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Abstract: Although unmanned aerial vehicles (UAVs) have been utilized in many aspects of steppe
management, they have not been commonly used to monitor the soil moisture of steppes. To explore
the technology of detecting soil moisture by UAV in a typical steppe, we conducted a watered test in
the Loess Plateau of China, quantitatively revealing the relationship between the surface soil moisture
and the visible images captured using an UAV. The results showed that the surface soil moisture was
significantly correlated with the brightness of UAV visible images, and the surface soil moisture could
be estimated based on the brightness of the visible images of the UAV combined with vegetation
coverage. This study addresses the problem of soil moisture measurement in flat regions of arid and
semi-arid steppes at the mesoscale, and contributes to the popularization of the use of UAVs in steppe
ecological research.
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1. Introduction

As the ecological defense of the earth, steppes expand the human land-use range [1]. Precipitation,
temperature, and the relationship between them are the key determinants of the distribution,
structure, and function of steppes globally [2]. The soil water of steppes mainly depends on precipitation
at a large spatial scale and is affected both by human activities, including the grazing of livestock,
irrigation, hay cutting, the improvement and cultivation of steppes, and precipitation at a regional or
small spatial scale [3–5]. Grazing is one of the most important ways of steppe utilization, which has a
certain effect on the soil moisture of steppes through a series of livestock disturbances [6]. In the short
term, the intaking and trampling of livestock reduces vegetation coverage; increases the solar transmission
area; makes the surface soil warm; and increases the evaporation of soil water, which further affects the
growth of vegetation, including improving plant regrowth. The high-intensity tramping of livestock
causes physical damage to the vegetation and soil; increases the compactness of soil; and decreases
the permeability of air, which further prevents the infiltration of water from the surface to deep layers,
and reduces the water and nutrient uptake by vegetation roots. The excessive excretion of livestock also
affects the chemical elements of soil, such as organic carbon. Furthermore, the change in the soil chemical
properties affects the distribution of soil water and vegetation [7]. Because of the key role of soil water in
sustainable grassland management, a large number of methods have been developed to measure soil
moisture, such as the conventional oven-dry method, time-efficient instrumental methods such as TDR
(time domain reflectometry) [8,9], and modern remote sensing technology [10].
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Remote sensing technology using unmanned aerial vehicles (UAVs) is a low-altitude remote sensing
technique developed in recent years, with advantages such as high flexibility, high efficiency, and high
resolution [11,12]. In addition, due to the ability of UAVs to fly under clouds, UAVs are being increasingly
applied in steppe research [13]. The use of highly accurate aerial images to monitor vegetation coverage,
biomass, soil patches, rat holes, the species diversity of vegetation, and livestock grazing is becoming a
popular approach in the application of low-altitude remote sensing to ecology and biodiversity [14–21].
The UAV monitoring platform and decision tree algorithm could be used to construct an automatic tool to
quickly, accurately, and automatically determine vegetation types at the landscape scale [22]. A model for
estimating the FVC (Fractional Vegetation Cover) in the Gannan steppe based on large quadrat data obtained
by a small UAV and an enhanced vegetation index had a high accuracy (R2 = 0.88) [23]. UAV aerial images
and a maximum entropy–genetic algorithm was used to estimate the vegetation coverage and biomass
in the middle of the Hulunbuir steppe in Inner Mongolia and achieved good results [24]. The relative
grazing intensity of a household pasture was evaluated by tracking and photographing the herd activity
area by UAV [25]. UAV remote sensing was applied to the rapid, accurate, and efficient monitoring of the
number of rat holes, which could greatly reduce the cost of manual monitoring and effectively monitor the
occurrence of rat damage [26]. The images obtained from the specific UAV aerial photography patterns
were used to generate point clouds so as to establish a canopy height model, which could be used to
estimate the height of grassland vegetation [27]. The methods of remote sensing technology estimating the
soil moisture in steppes include visible light–near infrared spectral reflection (e.g., the use of reflectivity and
the Normalized Differential Vegetation Index (NDVI)) [28], thermal infrared spectral reflection (e.g., the use
of thermal inertia and the Crop Water Stress Index (CWSI)) [29,30], fusion methods of visible light–near
infrared and thermal spectral reflection (e.g., the use of the Temperature Vegetation Drought Index (TVDI)
and Vegetation Water Supply Index (VSWI)) [31], and microwave remote sensing [32]. The images used
in the above methods can be obtained by satellite, UAV, and thermal infrared instruments; however,
the studies of using visible image to estimate soil moisture in steppes were rare. Putra et al. showed that
the intensity index, the TGI index, and the ExGreen index of aerial visible images (red, green, and blue
bands) could be carried out to determine trends of soil moisture in agricultural land, where the TGI
index has a higher coefficient of determination [33]. Zanett et al. used RGB images and artificial neural
networks to estimate soil moisture [34]. Dos Santos et al. established different linear models using
RGB, HSV (Hue, Saturation, Value), and the digital number of a panchromatic image in each type of
soil [35]. However, most of these studies were controlled experiments and conducted without vegetation
interference. In this study, the purpose is to estimate the soil moisture in steppes using aerial visible images
under natural conditions. Previous studies have noted that the topsoil reflectivity was closely related
to the soil moisture [36]. Liu et al. established an empirical model of soil moisture using the data of
measured soil moisture and topsoil reflection [37]. Kolassa et al. identified that the synergy between the
brightness temperature data of AMSR-E (a microwave radiometer on satellite) and the backscatter data of
ASCAT (a microwave scatterometer on satellite) could effectively improve the quality of estimation of soil
moisture [38]. Zhu et al. indicated that diffuse reflectance spectroscopy was a great way to estimate surface
soil moisture by utilizing the topsoil reflectivity to quantify the soil moisture [39].

In the steppe ecosystem, precipitation has a direct effect on the surface soil water; soil water is the
main factor affecting the formation and evolution of vegetation patterns [40,41], and the conditions
of soil and vegetation under fluctuating precipitation could be reflected by aerial visible images
(Figure 1). The measurement of the soil moisture of steppes is a routine investigation of the steppe
ecosystem; it is an important way to extract the surface parameterization of steppes and assess changes
in climate. In this study, we assume that the characteristic factor of UAV visible images could estimate
the surface soil moisture such as topsoil reflectivity. We would obtain UAV visible images with different
gradients of soil moisture in a typical steppe; seek the characteristic factor by digital image processing;
further establish estimation models of surface soil moisture by considering the characteristic factor,
soil moisture, vegetation, and other factors; and finally verify the estimation models using the data of
grazing land.
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Figure 1. Schematic diagram of research.

2. Materials and Methods

2.1. Study Site

The study site is located in the Huanxian Grassland Agriculture Trial Station of Lanzhou
University, Tianshui Township, Huanxian County, Gansu province, China (37◦3′ N, 109◦38′ E,
a.s.l. 1650 m). The climate is cataloged as a Temperate Continental Monsoon Climate. The annual
mean temperature is 7.5 ◦C, and the annual mean precipitation is about 350 mm, over 70% of which
takes place between late June and September. The annual mean evaporation potential is about
1675 mm, and the annual mean sunshine duration is 2596.1 h [42]. The study site is classified as
a typical steppe in terms of the Grassland Comprehensive Order Classification [43]. The plant
growth period is from late March to early September. The dominant species include Stipa bungeana,
Artemisia capillaris, and Lespedeza bicolor. The type of agricultural system is characterized by the
integrated crop/grassland-livestock production system [44].

2.2. Study Design

Since 2001, a long-term grazing experiment has been performed with free grazing and rotational
grazing [45]. In the free grazing sites, we conducted the watered test in 2019 to explore the estimation
of soil moisture by UAV. Meanwhile, in the rotational grazing sites, we set 48 fixed quadrats to verify
the practicability of the estimation.

The reasons for the watered test in the study site were: (1) this area was located at the convergence
zone of the Loess Plateau and the Maowusu Desert, and the average annual evaporation is about
6 times the precipitation; (2) the soil surface is covered with a lot of loess with a loose texture, and it is
easy for the surface water to infiltrate to deep layers; (3) the vegetation over the ground is relatively
low and sparse, and there is an obvious distribution of bare land [45,46]. Due to the above reasons,
the stable value of the 0–10 cm soil moisture in this area is generally below 5%, with limited variances.
Therefore, in order to obtain different gradients of soil moisture, it is necessary to simulate precipitation.

2.3. Sample Setting and Measurement of Soil Moisture

The rotational grazing sites have been used from early June to mid-September every year, and the
grazing period was from 8:30 to 18:30 every day, 10 days per month. There are four stocking rates with
three replicates for each, and each paddock is 50 m × 100 m [45]. Twenty-five local Tan sheep were
used for grazing experiment. The stocking rates were calculated by the following formula:

SR =
LN
PA

. (1)

In the formula, SR is the stocking rate, LN is the livestock number of each stocking rate, and PA
is the total paddock area of each stocking rate. The stocking rate of the rotational grazing land was
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0 (no grazing), 2.67, 5.33, and 8.67 sheep/ha, respectively. Outside the rotational grazing sites are the
free grazing sites.

Ten 2 m × 2 m quadrats were set up in the free grazing sites with flat terrain and representative,
consistent vegetation, of which five were watered and the remaining five were used as controls.
The watered quadrats were fixed, while the comparative quadrats were not fixed and treated.
Three repeating watered tests were conducted in early June, early July, and early August during
the vegetation growth period. For the watered quadrats, a waterproof plastic sheet was inserted
vertically to underground (0–50 cm) around the quadrats to isolate them from the surrounding soil,
and meanwhile we used PVC board with a height of 5 cm (above the ground) to isolate the watered
quadrats from the surrounding ground to prevent the inflow of surface water. In the case of rain
during the experiment, a 3 m × 3 m transparent waterproof plastic sheet was used keep out the rain,
and the sheet was removed after the rain. In each watered test, water was poured at the same speed to
the surface of the quadrat with a sprinkling pot by hand. The standard watering amount was for a
saturated soil moisture of 0–10 cm, where the saturated soil moisture refers to the maximum water
content of the soil [36]. In each test, the watering amount was measured as 500–550 mL per quadrat,
with a saturated soil moisture at 0–10 cm of 25–30%. The test period was from the day of watering to
the day when the 0–10 cm soil moisture was less than 5%, because the stability value of 0–10 cm soil
moisture was usually less than 5% in the study site. During the period of each watered test, the soil
moisture of the 0–10 cm layer was measured by a measuring instrument (TZS-ECW-G) every noon,
and each quadrat was measured four times, then we calculated the average value. The TZS-ECW-G
(Zhejiang Top Instrument Co., Ltd., Hangzhou, China) measures the volumetric soil moisture with
a resolution of 1%; the range of measurement is 0–100%, the response time is 2 s, and the relative
percentage error is less than 3%. When we use it to collect the value of soil moisture, its water sensor
needs to be inserted into the soil firstly.

In the rotational grazing land, four 2 m × 2 m quadrats were set up in each paddock. A total of
48 2 m × 2 m quadrats were taken as the verification quadrats. The soil moisture of the verification
quadrats was measured when the 0–10 cm soil moisture was stable and after rainfall, respectively.
The measurement method was the same as that above—that is, the soil moisture of 0–10 cm was
measured by TZS-ECW-G every day at the local noon, and each quadrat was measured four times,
then we calculated the average value.

2.4. Processing of UAV Visible Images

Because the UAV visible images were RGB images composed of soil and vegetation,
the concept of the “average pixel brightness value” (cd/m2) (hereinafter, referred to as “brightness”)
was introduced. The value was the pixel value of the RGB image defined by a computer,
which reflected the brightness difference of the RGB images. It was calculated from the formula:
Y (brightness) = 0.299 × R + 0.587 × G + 0.114 × B, where R, G, and B represent the value in the red,
green, and blue channels of the RGB image, respectively [47]. The brightness of an object had two
determining factors, which were the intensity of the light received by the object and the object’s ability
to reflect the light. Water was an important factor affecting the reflection ability of vegetation and soil
to light. The typical steppe was a representative area with sparse vegetation and an exposed surface;
therefore, the brightness was considered as the research index of UAV visible images.

The precautions in the acquisition phase of the UAV visible images were as follows: (1) the
brightness of the UAV visible images was affected by the light intensity, flight speed of the UAV,
and the visible camera parameters (model, lens angle, ISO, aperture, and shutter speed). Among these
influencing factors, the flight speed of the UAV and visible camera parameters (model, lens angle, ISO,
aperture, and shutter speed) were controllable, so appropriate UAV parameters were set and no change
was made during the whole test. As an uncontrollable influence factor, the light intensity was affected
by the solar altitude angle and the atmospheric transparency. In order to unify the solar altitude angle,
the UAV visible images were captured from 12:00 to 13:00 (local noon time). The errors caused by the
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atmospheric transparency would be corrected in the later period. (2) to match the soil moisture in
time and space, the UAV visible images were taken synchronously with the measurement of the soil
moisture of the 0–10, 10–20, and 20–30 cm layers. In the case of rainy weather at noon, the taking of the
UAV visible images would be postponed accordingly.

In the free grazing sites, a DJI Phantom 3 Professional (DJI-Innovations, Shenzhen, China) was
used daily to take visible images for the watered and comparative quadrats. The DJI Phantom 3 Pro is
equipped with a 4 K camera lens, which can take 12-megapixel static photos. The camera parameters
of the DJI Phantom 3 Pro were set as shown in Table 1. The camera parameters were not changed
in the watered test. Every UAV visible image must cover 2 m × 2 m quadrat area containing all the
information, therefore we set the coverage area be 3 m × 3 m, and then calculated that the height was
1.4 m according to the lens angel of the camera and the coverage area (Figure 2). Combining the above
aspects, the UAV flight mode was a speed of 3 m/s, a height of 1.4 m, vertical shooting on every point,
and a coverage area of 3 m × 3 m for each image. In the rotational grazing land, we used the same
flight mode by the DJI Phantom 3 Pro to take visible images for verification quadrats.

Table 1. The camera parameters of the DJI Phantom3 Professional.

Parameter Value Parameter Value

image sensor 1-inch CMOS aperture f/2.8
lens angel FOV 94◦ 20 mm ISO 200
photo size 4864 × 3648 pixels shutter speed 1/320 s

Figure 2. Schematic diagram of the flight height.

In order to correct each individual image of the test, the “Mosaic” flight mode was also used to
acquire overlapping aerial photographs and generate a georeferenced orthomosaic of the study area
(Figure 3) based on FragMAP [48]. Briefly, corners 1–4 of the study area were set manually on an iPad
(carrier of FragMAP, Huawei M5, Shenzhen, China), then way points were automatically determined
based on the specified fly height, speed, and interval of the shoot and overlap rate (height was set at
20 m in this study, and resolution was <1 cm). During each flight, the UAV took photographs at intervals
of 3 s automatically. We generated a georeferenced orthomosaic of the study area with Pix4Dmapper
(Pix4D S.A., Lausanne, Switzerland) (Figure 3). Aerial photographs of the quadrat were trimmed to the
minimal size required to cover the study area and control points. They were ortho-rectified according
to the georeferenced orthomosaic, using at least 10 reference points in ArcGIS (10.2.2). To find enough
control points, any fixed object was regarded as a control point—e.g., a grasscluster, a big stone, etc. [49].
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Figure 3. Georeferenced orthomosaic of the study area.

2.5. Control of Influencing Factors and Correction of Errors

As a research index of UAV visible images, the brightness depends on dual changes in the
vegetation and soil, and is affected by a series of influencing factors. Among these factors, controllable
factors have been controlled in the acquisition phase of UAV visible images. The uncontrollable factor
is the light intensity, and the atmospheric transparency is the main factor affecting the light intensity.
The reason is that visible light-electromagnetic radiation is transmitted in the sun-surface-sensor
(UAV) route, and the transmission process is affected by the absorption and scattering of atmospheric
molecules, water vapor, aerosol, and other atmospheric components. The visible light-electromagnetic
radiation finally accepted by UAV not only includes the surface reflection information, but also records
the interference of the atmosphere in the surface reflection information [50].

To correct the error caused by atmospheric transparency among different test dates, the UAV
visible images were taken on sunny dates with less than 10% cloud cover according to meteorological
information and actual observation. On this basis, we had selected a comparative quadrat as a standard
quadrat. As an only uncontrollable influence factor, the change in the brightness of the standard
quadrat with the change in the atmospheric transparency was fixed, therefore we increased or decreased
the brightness of the watered quadrats and comparative quadrats according to the standard quadrat.

2.6. Data Analysis

SPSS 20.0 was used to conduct the statistical analysis—i.e., a goodness-of-fit test (Shapiro–Wilk
test, univariate procedure) was used to test the normality of the data. A Poisson correlation analysis
was applied to test the correlation among the soil moisture, brightness, and vegetation coverage.
The coefficient of determination (R2) and its p values were used to evaluate the regression between the
soil moisture and brightness and the vegetation coverage. A one-way ANOVA was applied to analyze
the soil moisture among stocking rates. The vegetation coverage was extracted using ImageJ. ImageJ
was also used to draw histograms, grayscale images, and 3D Surface Plots of the UAV visible images.

2.6.1. Data Analysis of Brightness

An UAV visible image containing regions with different 0–10 cm soil moistures; the 0–10 cm soil
moisture was 22.1%, 14.1%, and 4.6% from the left to right in June (Figure 4a). The ImageJ software
was used to output the brightness value of the UAV visible images.

(a) The UAV visible image was cropped into three parts according to the different soil moistures
(Figure 4b), then we put them into ImageJ for processing. Firstly, the visible images were
converted to 8-bit grayscale images. A grayscale image has 256 levels of brightness, where 0
represents the darkest and 255 represents the brightest. To significantly layer the brightness of
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the grayscale images, a spectral filter was added to the grayscale images, and thereby we divided
the 256 levels of brightness into seven colors roughly. The definition from dark to bright was red,
orange, yellow, green, cyan, blue, and purple. The brightness gradually increased from left to
right (Figure 4b). The brightness of the vegetation is lower than that of the soil, and the lower the
0–10 cm soil moisture was, the more obvious the brightness contrast was.

(b) To intuitively compare the differences in brightness, 3D Surface Plot was used to convert the
brightness into height information, transforming the concept of dark to bright into deep to
shallow (Figure 4c).

(c) Finally, the histograms were output. In these histograms, “Mean” refers to the brightness that
we talked about. According to Figure 4d, 22.1%, 14.1%, and 4.6% of the 0–10 cm soil moisture
corresponded to brightnesses of 100.57, 117.05, and 130.628 cd/m2, respectively. The differences
in soil moisture at 0–10 cm were reflected in the brightness of the UAV visible images.

Figure 4. Processing of aerial visible images; (a) UAV visible image, (b) Eight-bit grayscale images with
spectral filter, (c) 3D surface plot, (d) Histogram.
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2.6.2. Data Analysis of Vegetation Coverage

ImageJ could divide an UAV visible image into vegetation coverage and soil coverage on the
basis of the appropriate HSB (hue, saturation, and brightness) settings. The extraction process is as
follows: (a) open the image in ImageJ, then click the option of threshold color, and adjust the HSB
to the optimal values to select the vegetation coverage portion. In this study, the HSB setting was as
shown in Figure 5. (b) Click the mask function to adjust the vegetation coverage portion. (c) Preserve
the final selected portion and output the result of the vegetation coverage area.

Figure 5. The HSB (hue, saturation, and brightness) setting of obtaining vegetation coverage. (a) Original
UAV visible image; (b) final selected portion; (c) result of the vegetation coverage area.

2.7. Data Analysis of Verification Quadrats

In order to verify the practicability of the estimation models of the 0–10 cm soil moisture, we had
analyzed the fitting effect of the measured value and the estimated value using verification quadrats.
The absolute values of the total relative error (RS) and average relative error (RMA) were used for the
verification. In general, when the absolute value of RS was less than 20% and the absolute value of RMA
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was less than 20%, the estimation model would meet the requirement of practicability. The formulas
are as follows:

RS =

∑N
i=1 Yi−

∑N
i=1 yi∑N

i=1 yi

× 100%, (2)

RMA =
1
N

 N∑
i=1

∣∣∣Yi− yi
∣∣∣∣∣∣yi

∣∣∣
× 100%, (3)

where Y represents the measured value, y represents the estimated value, and N represents the number
of verification quadrats.

3. Results

3.1. Estimation of 0–10 cm Soil Moisture by UAV

The 3D surface plots of the UAV visible images of the watered quadrats were generated.
The purpose was to compare the early stage and the late stage of watering. The watered quadrats
were darker in the early stage and brighter in the later stage in early June, early July, and early
August (Figure 6).

Figure 6. Cont.
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Figure 6. 3D surface plot of the visible images of watered quadrats.

The timeline chart of the 0–10 cm soil moisture and the brightness of watered quadrats was
established to analyze the specific process of the change of brightness (Figure 7). The 0–10 cm soil
moisture decreased gradually with the observation day, and the brightness of the UAV visible images
increased gradually with the observation date. It took 7, 6, and 5 days for the 0–10 cm soil moisture to
reach stable values of 2.73%, 3.41%, and 4.17% in June, July, and August, respectively. According to the
local meteorological station, the temperature was highest in early August, indicating that the 0–10 cm
soil moisture was greatly affected by temperature. The maximum value of brightness appeared in June,
and the minimum value of brightness appeared in August; the reason for this was that vegetation
coverage had an impact on the brightness value. Then, we extracted the vegetation coverage of each
UAV visible image.

Figure 7. Cont.
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There was a significant relationship between the 0–10 cm soil moisture and the brightness, this is
because generally the required value of correlation index is large than 0.3, in this study, the correlation
indexes were large than 0.3 in different situations (Table 2). In addition, there was a significant
relationship among the 0–10 cm soil moisture, the brightness and the vegetation coverage when the
0–10 cm soil moisture was stable (Table 2). Therefore, the estimation of the 0–10 cm soil moisture was
divided into two situations: (1) the 0–10 cm soil moisture was stable; (2) the 0–10 cm soil moisture
was larger than the stable value. A correlation analysis was conducted on the factors of the estimation
of the 0–10 cm soil moisture (Table 2). When the 0–10 cm soil moisture was larger than the stable
value, the 0–10 cm soil moisture had a significant negative correlation with the brightness (p < 0.001).
When the 0–10 cm soil moisture was stable, the 0–10 cm soil moisture had a significant negative
correlation with the brightness (p < 0.001) and a significant positive correlation with the vegetation
coverage (p < 0.001).

Table 2. Correlation analysis of factors affecting the soil moisture estimation.

Index 0–10 cm Soil Moisture Brightness Vegetation Coverage

0–10 cm soil moisture - −0.6 *** 0.434 ***

Brightness −0.787 *** - 0.232 *

Vegetation coverage −0.024 0.092 -

Note: The lower left part is the analysis when the 0–10 cm soil moisture was larger than the stable value, and the
upper right part is the analysis when the 0–10 cm soil moisture is stable. *, **, and *** mean significant at the levels
of 0.05, 0.01, and 0.001, respectively.

The 198 visible images were taken by UAV to quantitatively analyze the effect of the 0–10 cm soil
moisture and vegetation coverage on brightness, and established the estimation models of the 0–10 cm
soil moisture using linear regression and multiple regression methods. When the 0–10 cm soil moisture
was larger than the stable value, the determination coefficient of predicting the 0–10 cm soil moisture
based on the brightness was significant at the 0.001 level, indicating that the 0–10 cm soil moisture
could be predicted by a linear regression model between the 0–10 cm soil moisture and brightness.
When the 0–10 cm soil moisture was stable, the determination coefficient for predicting the 0–10 cm soil
moisture based on the brightness and vegetation coverage was significant at the 0.001 level, indicating
that the 0–10 cm soil moisture could be predicted by a multiple regression model of the 0–10 cm soil
moisture, brightness, and vegetation coverage (Table 3).
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Table 3. Estimation models of the 0–10 cm soil moisture.

Application Condition Prediction Model R2 Sig

0–10 cm soil moisture > stable value Y = 70.52 − 0.47X1 0.77 <0.001

0–10 cm soil moisture = stable value Y = 23.39 − 0.2X1 + 0.07X2 0.86 <0.001

Note: “Y” represents the 0–10 cm soil moisture; “X1” represents the brightness; “X2” represents the
vegetation coverage.

3.2. Practical Verification of Estimation Models of 0–10 cm Soil Moisture

In the rotational grazing sites, the livestock intake reduced the coverage of edible vegetation,
made the ground temperature rise, and increased the evaporation of soil water. On the other hand,
sheep trampling increased the compactness of soil and then reduced the infiltration of soil water.
When the 0–10 cm soil moisture was at a stable value, the 0–10 soil moisture was significantly different
among these plots with four stocking rates (Table 4). As a whole, the 0–10 cm soil moisture in
the 0 and 2.67 sheep/ha plots was significantly higher than that in the 5.33 and 8.67 sheep/ha plots
(p < 0.05), and there was no significant difference between the 0 and 2.67 sheep/ha plots. Therefore,
the 96 verification quadrats in the rotational grazing sites could verify the estimation model. When the
0–10 cm soil moisture was larger than the stable value, the soil moisture after rainfall could be used
as a verification quadrat. The comparison of the 0–10 cm soil moisture between the measured value
and the estimated value, where the determination coefficient and the values of RS and RMA met the
verification requirements, indicated the estimation models of the 0–10 cm soil moisture had a certain
practicality (Figure 8).

Table 4. Soil moisture (0–10 cm) under four stocking rates.

0 Sheep/Ha 2.67 Sheep/Ha 5.33 Sheep/Ha 8.67 Sheep/Ha

June 5.66 ± 0.08 a 5.41 ± 0.13 a 4.23 ± 0.1 b 3.7 ± 0.4 c
July 6.68 ± 0.63 a 5.81 ± 0.42 a 4.64 ± 0.4 b 4.52 ± 0.48 b

August 6.29 ± 1.01 a 5.45 ± 0.23 a 3.74 ± 0.92 b 3.08 ± 0.14 b

Note: Different lowercase letters (i.e., a, b, and c) indicate significant differences in the soil moisture (0–10 cm) under
different stocking rates in each month at the level of p < 0.05 (based on a statistical analysis of a one-way ANOVA).

Figure 8. The comparison of the 0–10 cm soil moisture between the measured value and the
estimated value.

4. Discussion

In the field of processing satellite remote sensing images, Digital Number (DN) refers to the pixel
brightness value of images, and each pixel in the image had its corresponding DN. The appearance
reflectivity, surface reflectivity, and surface albedo are all obtained from the DN in images. In the field
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of processing UAV visible images, the “average pixel brightness value” is defined by a computer to
reflect the brightness of images; it is generally used for the adjustment of image color and correction
of photographic exposures. Surface reflectivity was usually well correlated with soil moisture [51].
Surface reflectivity refers to the ratio between the surface reflection of solar radiation and the total
solar radiation. Each band had a corresponding surface reflectivity [52]. Generally, the reflectivity of a
rough surface was smaller than that of a smooth surface [53], the reflectivity of a land surface was
smaller than that of a snow surface [54], and the reflectivity of a moist surface was smaller than that
of a dry surface [55]. By this study, we confirmed that the “average pixel brightness value” of UAV
visible images could estimate the surface soil moisture like topsoil reflectivity.

As one of the ways of solar energy transmitting, visible light-electromagnetic radiation is
emitted from the sun and reaches the earth’s surface through various atmospheric components.
In the transmitting process, part of the visible light-electromagnetic radiation was absorbed and
scattered by the atmosphere, part is absorbed by the surface, and the rest is reflected by the surface [56].
In this study, due to the close distance from the surface to the UAV, the effects of the atmosphere on this
route were negligible, but the effects of the atmosphere on the sun-surface route still exists (Figure 9);
therefore, the correction of the observed result was necessary.

Figure 9. The conceptual model of UAV monitoring the soil moisture.

We took the average pixel brightness value as the characteristic factor of UAV visible images,
and found that it could better indicate differences in the 0–10 cm soil moisture of a typical steppe
in the Loess Plateau. When water is immersed in the soil, the sun’s rays have to first pass through
the water to reach the surface soil. Similarly, the reflected rays had to first pass through the water to
reach the camera of the UAV, thus there was a loss of the reflected rays, as well as in the refraction and
absorption process [57,58].

When the 0–10 cm soil moisture was larger than the stable value, the 0–10 cm soil moisture
had a significant negative correlation with the brightness. When the 0–10 cm soil moisture was
stable, the 0–10 cm soil moisture had a significant negative correlation with the brightness and a
significant positive correlation with the vegetation coverage (Table 2). The surface reflection of the
visible light-electromagnetic radiation of humid soil is less than that in dry soil, and the surface
reflection of vegetation also decreases in humid soil environments; therefore, vegetation coverage
and soil moisture have the same influences on the brightness. The surface reflection of the visible
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light-electromagnetic radiation of dry soil was relatively larger, while that of vegetation was relatively
small; therefore, vegetation coverage and soil moisture had inverse influences on the brightness [55].

The traditional oven-dry method and time-efficient instrumental method are suitable for a point
scale to measure soil moisture and have obvious limitations for large- or medium-scale use. The majority
of modern remote sensing technology concentrates on non-single visible bands; most of them rely on
multiband operations to measure soil moisture [29], such as infrared camera drones and high-cost
and complex digital image processing [31]. The estimation technology using UAV could solve these
problems. Firstly, the resolution of an aerial remote sensing image is higher than that of satellite remote
sensing image, so its interpretation and classification accuracy is higher. Secondly, aerial remote sensing
images can be interpreted in stereo, while satellite remote sensing images can only be interpreted in
plane. Thirdly, being compared with aerial remote sensing images, satellite remote sensing images
have a larger scale and are more difficult to interpret than aerial remote sensing images. In this study,
we adopted reverse water regulation on a typical steppe, simulated different evaporation stages after
precipitation, observed the characteristics of aerial images of vegetation and soil water at different
stages, and then tested estimation models by utilizing grazing lands. The results showed that this
method was feasible. In addition, the vegetation coverage index was added into the estimation model,
expanding the geographical region to estimate the soil moisture. It is a new mode to estimate the soil
moisture in steppes using UAV; if the conditions are right, the visible image processing technique
could be used for other steppes as well.

5. Conclusions

In the typical steppe of the Loess Plateau, the average pixel brightness value of UAV visible
images could be used as a factor to estimate the 0–10 cm soil moisture. Two estimation models of
the 0–10 cm soil moisture were established. When the 0–10 cm soil moisture was at a stable value,
the model was a multiple regression model among the soil moisture (Y), the average pixel brightness
value (X1), and the vegetation coverage (X2): Y = 23.387 − 0.179X1 + 0.073X2 (p < 0.001). When the
0–10 cm soil moisture was larger than the stable value, the model was a general linear model between
the soil moisture (Y) and the average pixel brightness value (X1): Y = 70.519 − 0.472X1 (p < 0.001).
The soil moistures of the 0–10, 10–20, and 20–30 cm layers were positively correlated (p < 0.001).

When the 0–10 cm soil moisture was at a stable value, and the determination coefficient (R2) of
the estimation model, the absolute values of the RS and RMA, and the coefficient (R2) between the
measured value and the estimated value were 0.86, 10.04%, 30.99%, and 0.82, they all met the practical
requirements. When the 0–10 cm soil moisture was larger than the stable value, and the determination
coefficient (R2) of the estimation model, the absolute values of the RS and RMA, and the coefficient
(R2) between the measured value and the estimated value were 0.77, 7.73%, 14.74%, and 0.64, they all
met the practical requirements.

On the premise of controlling the influencing factors and correcting the test errors, it was feasible
to evaluate the 0–10 cm soil moisture by UAV visible technology in a typical steppe. It provided
practical significance for the evaluation of soil moisture in arid and semi-arid steppe. In addition,
it contributes to the popularization of UAVs in steppe ecological research.
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