90 12.32 ± 3.09

B2, B4, B6, H1–H5, H7–H8 SUVA254 0.67–2.89 1.80 ± 0.65
SR 2.79–3.57 3.07 ± 0.21

TDN 0.18–4.81 1.92 ± 1.30
FI 1.37–1.42 1.39 ± 0.02

Class A
HIX 11.55–15.56 13.58 ± 1.41

Type 2 DOC 7.91–17.96 14.39 ± 4.27
a(355) 11.30–15.68 13.32 ± 1.48

B3, B5, B7–B10, H6 SUVA254 2.97–7.20 4.41 ± 1.90
SR 2.88–3.57 3.16 ± 0.24

TDN 0.35–1.52 0.99 ± 0.35
FI 1.36–1.41 1.38 ± 0.017

HIX 9.96–19.87 14.23 ± 3.40

Type 3 DOC 6.00–12.38 9.38 ± 3.34
a(355) 0.49–0.71 0.63 ± 0.099

Z4, Z6, M1, M9 SUVA254 0.82–1.53 1.10 ± 0.30
SR 7.20–11.53 9.20 ± 1.96

TDN 0.77–0.90 0.83 ± 0.06
FI 1.41–1.81 1.55 ± 0.18

Class B
HIX 1.42–3.78 2.64 ± 1.28

Type 4 DOC 4.82–18.62 10.56 ± 4.00
a(355) 0–5.65 1.53 ± 1.68

B1, Z1–Z3, Z5, Z7 SUVA254 0.20–1.99 0.78 ± 0.52
M2–M8, M10 SR 0–6.30 3.98 ± 1.87

TDN 0.64–2.24 0.90 ± 0.40
FI 1.40–1.56 1.49 ± 0.04

HIX 0.90–8.29 3.28 ± 2.05

Note: Units: mg·L−1 for DOC and TDN, m−1 for a(355), L·mg C−1
·m−1 for SUVA254. SR, FI, and HIX are unitless.

4. Summary and Conclusions

DOC concentration, CDOM absorption coefficient a(355), SUVA254, the spectral slope ratio
SR, and a(355)/DOC were examined in four rivers (the Zagunao, Min, Bai, and Hei rivers) of the
northeastern Qinghai-Tibetan Plateau in June and November of 2018. Distinct spatiotemporal patterns
were evidenced in the distribution of these parameters. The following results were obtained: (1) the
average DOC level (15.04 mg·L−1) of the rivers was relatively high in the study periods, and the
browning level was particularly high in June in the Zoige rivers, indicating that a large amount of
terrestrial DOC was transferred to the surface waters in the Zoige region; (2) the Zoige rivers stand out
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as having higher average DOC concentration, a(355), SUVA254, a(355)/CDOM, and lower SR value than
the alpine-gorge rivers, which is indicative of significant terrigenous characteristics. The temporal
distribution patterns of DOC and CDOM were also different between the Zoige rivers and the
alpine-gorge rivers; (3) differing from other studies reporting a significant linear relationship between
the CDOM absorption coefficient and DOC concentration, disassociated CDOM-DOC relationships
were common in our study. Therefore, deriving the DOC flux from CDOM parameters may not be
feasible in these rivers; (4) combining the results of DOC classification and correlations of DOC and
CDOM properties, we conclude that the Hei River may have experienced a profound influence by
anthropogenic sources.

Significant warming and wetting trends were observed on the Qinghai-Tibetan Plateau over the
past few decades [59], and if these trends continue, the terrestrial input of DOM into the plateau’s
freshwaters will be greatly increased, which may ultimately affect the carbon cycle in the aquatic
systems at both the regional and global scales. Since the fate of DOM and CO2 emissions in waters is
related to photochemical and microbial degradation processes, and many studies have pointed out that
the increase of terrigenous DOM will enhance the CO2 emissions in various water systems [17,30,57,60],
long-term monitoring of the DOC concentration and its optical characteristics with higher time
resolution is needed to track the carbon dynamics in the aquatic systems in the Zoige alpine wetlands.
Our findings also indicate the intensive anthropogenic influence on aquatic DOM in this region
(especially in the Hei River). In order to further reveal the impacts of global change on the DOC fate
and carbon cycle in these aquatic ecosystems, more attention should be given to the sources, dynamics,
characteristics, and photochemical/microbial degradation mechanisms of aquatic DOM.
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River (sites M1–M10), (c) and (g) the Bai River (sites B1–B10), and (d) and (h) the Hei River (sites H1–H8) in the
wet (June) and dry (November) seasons.
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