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Abstract: The objective of this study is to examine the impact of the number of calibration repetitions on
hydrologic model performance and parameter uncertainty in varying climatic conditions. The study
is performed in a pristine alpine catchment in the Western Tatra Mountains (the Jalovecký Creek
catchment, Slovakia) using daily data from the period 1989–2018. The entire data set has been
divided into five 6-years long periods; the division was based on the wavelet analysis of precipitation,
air temperature and runoff data. A lumped conceptual hydrologic model TUW (“Technische
Universität Wien”) was calibrated by an automatic optimisation using the differential evolution
algorithm approach. To test the effect of the number of calibrations in the optimisation procedure,
we have conducted 10, 50, 100, 300, 500 repetitions of calibrations in each period and validated them
against selected runoff and snow-related model efficiency criteria. The results showed that while the
medians of different groups of calibration repetitions were similar, the ranges (max–min) of model
efficiency criteria and parameter values differed. An increasing number of calibration repetitions
tend to increase the ranges of model efficiency criteria during model validation, particularly for the
runoff volume error and snow error, which were not directly used in model calibration. Comparison
of model efficiencies in climate conditions that varied among the five periods documented changes in
model performance in different periods but the difference between 10 and 500 calibration repetitions
did not change much between the selected time periods. The results suggest that ten repetitions of
model calibrations provided the same median of model efficiency criteria as a greater number of
calibration repetitions and model parameter variability and uncertainty were smaller.

Keywords: hydrological model uncertainties; optimisation of model parameters; climate change

1. Introduction

Conceptual rainfall-runoff models are used for a wide range of purposes including reservoir
operations, flood and drought prediction, risk analysis, climate change impact studies, etc. [1,2].
These models usually contain parameters that need to be estimated through calibration. However,
many parameters sets with different values of the same parameters can provide similar results in terms
of model efficiency, which is termed as “the equifinality principle” [3,4]. The problem of equifinality
and its reduction in hydrological modelling has been discussed in many studies (e.g., [3–7]). Previous
investigations examined the potential of the Monte Carlo approach, multiple-objective calibration or
the influence of the length of data series or climatic variability during calibration/validation periods on
the improvement of parameter representativeness and hence reduction of uncertainty in parameters of
the models. Several authors (e.g., [8–11]) used the Monte Carlo (MC) calibration approach to examine
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the links between model consistency and parameter uncertainty. For example, Finger et al. [9] and [10]
used the MC approach (10,000 runs) to test the performance of a conceptual hydrologic model in
terms of three observational data sets (discharge, snow cover, glacier mass balances) and found that an
ensemble of 100 parameters sets adequately represented parameter variability, hydrological regime and
seasonal dynamics of discharge. Another approach for selection of representative model parameters
was recently evaluated by Sikorska-Senoner et al. [12] who tested three methods (ranking, quantiling,
clustering) and found that the reduced parameter ensembles (i.e., three representative parameter sets)
obtained by these methods were reliable for the simulation of extreme floods.

The multi-criteria approach, i.e., consideration of additional hydrological processes in model
performance evaluation, has been successful in the reduction of parameter uncertainty, particularly
for parameters connected to the additional process. For example, Finger et al. [9] and Parajka and
Blöschl [13] showed that the combination of discharge data with snow cover related observations was
useful in constraining snow model parameters. Similar results were obtained with satellite data of
snow cover [11,14,15] or soil moisture [16].

Evaluations of the effect of length of calibration period on model parameter uncertainty indicated
that longer calibration periods reduced parameter uncertainty [17]. Generally, longer calibration
periods are advised to capture the variability of climatic and flow conditions [18]. Anctil et al. [19] and
Brath et al. [20] recommended using two to ten years as optimum for model calibration. Merz et al. [21]
stated that since the calibration period of five years captured most of the temporal hydrological
variability, it should be the minimum for achieving reasonable predictive model performance.

A number of studies analysed the effects of climatic variability on the variability of model
parameters (e.g., [22–27]). Several authors observed a decreasing trend in model performance when
model parameters were transferred to periods with a different climate, e.g., from wetter to drier periods
and vice versa [22,23,28–35]. For example, in Australia, Vaze et al. [28] and Coron et al. [23] found
that the transfer of model parameters to a drier climate was problematic. They concluded that the
model parameters transferability was more influenced by a change in precipitation than by changes in
evaporation or air temperature. In Austria, Merz et al. [22] found that parameters representing snow
cover evolution and soil moisture variability showed significant correlations with air temperature.
They documented that a model calibrated in a colder/drier decade had a tendency to overestimate
runoff in a warmer/wetter decade. Similar results were obtained by [34] who showed that the use of
parameters calibrated in a colder decade for a warmer/wetter decade tends to overestimate catchment
runoff, particularly in flatland and hilly catchments.

The uncertainties associated with hydrological model calibration (i.e., parameter estimation,
choice of the length of calibration and validation periods) remain a challenge for the modellers.
Representativeness of model parameters and reproducibility and repeatability of results are fundamental
assumptions in any calibration experiment and uncertainty assessment. The study of Ceola et al. [36]
showed that even if the same experimental protocol is used for calibration of hydrological models,
there can be some variability in model performance and parameter uncertainty. The results of Ceola
et al. [36] indicate that repetition of the calibration procedure can help to detect insensitive model
parameters and reduce equifinality, but it is still not clear how to estimate the optimal number of
repetitions. This is particularly interesting at present when the variability of climate can have a
significant impact on the temporal stability of model parameters [22].

The main aim of this study is hence to examine how does a different number of calibration
repetitions impact hydrologic model uncertainty in varying climatic conditions. We investigate the
following research questions: (a) Does the number of calibrations influence model performance
in varying climatic conditions? (b) Is the optimal number of calibrations related to the varying
climate conditions? (c) Does the increasing number of calibrations decrease parameter uncertainty?
These questions are investigated in a small pristine alpine catchment in the Western Tatra Mountains
where runoff generation is affected only by natural processes. Model performance is evaluated by
criteria related to catchment runoff snow cover.
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2. Study Catchment and Data

2.1. Study Catchment

The Jalovecký Creek catchment in the Western Tatra Mountains (northern Slovakia) is selected as
a pilot catchment for this research (Figure 1). It is a small experimental catchment where the Institute
of Hydrology SAS has carried out hydrological research since 1986. It is located at altitudes between
800 and 2178 m a.s.l. (meters above sea level) (mean 1500 m a.s.l.) and has a total area of 22.2 km2.
The average catchment slope is 30◦, and most slopes have a south-eastern orientation. Soils are
represented by Cambisol, Podsol, Ranker and Lithosol. All soils have high stoniness (typically 40–50%
and more, [37,38]). Forests (mainly spruce) cover 44% of the catchment area. Dwarf pine covers 31%
and Alpine meadows and bare rocks cover the rest 25% of the catchment area.
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Figure 1. Map of Europe (bottom)—the red point indicates the location of the study catchment within
Slovakia. The topography of the Jalovecký Creek catchment (top)—the black triangle indicates stream
gauge; the black circles are climate stations providing the air temperature (numbers 1, 2 and 5) and
precipitation data (numbers 1–7); the blue star represents site with snow water equivalent measurement.
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2.2. Data

The study region is in a transitional zone between oceanic western and continental climate
and belongs to the tundra (ET) climate class of Köppen classification. Climate observations, i.e.,
daily precipitation, daily air temperature, daily discharge and snow course measurements are available
from the period between 1 November 1988 and 31 October 2018. Point observations of precipitation
and air temperature are measured at 7 and 3 sites, respectively. Snow water equivalent is measured at
site Červenec, which is located at catchment mean elevation (Figure 1).

2.3. Selection of Periods With Varying Climate

In this study, the entire dataset is divided into calibration/validation periods identified by the
wavelet transform method. Based on the analysis of Sleziak et al. [39], we selected five 6-years long
periods (i.e., P1 = 1989–1994, P2 = 1995–2000, P3 = 2001–2006, P4 = 2007–2012 and P5 = 2013–2018).
The climatic and hydrologic characteristics of the selected periods are presented in Figure 2 and
Table 1. The characteristics show that warmer periods (1989–1994 and 2013–2018) are generally drier.
The largest difference in air temperature is observed between January and March. In the wettest period
P2 (1995–2000), winters are characterized by larger snowpacks and mean an annual maximum of snow
water equivalent is about 136 mm larger than in snow poor warmer periods. The largest differences in
the seasonal distribution of precipitation and runoff are observed between April and September where
the warmer periods tend to have less precipitation and runoff.
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Table 1. Mean annual and seasonal characteristics of precipitation (P), air temperature (T), runoff (Q)
and snow water equivalent (SWE) in the selected periods. Seasonal characteristics of P and T represent
the period from April to October, SWEmax is the mean of SWE maximum in each year.

Annual Characteristics Seasonal Characteristics

Period P (mm/year) T (◦C) Q (mm/year) P (mm/) T (◦C) SWEmax (mm)

1989–1994 1491 3.6 973 997 8.1 284
1995–2000 1669 2.8 1109 1095 7.8 420
2001–2006 1563 2.1 1023 1039 7.3 408
2007–2012 1570 2.9 1027 1026 7.9 416
2013–2018 1419 3.4 1093 1024 8.2 344

3. Methods

3.1. Hydrologic Model

The hydrological model used in this study is the TUW model [40]. It is a conceptual Hydrologiska
Byråns Vattenbalansavdelning (HBV) type model that uses daily precipitation totals, mean daily
air temperatures, and potential evapotranspiration as the inputs. Mean daily flows observed at the
outlet of the catchment and point measurements of snow water equivalent (Figure 1) are used for the
evaluation of model simulations.

The structure of the model involves three modules that simulate changes in snow, soil water and
groundwater storage. In total, the model has 15 parameters (Table 2). The snow module represents snow
accumulation and melting in a catchment. Snowmelt is simulated by the degree-day approach, using a
degree-day factor DDF (mm/◦C/d) and a melt air temperature parameter Tm (◦C). The catch deficit of
precipitation gauges during snowfall is corrected by a snow correction factor SCF (–). A threshold
temperature interval Tr − Ts (◦C) is used to discriminate between rainfall, snowfall and mix of rain and
snow [41]. The soil module simulates the processes taking place in the soil profile. It contains three
parameters: the field capacity FC (mm), the limit for potential evapotranspiration Lprat (-), and the
parameter relating runoff generation to the soil moisture state, termed the nonlinearity parameter
BETA (–). If BETA is large, direct runoff is small, and vice versa. Finally, the runoff module consists
of two reservoirs that represent hillslope routing. Rainfall enters the upper reservoir and leaves it
through three paths: (1) outflow from the reservoir based on a very fast storage coefficient k0 (days) if
a threshold of the storage state LSuz (mm) is exceeded in the upper reservoir; (2) outflow from the
upper reservoir with a fast storage coefficient k1 (days), and; (3) percolation to the lower reservoir
with a constant percolation rate Cperc (mm/day). Water leaves the lower zone based on a slow storage
coefficient k2 (days). Channel routing is simulated by a triangular weighting function, where Bmax
(days) is the maximum base at low flows, and Croute (day2/mm) is a free scaling parameter. A detailed
description of the model structure with particular model equations is given in Parajka et al. [41].

The model is automatically calibrated using a differential evolution algorithm Deoptim [42].
The objective function (OF) used in calibration is selected on the basis of prior analyses performed
in different calibration studies [34,39]. It consists of a combination of the Nash-Sutcliffe coefficient
(NSE, [43]) and the logarithmic Nash-Sutcliffe coefficient (logNSE, [22]):

OF =
1−NSE

2
+

1− log NSE
2

(1)

where NSE and logNSE criteria are mathematically expressed as follows:

NSE = 1−

n∑
i=1

(
Qsim,i −Qobs,i

)2

n∑
i=1

(
Qobs,i −Qobs

)2
(2)
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log NSE = 1−

n∑
i=1

(
log(Qsim,i) − log(Qobs,i)

)2

n∑
i=1

(
log(Qobs,i) − log(Qobs)

)2
(3)

Qsim,i and Qobs,i indicate the simulated and observed mean daily flows on day i, and Qobs is the average
of the flows observed. The NSE and logNSE coefficients range between −∞ (poor fit) and 1 (perfect fit
of the observed and simulated values).

Table 2. 15 TUW model parameters according to the routines and their calibration ranges. The calibration
ranges were taken from the literature [22].

Parameter Routine Unit Range

Snow correction factor (SCF) Snow 0.9–1.5
Degree-day factor (DDF) Snow mm/◦C day 0–5

Rain threshold temperature (Tr) Snow ◦C 1–3
Snow threshold temperature (Ts) Snow ◦C −3–1

Melt temperature (Tm) Snow ◦C −2–2
Limit for potential evapotranspiration (Lprat) Soil day 0–l

Maximum soil moisture storage (FC) Soil mm 0–600
Nonlinearity parameter (BETA) Soil 0–20
Very fast storage coefficient (k0) Runoff days 0–2

Fast storage coefficient (k1) Runoff days 2–30
Slow storage coefficient (k2) Runoff days 30–250

Upper storage coefficient (Lsuz) Runoff mm 1–100
Percolation rate (Cperc) Routing mm/day 0–8

Maximum base parameter (Bmax) Routing days 0–30
Free scaling parameter (Croute) Routing day2/mm 0–50

Model calibrations are additionally evaluated by the runoff volume error (VE) and the root mean
square error (RMSE) between measured and simulated snow water equivalents. VE is the measure
of bias between the simulated and observed runoff [22]. The VE value equal to 0 indicates no bias,
VE smaller than 0 represents an underestimation of the total runoff volume, and VE greater than
0 denotes overestimation of the total runoff volume. The equation is defined as:

VE =

n∑
i=1

Qsim,i −
n∑

i=1
Qobs,i

n∑
i=1

Qobs,i

(4)

The root mean square error (RMSE) between simulated and observed daily SWE values is
calculated as:

RMSE =

√√
n∑

i=1

(SWEsim,i − SWEobs,i)
2

n
(5)

SWEsim,i and SWEobs,i are simulated and observed SWE values on day i, respectively, n is the number of
observations. Smaller RMSE values indicate better agreement between the observed and simulated SWE.

Model performance is evaluated by the differential split-sample test [44], where the model
calibrated in one of the six years long periods is validated in the remaining (four) periods.

3.2. Analysis of Uncertainty Resulting from a Different Number of Calibration Repetitions

The model is calibrated automatically 500 times in each time period. The effect of different
numbers of calibration repetitions on model performance and parameter uncertainty is examined for
five groups of calibration repetitions, i.e., first 10, 50, 100, 300, and finally, all 500 repetitions.
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Our experiment looks at the repetitions of the calibrations of a hydrologic model, where the
calibration strategy is identical (no difference in the number of calibration runs). The only difference is
that the optimisation approach is based on a random generation of the initial population of model
parameters, which can have some impact on the final result (i.e., calibrated parameter set). We have
thus run the entire calibration strategy 500 times and investigated the impact on different model
efficiencies (objective function, its parts and efficiencies not used in objective function).

4. Results

4.1. Uncertainty of Hydrologic Model Performance in Varying Climatic Conditions

Figure 3 shows the variability in the medians and ranges of the objective function (OF),
the logarithmic Nash-Sutcliffe efficiency (logNSE), the Nash-Sutcliffe efficiency (NSE), volume error
(VE) and the root mean square error (RMSE) for a different number of calibration repetitions (i.e., 10,
50, 100, 300 and 500 repetitions) in five specific calibration periods. The results show that the median
difference between the groups of calibration repetitions was very small even for snow RMSE, which was
not used in model calibration. The variability in the range of model efficiency was, however, larger.
The differences among the groups were larger for VE and RMSE. It indicates that an increasing number
of calibration repetitions increased also the variability of model simulations. Hence, the spread of
the efficiency criteria increased as well, particularly of those criteria that were not included in model
calibration (runoff VE and snow RMSE). Interestingly, the absolute value of the VE and RMSE ranges
differed, but the difference between 10 and 500 calibration repetitions did not vary among the climate
periods. While larger VE range was observed in drier periods, the largest snow RMSE range for most
of the calibration groups was found in the recent period (2013–2018) that had many snow poor winters
with shallower snowpacks and on average smaller SWE maximum (Table 1). Generally, the lowest
model performance was obtained in the period 1989–1994, which was the warmest and comparatively
dry. The largest efficiency in terms of the objective function, NSE and snow RMSE was obtained in the
most recent period 2013–2018, which was second warmest and driest with second smallest average
SWEmax. The volume error of model simulations in that period, however, indicated more than 10%
underestimation of runoff volumes.

Figures 4 and 5 show the variability in the median (Figure 4) and ranges (Figure 5) of model
efficiencies in four specific validation periods, i.e., parameters obtained in each calibration period were
validated in the remaining four validation periods. Similarly, as for the calibration model efficiency,
the medians in most cases did not change with the number of calibration repetitions. The exception
was obtained for the validation efficiency in the coldest period when the model was calibrated in
the warmest period (the first column of panels in Figure 4). Medians of runoff objective function
and logNSE efficiency for 10 calibration repetitions were greater than the median for groups with a
higher number of calibration repetitions. The same pattern was reflected also in the range of the model
efficiencies (Figure 5). The variability in model efficiency was the lowest for 10 calibration repetitions
and it was increasing with the number of calibration repetitions. The variability was larger for the
efficiency criteria that were not used in model calibration (VE and snow RMSE). Larger ranges in the
efficiency criteria during model validation were found when the model was validated in colder time
periods (i.e., 1995–2000 and 2001–2006). For snow simulations, the calibration in the snow poorer
period (2013–2018) lead to greater variability of RMSE if the model was validated in periods with
larger snowpacks (1995–2000).
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4.2. Uncertainty in Hydrologic Model Parameters in Varying Climatic Conditions

The differences in the median of model parameters and their variability are plotted in Figures 6
and 7. The panels show parameters of the main model modules, i.e., the snow, soil moisture, runoff

generation and runoff routine modules. The results indicate that the median of model parameters
varied among the time periods but generally did not change much among the calibration groups.
Increasing the number of calibration repetitions did not result in changes in the median values for most
model parameters. The exceptions include routing module parameters that were generally less sensitive
to selected model efficiencies; the snow degree-day parameter calibrated in the coldest time period
and the limit for potential evapotranspiration Lprat and very fast storage parameter k0 calibrated in
the warmest time period (P1). Medians of these parameters for the calibration group of 10 repetitions
were noticeably different than the median obtained from greater numbers of calibration repetitions.
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Significantly larger differences among calibration groups were found for the ranges of model
parameters (Figure 7) that were increasing with the number of calibration repetitions. Such a pattern
was consistent over all calibration periods. There were also large differences between ranges in
model parameters calibrated in different time periods. While the difference in ranges of snow
module parameters was the smallest for the snow correction factor (SCF), the less sensitive threshold
temperatures (Tr, Ts, Tm) have the largest variability among the calibration groups. The largest
differences among the calibration groups for degree-day factor (DDF) were found in the warmest
period P1 (1989–1994). Soil moisture and runoff generation parameters had the largest differences
in the wettest period P2 (1995–2000), where the ranges obtained for 10 calibration repetitions were
significantly smaller than those obtained for a greater number of calibration repetitions.Water 2020, 12, x 11 of 19 
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4.3. Simulation of Runoff and Snow Water Equivalent in Varying Climatic Conditions

In order to demonstrate the implications of increasing variability in model parameters caused
by the increasing number of calibration repetitions, Figure 8 compares ranges of model simulations
obtained by 10 and 500 simulations with observed runoff values. Runoff is simulated in a colder/wetter
validation period (2001–2006) with model parameters obtained in a warmer/drier calibration period
(1989–1994). Better simulations are indicated by smaller variability between min. and max (i.e., the lines
are closer to each other).Water 2020, 12, x 14 of 19 
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Figure 8. Comparison of measured and simulated runoff after 10 (a) and 500 simulations (b). Runoff

is simulated in a colder/wetter validation period (2001–2006) with model parameters obtained in
a warmer/drier calibration period (1989–1994). The yellow colour indicates the range between the
minimum (blue line) and maximum (red line) simulated runoff obtained by 10 and 500 repetitions.

For a detailed illustration of the results, one hydrological year (1, November 2000 to 1, October
2001) is plotted (Figure 8). Figure 8 shows that the model reproduced runoff variability. Slightly more
realistic simulations of runoff volume, mainly during summer months, were obtained using a smaller
number of simulations (i.e., with 10 repetitions of model simulations). Greater differences between
simulated and measured runoff were related to the main snowmelt period (April, May).
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Figure 9 presents measured and simulated snow water equivalent (SWE) after 10 and
500 simulations. While measured data are represented by point (snow course) measurements
of SWE at site Červenec (catchment mean elevation 1500 m a.s.l.), the simulations represent catchment
SWE. The simulations were based on model parameters obtained in the snow poorer calibration period
(1989–1994). We plotted one hydrological year (1, November 2000 to 1, October 2001) in the snow
richer validation period (2001–2006). The range of simulated SWE based on 10 simulations was slightly
smaller than that based on 500 simulations. In some cases (e.g., 15 February 2001 to 9 March 2001) the
simulated catchment mean SWE was smaller than SWE measured at catchment mean altitude. Such a
result could be realistic if the SWE significantly increases with the altitude.Water 2020, 12, x 15 of 19 
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Figure 9. Measured snow water equivalent (SWE) at catchment mean elevation (points) and simulated
catchment SWE after 10 (top panel) (a) and 500 repetitions (b). SWE is simulated in a snow richer
validation period (2001–2006) with model parameters obtained in the snow poorer calibration period
(1989–1994). The blue and red colours indicate min. and max. SWE values obtained by 10 and
500 simulations, respectively.
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5. Discussion

This study evaluates the impact of a different number of calibration repetitions on model
performance and parameter uncertainty in varying climate periods observed in a small pristine
mountain catchment. Previous studies showed that an increasing number of calibration runs can be the
way to the more robust calibration of conceptual hydrologic models. For example, Finger et al. [9] used
the Monte Carlo (MC) approach and found that 100 ensemble parameter sets (out of 10,000 MC runs) are
sufficient to obtain an adequate model performance and parameter variability. A similar conclusion is
presented in Finger et al. [10] and Konz and Seibert [8] for alpine catchments in Austria and Switzerland.
Another example is the results of one experiment of Ceola et al. [36] who compared model performance
and uncertainty for 10 and 100 calibration runs. They found some differences in the calibrated model
parameters which have been interpreted as a result of parameter insensitivity, equifinality and the
problem of model structure to capture the complex runoff generation processes in some catchments.
Our results indicate that 10 calibration repetitions resulted in the same model performance, but a
smaller range of model parameters and model efficiency and hence model uncertainty compared to
a larger number of calibration repetitions. The variability in model performance tends to increase
with the increasing number of calibration repetitions, particularly for validation periods and efficiency
measures which were not used in model calibration, i.e., in our case runoff volume error and snow
modelling error.

Our study extends previous assessments in terms of investigating whether varying climate
conditions have an additional impact on the performance of a hydrological model and uncertainty
of results evaluated on the basis of a different number of calibration repetitions. Previous studies
clearly reported that the performance of conceptual hydrologic models tends to degrade when climatic
conditions of model simulations are different from those used for model calibration. For example,
Merz et al. [22] showed that the model calibrated in a colder decade had a tendency to overestimate the
runoff in a warmer decade and vice versa. Similarly, Coron et al. [23] showed that model calibration
in wetter conditions leads to runoff overestimation in drier periods. These results were attributed to
the impact of increasing air temperature on the main runoff generation mechanisms, particularly to
increasing nonlinearity in runoff response in warmer and drier climate conditions. We found that
although the absolute value of model efficiency and parameter ranges varies between the different
climate periods, the difference in model performance and parameter variability between 10 and
500 calibration repetitions is generally consistent among all tested periods. The exceptions are larger
differences in soil and runoff generation model parameters which are calibrated in the wettest time
period. Here the increasing number of calibration repetitions increased the variability in model
parameter ranges. For snow model parameters, we found similar results as presented in Merz et al. [22]
and Sleziak et al. [34]. Model parameters calibrated in warmer periods resulted in greater differences
among the different calibration groups, which could be attributed to the impact of increasing air
temperatures on the variability of snowmelt.

6. Conclusions

We explored some uncertainties associated with the calibration of a lumped hydrological model in a
small mountain research catchment. The results showed that a relatively small number of 10 calibration
repetitions in model parameters optimisation can provide robust model simulations with smaller
parameter uncertainty than obtained by a larger number of calibration repetitions. Model performance
based on ten calibration repetitions was particularly better when model parameters were optimised in
colder/wetter climate conditions.

To use these findings in practice (e.g., when dealing with various water management tasks),
it should be noted that the selection of the optimal set of parameters also depends on the type of the
task to be addressed (e.g., some sets of parameters may better describe periods of low flow while other
can better represent high flows). The results are also dependent on the model used.
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More analysis needs to be done in the future to verify these results. In our next effort,
we plan to investigate modelling uncertainties in the context of climate change by using distributed
hydrological models.
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