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Abstract: As sensor measurements emerge in urban water systems, data-driven unsupervised
machine learning algorithms have drawn tremendous interest in event detection and hydraulic
water level and flow prediction recently. However, most of them are applied in water distribution
systems and few studies consider using unsupervised cluster analysis to group the time-series
hydraulic-hydrologic data in stormwater urban drainage systems. To improve the understanding of
how cluster analysis contributes to flooding location detection, this study compared the performance
of K-means clustering, agglomerative clustering, and spectral clustering in uncovering time-series
water depth dissimilarity. In this work, the water depth datasets are simulated by an urban drainage
model and then formatted for a clustering problem. Three standard performance evaluation metrics,
namely the silhouette coefficient index, Calinski–Harabasz index, and Davies–Bouldin index are
employed to assess the clustering performance in flooding detection under various storms. The results
show that silhouette coefficient index and Davies–Bouldin index are more suitable for assessing
the performance of K-means and agglomerative clustering, while the Calinski–Harabasz index only
works for spectral clustering, indicating these clustering algorithms are metric-dependent flooding
indicators. The results also reveal that the agglomerative clustering performs better in detecting
short-duration events while K-means and spectral clustering behave better in detecting long-duration
floods. The findings of these investigations can be employed in urban stormwater flood detection
at the specific junction-level sites by using the occurrence of anomalous changes in water level of
correlated clusters as flood early warning for the local neighborhoods.

Keywords: smart stormwater; machine learning; cluster analysis; data science; flooding detection

1. Introduction

Urban drainage systems (UDSs) are the infrastructures constructed to provide conveyance ability
and storage capability for drainage overflow mitigation, surface inundation reduction, and pollutant
removal. However, the existing UDSs, whose functionality can only serve for a limited number of years,
might degrade and even deteriorate as time goes by [1]. In recent years, retrofitting the traditional
UDSs with water-level sensors, velocity meters, and flow sensors has been widely adopted as an
adaptive and cost-effective solution for flooding challenges [2,3]. The deployed sensors can measure
the water quantity and quality data in a real-time way, which now makes it feasible for decision-makers
and stakeholders to foresee the potential flood events and locate the vulnerable sites, which supports
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decision making. The need to understand the emerging data is crucial for forecasting flash floods,
reducing sewer overflows, and detecting flooded sites [4–6]. Interpreting big water data for flood
detection is attracting increasing attention from researchers [7–10] and can be employed to reduce
potential flood damages.

In the last decade, many scholars have introduced several machine learning techniques to
investigate the available water resources and hydrological datasets [11–13]. The major machine learning
algorithms employed for flood detection are support vector machines [14,15], neuro-fuzzy [16], adaptive
neuro-fuzzy inference systems, multilayer perceptron [17], random forest [18], and classification and
regression trees [19]. Bowes et al. compared long short-term memory and recurrent neural networks
by using a time-series of groundwater table data in the city of Norfolk, Virginia [20]. They explained
that a long short-term memory neural network is better than the recurrent neural network in predicting
groundwater level, but takes about three times longer to train the model. Hu et al. applied a boosted
decision regression tree to detect drainage floods with over 90% accuracy in combined sewer systems of
Detroit city, Michigan [21]. Li proposed a data-driven fuzzy neural method for reducing downstream
urban flooding volume and showed that with an enhanced genetic algorithm optimization the regression
deviations could be reduced from 0.22 to 0.07 [22]. However, the majority of these studies have focused
on supervised learning (i.e., when a known outcome is used to train the model), and unsupervised
machine learning algorithms (UMLA) are not commonly used in stormwater UDSs.

Clustering algorithms are a data-driven technology without considering the classification standard
of different risk levels and thereby provide more objective and reasonable results [23]. Therefore, cluster
analysis, one of the key unsupervised machine learning methods, has been applied in many fields,
including pattern recognition, image analysis, data compression, and anomaly detection [24]. However,
its applicability in urban flood detecting is yet to be fully investigated. In general, cluster analysis is
based on identifying similarities between observations. If a water quantity or quality event happens
in the water system, these observations are likely to be highly dissimilar to other observations [25].
The increment in dissimilarity would lead to these observations being considered as outliers, and thus
detected as anomalies. Although cluster analysis has been extensively discussed in municipal topology
classification and water distribution network simplification [26,27], the ability of UMLA methods to
group time-series data at UDSs is still unknown, and the most appropriate methods to assess these
algorithms are unclear. Keogh and Lin concluded that clustering time-series data is meaningless,
but this argument does not cover the similarity-based clustering algorithms such as K-means and
agglomerative clustering [28]. In contrast, Chen demonstrated that similarity-based cluster analysis
could be successfully applied to sequence datasets by using different distance measures [29,30].
Wu et al. adopted the clustering algorithm [24], developed by Rodriguez and Laio [31], to detect
the short-duration pipe burst with a 0.61% false positive in water distribution systems. Xing and
Sela selected SCI (silhouette coefficient index) and CHI (Calinski–Harabasz index) as the metrics to
evaluate K-mean clustering (KC) performance in clustering time-series water pressure data and they
finally identified the number of clusters for the pressure sensor placement [32]. However, it was
unclear why they chose these two indexes as the UMLA performance metrics. Previous studies from
the computer science field have demonstrated the differences and similarities among the popular
performance evaluation indices such as SCI, CHI, and DBI (Davies–Bouldin index) [33–35]. However,
there is no systematic study of how these apply to time-series data from UDSs.

Floods are one of the most hazardous natural events in the world. The short response time against
flood events makes them challenging for the hydrologists, and as a result, floods cause loss of life,
economics, infrastructure, and property worldwide annually [36,37]. Researchers are trying to promote
flooding indicators to identify flooding locations ahead of extreme storm events. There are several
hydro-meteorological indicators, such as temperature, humidity, and precipitation, which are related
to flood events. The most widely used indicator is hydraulic water level since it can be efficiently
and continuously monitored and forecasted to facilitate floods early detection and warning [38]. To
efficiently capture the flood events, the flooding water level should be well investigated.
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In this study, clustering algorithms, including KC, agglomerative (AC), and spectral clustering
(SC), are applied for the urban flood tracking. A storm water management model (SWMM) is
established to represent the real-world stormwater urban drainage systems, located in Sugar House
neighborhood, Salt Lake City, UT, USA. Three evaluation indices are used to test the performance
analysis of the clustering algorithms, namely SCI, CHI, and DBI. The whole research is driven by
the hypothesis that the clustering of time-series water level data has the potential to facilitate flooding
location detection in the Sugar House Area. The investigations provide answers to various inter-related
research questions: (1) What is the performance of different clustering algorithms in capturing
the floods? (2) Which metrics are the most suitable for assessing cluster model performance based on
hydraulic-hydrologic data in UDSs? (3) Which features of flood time-series data (length, volume and
variability) are the most influential for flooding detection, and how does the choice of data feature
affect the clustering performance in localizing the flooding sites?

To answer these questions, it is necessary to explore how UMLA groups time-series water depth
data, and which assessment score can best represent UMLA performance. However, challenges to
implement UMLA with time-series data still exist. Firstly, it is essential to re-format the time-series
water depth datasets to make them suitable for clustering problem. This difficulty is associated with
the second research question above since the features of datasets determine how we re-structure
the data frame [39]. Secondly, the connection between the number of clusters and the clustering
model performance is another obstacle. As it is still unknown how to correlate clustering performance
and the number of clusters in the stormwater systems, it is necessary to build such a theoretical
relationship for a practical application like the flooding detection herein [40]. Therefore, the study
aims to improve the understanding of how UMLA facilitates detecting hydraulic anomaly according
to the characteristics of water depth datasets in urban drainage networks.

The layout of the study is as follows: (1) build KC, AC, and SC algorithms to group the time-series
water depth data; (2) use UMLA metrics, including SCI, CHI, and DBI, to evaluate these algorithms; (3)
compare the best number of clusters obtained by each method; (4) investigate the relationship between
model performance of flooding detection and water depth data characteristics (see Figure 1 for details).
We start by describing the implementation of different UMLA methods, followed by the research
methodology with an overview of the real-world case study, performance metrics, and simulation
scenarios for cluster analysis. Then, we present the results, discussion, and finally, the conclusions.
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2. Materials and Methods

This study was organized in four steps: (i) time-series data preprocessing; (ii) clustering modeling
implementation; (iii) clustering performance assessment; (iv) applications analysis of clustering results
for urban floods detection. The workflow of the methods can be found in Figure 1.

2.1. Description of Unsupervised Machine Learning Algorithms

Current machine learning techniques mainly fall into two groups: supervised and unsupervised
learning [41]. The UMLA is a self-organization method to find patterns in unlabeled data. Cluster
analysis is, a subset of UMLA methods, and in general, is based on the principle of grouping similar
observations and segmenting dissimilar observations [42]. Anomalous data points that differ from
others may then be filtered [43]. A large number of clustering algorithms exist, including K-means,
Affinity Propagation, and Mean Shift. In this research, we employed the SCI, CHI, and DBI to assess
the performance of the cluster, because of their accuracy and wide applicability in a similar type of
studies [44–46].

2.1.1. K-Means Clustering

K-means clustering (KC) is a centroid-based unsupervised clustering algorithm, originally
designed for signal processing. It is the most widely applied method of cluster analysis in data
mining [33]. K-means aims to partition the inputs into k clusters. Given a set of observations (x1, x2, ...,
xi) for p variables, the algorithm runs as follows:

(1) Choose k initial centroids, each defined by a value for each of the p variables. These are chosen
randomly, often by simply choosing k observations.

(2) Assign each observation to the centroid it is most similar to. The similarity is generally measured
as the Euclidean distance between the observation and centroid in parameter space.

(3) Once all observations are assigned, re-estimate the centroids location as the mean of the p variables
of all observations assigned to that centroid.

(4) Repeat until the algorithm stabilizes (minimize the within-cluster sum of squares).

The goal then is to minimize kC` the within-cluster sum of squares:

argminµ,C

k∑
`=l

i∑
xi∈C`

||xi − µ`||
2 (1)

where k is the number of cluster centers and {µ`}, ` = 1, . . . , k are the cluster centroids C`µ`µ`C`.
The total intra-cluster distance is the total squared Euclidean distance from each point to the center of
its cluster, and this is a measure of the variance or internal coherence of the clusters [47]. This can be
used to assess the stability of the solution. When this falls below a predefined threshold, the algorithm
stops. The algorithm is often run multiple times with different random initialization of cluster centroids
to avoid sub-optimal problems in convergence. The clustering solution with the lowest sum-of-squares
is chosen as the final output.

However, the choice of k is challenging when model performance metrics are not available. Often,
an initial value of k is chosen, then the algorithm is repeated for higher and lower values. To improve
the efficiency of discovering the best k value, a score (SCI, CHI, DBI)-based performance assessment
method is recommended in many prior studies [42].

2.1.2. Agglomerative Clustering

Agglomerative clustering (AC) is one of the main forms of hierarchical clustering. These algorithms
do not provide a single partitioning of the data but instead provide a full hierarchy of cluster solutions
from all observations in a single cluster (i.e., k = 1) to all observations in individual clusters (i.e., k
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= n) [48]. In contrast to KC, hierarchical methods allow existing clusters to be split or merged, with
the result that smaller clusters are related to large clusters in a hierarchy. The rules governing which
clusters are again based on their distance or similarity. The AC algorithm consists of the following
steps:

(1) Start with each data point as its own cluster.
(2) Select the distance metric and linkage criteria to calculate the dissimilarity between pairs

of observations.
(3) Link together the two clusters with the minimum dissimilarity.
(4) Continue this process until there is only one cluster.

A key decision in the AC algorithm is the calculation of dissimilarity between clusters. In this
study, we used Euclidean distance [47], and the Ward linkage, which measures the distance between
the cluster centroids, similar to the K-means clustering method. The equations for Euclidean distance
and Ward linkage are defined by Equations (2) and (3), respectively:

||a− b||2 =

√∑
I

(ai − bi)
2 (2)

where a and b mean the Euclidean vector; ai and bi are the point position for the Euclidean vector; i is
the number of vectors.

di j = d
(
{Xi},

{
X j

})
=

∣∣∣∣∣∣∣∣Xi −Xj

∣∣∣∣∣∣∣∣2 (3)

where di j is the squared Euclidean distance between point i and point j; Xi and X j are Ward’s vectors.
The resulting hierarchy of clusters can be represented using a dendrogram plot [48]. The detailed

introduction of the dendrogram plot can be found in Section 2.3.5 below.

2.1.3. Spectral Clustering

Spectral clustering (SC) is an unsupervised learning technique based on graph theory, where SC
takes advantage of graph information from the spectrum to find the number of clusters [49]. Unlike
the previous methods that tend to prioritize clusters by proximity, SC aims to identify observations
that are linked, and therefore may not form classical spherical groups in parameter space. The SC
algorithm is as follows:

(1) Create a similarity matrix S between observations. This is the complement to the dissimilarity
matrices used in other methods, and here is calculated as the negative Euclidean distance.

(2) Create an adjacency matrix A, representing the graph or connectivity between observations. This
is a transformation of S, where for each observation, we find the k nearest neighbors (i.e., with
the highest similarity). If observations i and j are considered to be neighbors, we set Aij = Sij. If
not, we set Aij = 0.

(3) Create a degree matrix D, where the diagonal values are the degree of connectivity for each
observations, given as diag{D} =

∑n
i, j Ai j, i, j=1, 2,3, ..., n

(4) Next, calculate the graph Laplacian matrix L. This can be normalized or unnormalized. Here, we
use the unnormalized: L = D − A

(5) The clustering solution is then found by eigendecomposition of the Laplacian, and selecting the k
smallest eigenvectors. Consequently, these result in a perfect separation of the observations.
K-means is then run on these eigenvectors, to get the final cluster assignment of each observation:
L(N×N) = D−A

As SC performs dimensionality reduction before clustering data points, it is a very flexible
approach for complex data sets. However, the similarity matrix generated by SC may include negative
values, which can be problematic for grouping time-series points.
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2.1.4. Summary and Comparison of Clustering Algorithms

In general, it is difficult to recommend a single algorithm as being the most suitable for clustering,
particularly with data that is uncertain and of poor quality, such as the features of pipe flow or
water level data used here [41]. It is, therefore, advisable to use several algorithms and compare
their performance for specific applications. Here, we use KC, SC, and AC to discover the unknown
subgroups in simulated water depth data of UDSs’ junctions. Table 1 summarizes the advantages and
disadvantages of these algorithms from review papers [24,33,44].

Table 1. Clustering algorithm information summary.

Models Definition Pros Cons

K-means
Clustering

A kind of vector
quantization, partition

data points into clusters
by minimizing

the intra-cluster distance.

(1) Fast, easy-to-understand, and
wide applications;
(2) Stable for time series data;
(3) Simple and efficient
optimization performance;
(4) Suitable for huge datasets.

(1) Number of
clusters;
(2) Spherical
assumption.

Agglomerative
Clustering

A kind of hierarchical
clustering for merging
clusters according to

a measure of data
dissimilarity.

(1) Stable runs
(2) Reasonable dendrogram cut-off
nodes;
(3) Clusters growth without
globular assumption;
(4) Good performance for
time-series data;
(5) No need to know the correct
clusters’ number.

(1) Number of
clusters;
(2) Slow
implementation;
(3) Cluster with
polluted noise.

Spectral
Clustering

A kind of graph
clustering based on

the distances between
points.

(1) Stable due to the data
transformation;
(2) No purely globular cluster
assumption;
(3) Easy to implement.

(1) Number of
clusters;
(2) Slow performance;
(3) Cluster with
polluted noise.

2.2. Clustering Model Implementation

The SWMM model was run six times, once with each of the rainfall scenarios described above. We
collected the simulated time-series water depth from each node in the stormwater drainage network
for cluster analysis. As there are 60 junctions in the SWMM model, this results in a matrix where
each column represents a single time step with a 5-min interval, and each row (60 rows) stands for
a junction or node in the network. We then used the principal component analysis (PCA) to reduce
the dimensionality of this matrix. PCA uses the eigendecomposition of the correlation matrix to identify
a small set of principal components that represent the majority of variance in the original data [50].
Here, we used correlations between the time-series at different nodes to reduce the column of matrix to
2, which means the number of timesteps is compressed to 2 principal components. Finally, the dataset
matrix is configured with 60 rows and 2 columns under each modeling scenarios. The datasets used
in this work are not large, and for computational costs are limited. While other techniques for data
reduction exist (e.g., correspondence analysis, factor analysis, or non-metric multi-dimensional scaling),
we used PCA due to the assumed linear response of the water depth values. Although the reduction of
dimensionality might cause data loss or an undesirable relationship between score axes, PCA indeed
helps reduce computation time and remove redundant data features in the following cluster analysis.

All clustering algorithms were then run using this set of two principal components shown in
Figure 2, with the following set up:

(1) K-means: We initially set the number of clusters (k) to 2 for each modeling scenarios. The algorithm
was repeated ten times with different random initialization, and a maximum of 5 iterations was
used to converge the algorithm.
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(2) Agglomerative clustering model: We used Ward linkage, as this is robust to outliers and unequal
variance in the data. As only ‘Euclidean’ supports ‘Ward’ linkage distance computation. If ‘Ward’
linkage is used for cluster distance computation, ‘Euclidean’ would be the best way to measure
the data dissimilarity [51]. Thus, the cluster distance calculation method and dissimilarity metric
among sample points are set to be ‘Ward’ and ‘Euclidean’ distance, respectively. The resulting
hierarchy was cut to provide 2 clusters.

(3) Spectral clustering: The algorithm was used to identify 2 clusters, using the unnormalized
graph Laplacian.
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the blue and red dots assigned to the closest cluster).

In Figure 2 below, there is no sample marginal overlapping, which indicates the cluster classification
is reasonable with respect to grouping the time-series water level data. Additionally, the isolated
dots in the subplots of Figure 2 present the dissimilarity of the water depth datasets under this event,
indicating these isolated dots might be the potential flooded junctions, which help the decision-makers
to pre-screen the vulnerable sites in the drainage networks.

2.3. Clustering Model Evaluation and Validation

Unlike the supervised machine learning algorithms that compare the predicted and actual values
to compute the model accuracy, the UMLA assess performance directly on the characteristics of
the clusters that were obtained. The performance then depends on data features selected, data
preprocessing, and parameter settings such as the distance function to use, a density threshold, or
the number of expected clusters, which can be modified according to the varying datasets and object
inputs. As a result, there is rarely a single obvious solution for clusters, and cluster analysis is an
iterative process of knowledge discovery or interactive multi-objective optimization that involves trial
and failure, aimed to obtain the desired results [52–55].

Several indices, including SCI, DBI and CHI, are employed to measure the relative performance
of clustering algorithms. In general, these metrics provide an assessment of how the data variance is
partitioned. An ideal cluster solution will have low intra-cluster variance (i.e., all observations should
be similar within a cluster) and high inter-cluster variance (the clusters should be well separated).

2.3.1. Silhouette Coefficient Index

The silhouette coefficient index is an example of model-self-evaluation, where a higher SCI score
relates to a model with better-defined clusters [56]. This score is bounded between −1 for incorrect
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clustering and +1 for well-formed clusters. Scores around zero indicate overlapping clusters. The SCI
is defined for each observation, which can be calculated as Equation (4):

SCI =
m− n

max(m, n)
(4)

where the SCI is for a single observation; m is the mean distance between an observation and all
other observations in the same class; n is the mean distance between the same observation and all
observations in the next nearest cluster. The SCI has the advantage that it can be used to examine
how well individual observation are clustered, or an estimate can be obtained for each cluster or
for the whole cluster solution by averaging across a cluster or the entire dataset, respectively. An
estimate can be obtained for each cluster or for the whole clusters solution. A set of samples is given as
the mean of the SCI for each sample, and it would be relatively higher when clusters are dense and
well separated [57].

2.3.2. Calinski-Harabasz Index

The CHI is calculated as the ratio of the between-clusters dispersion average and the within-cluster
dispersion [58], penalized by the number of clusters (k). A higher CHI score indicates better-defined
clusters (i.e., dense and well separated). CHI for a set of k clusters is calculated as:

CHI =
Tr(Bk)

Tr(Wk)
×

N − k
k− 1

(5)

where N is the number of points in our data; k is the number of the cluster; Tr represents dispersion
matrix; Bk is the between-group dispersion matrix, and Wk is the within-cluster dispersion matrix. Bk
and Wk are defined by the following equations:

Wk =
k∑

q=1

∑
x∈Cq

(
x− cq

)(
x− cq

)T
(6)

Bk =
k∑
q

nq
(
cq − c

)(
cq − c

)T
(7)

where Cq is the set of points in the cluster q, cq is the center of the cluster q, c is the center of the whole
data set which has been clustered into k clusters, nq is the number of points in the cluster q.

2.3.3. Davies-Bouldin Index

The DBI can also be used to evaluate the model, where a lower DBI relates to a model with better
separation between the clusters [59]. The index is defined as the average similarity (Rij) between each
cluster k and the next closest (i.e., most similar) cluster. The DBI is calculated as Equation (8):

DBI =
1
k

k∑
i=1

maxi, j
(
Ri j

)
(8)

where DBI is the Davies–Bouldin index. Zero is the lowest possible score. Values closer to zero indicate
a better partition. k is the number of the cluster. Ri j is the similarity measure which features per
Equation (9):

Ri j =
si + s j

di j
(9)

where si is the average intra-distance between each point of cluster i and the centroid of that cluster
representing as cluster diameter; di j is the inter-cluster distance between cluster centroids i and j; Ri j
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is set to the trade-off between inter-cluster distance and intra-cluster distance. The computation of
DBI is simpler than that of SC since this index is computed only with quantities and features inherent
to the dataset [60]. However, a good value reported by DBI might not imply the best information
retrieval [55].

2.3.4. Intra-Cluster Distance

Intra-cluster distance (ICD) is the distance between two samples belonging to the same cluster.
Three types of intra-cluster distance, including complete diameter distance, average diameter distance,
and centroid diameter distance, are popular in prior studies. As the number of clusters increase,
individual clusters become more homogenous, and the ICD decreases. At a certain point, the decrease
in distances becomes negligible. Plotting this distance against k usually results in an inflection point or
elbow point where this occurs, and can be used to identify the optimal value of k [61]. The number
of clusters is chosen at this point, hence the "elbow criterion." Here we use the centroid distance to
represent ICD, given as double the average distance between all of the objects:

∆(S) = 2
{∑

x∈S d(x, T)
|S|

}
(10)

T =
1
|S|

∑
x∈S

x (11)

where ∆(S) is the centroid diameter distance of the formed cluster representative S; x is the samples
belonging to cluster S; d(x, T) is the distance between two objects, x and T; |S| is the number of objects
in cluster S.

2.3.5. Dendrogram

A dendrogram is a visualization in the form of a tree that shows the hierarchical relationship
like the order and distance (dissimilarity) between samples [62]. The individual samples are located
along the bottom of the dendrogram and referred to leaf nodes. The hierarchical clusters are formed
by merging individual samples or existing lower-level clusters. In a dendrogram, the vertical axis
is labeled distance and refers to a dissimilarity measure between individual samples or clusters.
Generally, in a dendrogram, horizontal lines can be regarded as places where clusters merge, while
vertical lines show the distance at which lower-level clusters were merged, forming a new higher-level
cluster. The dissimilarity measure between two groups is calculated as Equation (12):

Dis = 1−C (12)

where Dis means the dissimilarity or distance among objects and C means the correlation degree
between clusters.

If clusters are highly correlated to each other, they will have a correlation value close to 1. To
that, Dis = 1 − C will be given a value close to zero. Therefore, highly related clusters are nearer to
the bottom of the dendrogram. Those clusters that are not correlated have a correlation value close to
zero. Clusters that are negatively correlated will give a distance value larger than 1 in the dendrogram.
The dendrogram can be used to visually allocate correlated objects to clusters or to detect outliers
and anomaly in a diagram [47]. In the dendrogram, each sample is treated as a single cluster and
then successively combines pairs of clusters until all clusters have been merged into a single cluster.
In this process, the dendrogram shows how the aggregations are performed from bottom to top of
the dendrogram statically. This procedure allows the cut-off points to flexibly and efficiently represent
the number of clusters. Therefore, this study used the number of cut-off points in the dendrogram to
validate the cluster number of the agglomerative clustering.
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2.4. Study Area and Data Description

A real-world urban stormwater system located in Salt Lake City, UT, U.S., was selected as the case
study, shown in Figure 3. This study case, with an area of 81-ha, is semi-arid, and has soil composed
of four primary types: alluvial fan, artificial fill, silt and clay, and sand and gravel deposits. The soil
surrounding the study area is classified as hydrologic soil groups B and C, with low infiltration capacity,
which has a relatively poorly draining surface. Due to climate change and urbanization, the studied area
has suffered from floods more frequently than 1990s, and the increase in the magnitude and duration
of the storm events has pushed the resulting stormwater system out of service. This urban drainage
network was represented by a rainfall-runoff SWMM model. SWMM is a state-of-art tool developed to
help support local, state, and national stormwater management objectives to reduce runoff, discharge,
and improve stormwater quality [63,64]. It has been widely used all over the world in similar type
of investigations including stormwater runoff, combined and sanitary sewers, and other drainage
systems [65–67]. Figure 3 shows the components of this SWMM model, which includes one rain gauge,
60 junctions, 61 conduits, two outfalls, and seven sub-catchments, while the groundwater interflow,
water evaporation, snowmelt, and manhole hydraulic loss are neglected during the simulation [68].Water 2020, 12, x FOR PEER REVIEW 11 of 24 
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kilometer), the U.S. and the topological view of the stormwater urban drainage system model plotted
by the PCSWMM v.7.3. (major sub-figure, scale unit is kilometer).

For this study, we created 6 artificial precipitation series according to the Chicago distribution
method in PCSWMM v.7.3, and then imported them as modeling inputs. The distribution for
the synthetic rains is shown in Figure 4. These rainfalls with durations of 3 h, 12 h, to 48 h and
return periods ranging from 2-year to 5-year almost contain all typical features and characteristics of
real storms in the study area. Additionally, rainfall measurements for two real rainfall events were
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collected to test the clustering algorithm. These rain records from 5 May 2015 rainfall event and 8 July
2015 rainfall event are representative for the typical real storms under average climatic conditions
in the study area. Compared with water depth generated by the artificially designed rainfall data,
the time-series water depth produced by the real-world storms contains more non-stationarity and
noise. Nevertheless, the obtained findings are subsequent validated with real rain records.
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3. Results

3.1. Clustering Performance Evaluation

3.1.1. K-Means

A detailed investigation was carried out to assess the performance of the clustering algorithms.
Figure 4 shows how three performance metrics SCI, CHI and DBI change with different cluster numbers
when using K-means to cluster the time-series water depth data. Values for the CHI value increase
with higher cluster numbers, whereas the SCI and DBI values fluctuate. The SCI and DBI values
show opposite trends, reflecting the different methods by which they are calculated (see Section 2.3
above). In particular, Figure 5b,c show that the best solution is with eight clusters, reflected in
the largest SCI value and smallest DBI value. These results suggest that the SCI and DBI are more
suitable to assess the performance of K-means, while any peak in the CHI related to cluster quality
is eclipsed by the influence of increasing the number of clusters. Based on the SCI and DBI value in
Figure 5a, the optimal number of clusters is six for the two year-3 h and five year-3 h rainfall scenarios.
The differences in the optimal number of clusters in Figure 5a–c indicate that rainfall duration has
impacts on the number of clusters when utilizing K-means to group time-series water depth datasets.
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3.1.2. Agglomerative Clustering

Figure 6 shows the same results but based on the use of Agglomerative Clustering (AC) to group
the time-series water depth data. As with the K-means results (Figure 5), the CHI value increase with
the number of clusters for all scenarios from short-duration to long-duration rainfall. Again, it is
difficult to identify an optimal number of clusters, and this suggests that the CHI is not suitable for
ascertaining the best clustering solution with these data. In contrast, the SCI and DBI show clear peaks
in their values. Figure 6a shows that 16 clusters result in the maximum SCI close to 0.76 and minimum
DBI with 0.38. Figure 5c shows a peak in SCI values (~0.6) for eight clusters, with a corresponding
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minimum in the DBI value (<0.4). However, Figure 6b shows that eight clusters could produce
the largest SCI (~0.62) and the lowest DBI (~0.40) with the two year-12 h rainfall duration scenario (left
subplot), but that 16 clusters are the optimal solution for the two year-12 h rainfall (SCI ~0.58 and DBI
~0.38; right subplot). In summary, the best cluster solutions AC algorithms are 16, eight, and eighteen
under 3 h, 12 h, and 48-h duration rainfalls, respectively. Comparing the left subplots with the right
subplots (Figure 6) provides evidence that the cluster number for the best AC performance remains
the same, although the return period has been shifted from two-year to five-year. The rainfall return
period (annual exceedance probability) was found to be less related to the number of clusters.

Water 2020, 12, x FOR PEER REVIEW 14 of 24 

 

in their values. Figure 6a shows that 16 clusters result in the maximum SCI close to 0.76 and minimum 
DBI with 0.38. Figure 5c shows a peak in SCI values (~0.6) for eight clusters, with a corresponding 
minimum in the DBI value (<0.4). However, Figure 6b shows that eight clusters could produce the 
largest SCI (~0.62) and the lowest DBI (~0.40) with the two year-12 h rainfall duration scenario (left 
subplot), but that 16 clusters are the optimal solution for the two year-12 h rainfall (SCI ~0.58 and DBI 
~0.38; right subplot). In summary, the best cluster solutions AC algorithms are 16, eight, and eighteen 
under 3 h, 12 h, and 48-h duration rainfalls, respectively. Comparing the left subplots with the right 
subplots (Figure 6) provides evidence that the cluster number for the best AC performance remains 
the same, although the return period has been shifted from two-year to five-year. The rainfall return 
period (annual exceedance probability) was found to be less related to the number of clusters. 

  

(a) 

  

(b) 

  
(c) 

Figure 6. Performance evaluation for Agglomerative Clustering with different cluster numbers under 
synthetic rainfall scenarios including (a) 3-h (left 2-year and right 5-year), (b) 12-h (left 2-year and 
right 5-year), and (c) 48-h duration (left 2-year and right 5-year). 

Figure 6. Performance evaluation for Agglomerative Clustering with different cluster numbers under
synthetic rainfall scenarios including (a) 3-h (left 2-year and right 5-year), (b) 12-h (left 2-year and right
5-year), and (c) 48-h duration (left 2-year and right 5-year).
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3.1.3. Spectral Clustering

Figure 7 shows the results obtained for different cluster numbers using Spectral Clustering to
group the time-series water depth data. In contrast to the two previous methods, the SCI values
decrease as the number of clusters increase. For the 12 and 48 h scenarios, this index identifies solutions
at about 6–7 clusters, but no clear optimal solution is identified in the shorter scenarios (panel a).
This suggests that this index is unsuitable for assessing this algorithm. The DBI values show greater
variation as the number of clusters change, although minima can be observed at 6 to 7 clusters for most
scenarios. The CHI values no longer show a linear increase, but show clear peaks, although usually for
higher numbers of clusters than the DBI identifies. The highest CHI values (275 for 2 year-12 h and
190 for 5 year-12 h) are all generated by the SC with 13 clusters. For the for two year-48 h and five
year-48 h scenarios, the largest CHI values are approximately 200 and 270, respectively, in both cases
for 12 clusters.
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Figure 7. Performance evaluation for Spectral Clustering with different cluster numbers under synthetic
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3.2. Clustering Performance Testing

The analysis of cluster performance in the previous section is based on synthetic rainfall datasets,
due to lack of water depth data in the drainage network. However, the use of noise-free synthetic
data may have a significant impact on the results obtained [69], and our results may not represent
real storm situations or current climate conditions. In contrast, the trends identified here might be
masked by time series noise, making it more difficult to identify optimal solutions. In order to validate
that the results obtained from designed rainfalls can also be applied to non-stationary real-storms, we
evaluate the performance of the clusters in grouping flooding water depth datasets generated by two
real flood events described below.

The left plot in Figure 8 indicates that the best number of clusters for the 5 May 2015 event
(Figure 8a) and 8 July 2015 event (Figure 8b) are five and four, respectively. Increasing the number of
clusters beyond this causes both the SCI and the DBI to decline. The distribution of different clusters
obtained is shown in the PCA plots in the right panel of Figure 7. These show that the cluster analysis
resulted in a good separation of the storm events (indicated by the lack of overlap between the gray
circles).It should be noted that both subplots 8a and 8b have an isolated cluster on the top. This is
the only cluster composed of one sample, which means the water depth from the corresponding
junction is significantly distinguishable to others. One possible reason for this phenomena is that
the flooding or overflow events have occurred, triggering a very different signal in water depth at this
location. Besides, as the rainfall duration increases from 3 h (the 5 May 2015 storm) to 24 h (the 8 July
2015 storm), the reduction in the number of clusters selected is in line with the results of Section 4,
supporting the negative correlation between the number of clusters and event duration.
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(b) 8 July 2015 flooding event (gray circles same to clusters), (x_pca means the first component score;
y_pca means the second component score; The principal component scores are used to examine if these
two clusters are reasonably distinguished from each other clustering).
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3.3. Cluster Number Validation

The dendrogram plots are also used to validate the number of clusters. Figure 9 shows
the dendrogram plots obtained from applying the AC algorithm to the flooding water depth data.
Generally, the cut-off point should be at least 70% dissimilarity between two clusters or cutting where
the dendrogram difference is most significant [69]. The number of clusters was selected by using
a distance threshold of 0.9 distance or 90% dissimilarity, and this is plotted as a horizontal cut-off line
in all dendrograms of Figure 9. The cross points (highlighted as green X in dendrogram) between
the cut-off line and dendrogram leaves identify the accepted clusters. In Figure 9, one point identified
by the cut-off line (junction 8; highlighted as red X in dendrogram) was considered as an outlier in
the dendrogram and excluded. In practice, this algorithm might be helpful for anomaly detection
in the sensor monitoring network. For instance, real-time monitoring is built to capture the varying
different features of measurements as much as possible within a limited number of sensors [70,71].
Further, the clusters represent different parts of the hydrological network and can be used to help
target locations for sensor deployment to observe overflow and flood events in the field.
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The vertical comparisons among the subplots of Figure 9a–c disclosed that the appropriate cluster
numbers for 3 h, 12 h and 48 h rainfall scenarios are quite similar: eight, nine, and nine, respectively.
Meanwhile, comparing cluster solutions for different time periods (e.g., left and right plot of Figure 9a,
the number of clusters and their structure is remarkably similar, implying that the event return period
has fewer impacts on AC model performance. This supports the conclusions reached with the synthetic
time series, that the AC model performance noticeably depends on the flooding duration but not
the event return period (exceedance probability).

This study adopted intra-cluster distance as the metric to assess the effects of flooding duration
and return period (exceedance probability) on the performance of the K-means and Spectral Clustering
algorithm. Figure 10 shows the results of this comparison, with the decay in the intra-cluster distance
as the number of clusters increases. A notable elbow point (the cross between red dashed line and
intra-distance curves) can be seen at the four clusters, as the decrease in distances becomes much
smaller. Using the elbow criterion described in Section 2.3.4, this suggests that four clusters are the best
solution. Increasing the number of clusters beyond this would result in a little additional gain for
the extra complexity of the solution. Figure 10 shows that the intra-cluster distance changes in a similar
way for all six rainfall scenarios, and that the intra-cluster distance is close in those rainfalls with
the same duration. For example, the solid purple line with purple circle markers (representing two
year-3 h rainfall scenario) overlaps the red dashed line with the red circle markers (representing five
year-3 h rainfall scenario). However, there are still some differences between scenarios with different
rainfall duration. Notably, the intra-cluster distance increases as the rainfall duration decreases (the
distance for the ‘3 h’ duration rainfall is the largest, followed by the ‘12 h’ cases, and then the ‘48
h’ scenarios). As a metric for clustering performance, intra-cluster distance is therefore useful in
determining how well these algorithms group the water depth time-series. These results suggest that
the K-means and spectral clustering algorithms work best with longer duration rainfalls, implying that
the longer event duration produces greater similarity in the water depth at different junctions. This,
coupled with the larger set of observations from a longer period, results in better formed individual
clusters. Wu et al. have shown that these cluster methods work optimally when trained on massive
datasets, which is supported by the results herein [72].
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4. Discussions

4.1. Clustering Parametric Discussion

Previous cluster-based studies have mainly focused on detecting pressure, demand, pipe burst,
infrastructure damage, and illicit intrusion in water distribution systems [71–73]. In the cluster analysis
here, the features, such as the length of time-series water depth from UDSs, are found to be negatively
correlated with the number of clusters. This finding has been validated by the dendrogram cut-off

points in those designed rainfalls and also by the cluster center mapping based on real storm events.
The similar results between the artificial (noise-free) and practical (noise-polluted) scenario infer
that event duration (data length) overwhelms the event exceedance probability (data magnitude) in
the cluster number identification, which agrees with the findings from [25,72]. Increasing the number
of clusters often results in many more errors. One extreme case is that the zero error happens when
each data point is equal to every cluster. Intuitively, the choice of the best number of clusters can be
interpreted into a trade-off between the maximum reduction of complexity of the data with a single
cluster and maximum accuracy by assigning each data point to its cluster. For long time series, we
suggest starting with a small number of clusters and increasing the number, testing the performance at
each increase.

In addition to the determination of the number of clusters, the structure of datasets may also
affect the clustering model performance. KC and SC algorithms are able to robustly group water depth
datasets from longer duration flood events. However, there is a limited relationship between algorithm
performance and annual exceedance probability. The sharply rising trend (Figures 4–6) demonstrates
that the CHI is not suitable to identify the best number of clusters in the KC and AC algorithms, but
that the SCI and DBI work quite well and give comparable results (Figures 4–6). In contrast, the CHI
works well in identifying the optimal cluster number with the SC algorithm. This difference reflects
the different nature of the algorithms: KC and AC are based on simple dissimilarity measures between
observations, whereas the SC is based on a graph representing connectivity. This is because that DBI
evaluates intra-cluster similarity among every data point and inter-cluster differences among each
group. Similarly, the SCI measures the distance between each data point and the centroid of the cluster
it was assigned to. An SCI value close to 1 is always good, and a DBI value close to 0 is also good
whatever clustering you are trying to evaluate. However, the CHI is not normalized, and it is difficult
to compare two values of the CHI index from different data sets.

4.2. Implications of Clustering Application

This study provides an understanding of different clustering algorithms, applicability with
different datasets, and an assessment of cluster solutions in flood detection strategies. For instance,
as water level is one of the inferential indicators of local flood events, clusters with abnormal water
level can be identified as early warning signals of flooding. As new data become availabel during
monitoring, these can be assigned to the most similar cluster. Decreasing dissimilarity to abnormal
cluster therefore indicates increasing likelihood of flooding. In Figure 8, we observed that there
is one isolated dot for each subplot. These separated points represent the highly dissimilar water
depth data, indicating the possibility of triggering flood events. These same cases are also captured
in the dendrogram of Figure 9 which presents that the junction 8 highlighted with red cross might
be the source of anomalous water level. One reasonable explanation for the anomalous cluster is
the resultant flooding or overflow events occuring around the corresponding location. More attention
are recommended to investigate if this location is flooded. Thus, it can be seen that classifying these
points as anomalies is helpful for narrowing down the spatial searching domain from network-level to
node-level, and consequently also reducing the timing and efforts in identifying the flooded locations
in the complex network system [74–76]. We concluded that the occurrence of anomalous changes in
water level in UDSs could be a timely reminder of the upstream or downstream overflow events for
the neighborhoods. Our findings also explain how the characteristics of the dataset (notably length
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and magnitude) influence the number of clusters. This information could be employed to detect urban
flood events using water depth datasets in other real drainage networks [66,67]. These clustering
algorithms aim to efficiently capture the urban drainage flooding locations providing a basis for
managing the existing drainage structures and developing sustainable urban drainage networks in
urbanized areas [77].

4.3. Limitations and Future Work

Although this study has identified some clear differences in the application of cluster analysis,
there are several limitations. Firstly, the majority of scenarios used time-series water depth datasets
generated by model simulation. As these are smooth and noise-free, the results may not scale to field
application. However, we found similarities between the results with the limited set of observed rainfall
series used here, notably in the use of the different indices, but tend to result in a smaller number of
clusters. Further work should apply these methods to a wider set of observed data to reduce the input
(meteorological) uncertainties and meteorological variances if such data becomes available [36,37,78,79].
The possible integration of ensemble prediction system (EPS) and data assimilation techniques might
be of interest for future work, which could provide help for estimating forecast uncertainty via
a linear combination of suitable meteorological variances and uncertainties linked to the rainfall and
hydraulics [80,81]. Secondly, as this paper only focuses on exploring usefulness of clustering model
implementation and performance evaluation, analysis of errors and sensitivity analysis of water level
datasets are recommended for to improve the reliability of results. Future work will concentrate on
the application of these methods, including water-level sensor placement, combined sewer overflow
detection, and urban flooding prediction. Since the dendrogram enables the AC algorithm to detect
outliers in time-series water depth datasets, this can be used to help guide sensor deployment on
vulnerable sites for observing overflow and flood events in the field [76]. It is planned to consider
strengthening the connection between the theoretical results and field application by conducting
a cluster analysis to optimize the sensor monitoring network for flooding detection at UDSs.

5. Summary and Conclusions

In the age of ‘smart stormwater,’ the increased deployment of sensors to monitor water level
characteristics is resulting in rapidly accumulating data. It is becoming crucial to understand and
promote methods to handle these big datasets to help in flood detection and control. This study
aims to promote understanding of how cluster analysis facilitates the interpretation of the unlabeled
time-series water depth data for flooding location detection at the stormwater urban drainage systems.
In this work, three indexes, including silhouette coefficient index, Calinski–Harabasz index, and
Davies–Bouldin index, were used to evaluate the performance of three popular unsupervised cluster
analysis models namely K-means clustering, agglomerative clustering and spectral clustering. A
real-world stormwater urban drainage systems SWMM model was applied to test the performance of
clustering algorithms in capturing urban floods. Five conclusions were drawn below:

(1) Silhouette coefficient index and Davies–Bouldin index are suitable metrics to measure
the performance of K-means and agglomerative clustering model when subject to identify
the number of clusters for the best performance. However, the Calinski–Harabasz Index is found
to be more favorable to assess the performance of the spectral clustering model in grouping
time-series water depth datasets for urban drainage flooding detection.

(2) In K-means and spectral clustering models, the number of the clusters for maximizing model
performance is highly related to the dataset length (flooding duration) but is slightly associated
with the dataset magnitude. There is a negative correlation between the number of clusters and
the length of datasets.
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(3) The short-period water depth data can be well-grouped by the agglomerative clustering model.
In contrast, K-means and spectral clustering models are better able to handle time-series water
depth datasets from long-duration storm scenarios.

(4) This research work provides insight into unlabeled hydraulic data-driven techniques by
conducting clustering experiments. The outcomes are useful for researchers to select
the appropriate clustering model and to choose the corresponding performance metrics for
specific urban flooding applications.

(5) The detailed analyses in this work provide guidance concerning how to use cluster solutions
to isolate or prescreen vulnerable locations for flooded location detection strategies. The water
level in isolated clusters can be considered as the floods early warning for the local residents.
The occurrence of anomalous changes in water level in urban drainage systems could be a timely
reminder of the upstream or downstream flood events for the surrounding neighborhoods.
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