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Abstract: In this work, we modelled the response of soil water repellency (SWR) persistence to the
decrease in moisture in drying soils, and we explored the implication of soil particle size distribution
and specific surface area on the SWR severity and persistence. A new equation for the relationship
between SWR persistence and soil moisture (θ) is described in this paper. The persistence of SWR was
measured on ten different hydrophobic soils using water drop penetration time (WDPT) at decreasing
levels of gravimetric water content. The actual repellency persistence showed a sigmoidal response
to soil moisture decrease, where Ra(θ) = Rp/1 + eδ(θ−θc). The suggested equation enables one to
model the actual SWR persistence (Ra) using θ, the potential repellency (Rp) and two characteristic
parameters related to the shape of the response curve. The two parameters are the critical soil moisture
θc, where the Ra increase rate reaches its maximum, and the parameter δ affecting the steepness of
the curve at the inflexion point of the sigmoidal curve. Data shows that both soil carbon and texture
are controlling the potential SWR in New Zealand pastures.

Keywords: soil water repellency; soil moisture; soil carbon; soil texture

1. Introduction

Soil water repellency refers to the inability of soils to absorb water. This phenomenon has been
identified in different soils and climate combinations [1]. Theoretically, the origin of water repellency is
due to hydrophobic materials coating the soil particles [2]. Doerr and Thomas [3] theorized that after
the amphiphilic molecules have been separated from the mineral particles during the wetting of the soil
(making the soil particles wettable), these molecules remain intact. When the soil moisture becomes low
enough during the drying process, their polar groups re-associate and interact through the hydrogen
bonds, forcing the molecules back into position with the polar heads attached to the mineral surface
and the non-polar tails orientated outwards resulting in the reestablishment of hydrophobicity [3–8].
Therefore, soils express water repellency when moisture drops below a critical water content. This
issue has serious implications in decreasing water infiltration [9], inducing surface runoff, nutrient
losses through runoff [10] and causing preferential flow [11].

Soil water repellency can be characterized by two different criteria. Its severity or degree, which is
an estimate of the soil surface tension, indicates the initial strength of the repellency between water and
soil surface. The persistence is a measure of how long it takes to break down the repellent property after
prolonged contact with water to make the soil wettable again. The severity of SWR can be estimated
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using the molarity of ethanol drop (MED) [12], contact angle (CA) [13] or, sessile drop methods [14,15].
The persistence of soil water repellency (SWR) can be estimated using water drop penetration time
(WDPT) [16]. The water drop penetration time approach involves placing a water drop on the soil
surface and recording the time it takes to penetrate [16]. As water infiltrates the soil surface when the
contact angle is less than 90◦, WDPT measures the time taken by the contact angle to change from
values >90◦ to 90◦ [16] or 0◦ if a complete drop penetration is considered [12].

The actual SWR level is tightly related to soil moisture. Soil water repellency as a function of θ,
which is usually referred to as the SWR characteristic curve and has been investigated in different
studies [17–19]. However, most of the previous work has focused on SWR severity and moisture
relationship [17,18,20], and less effort has been made on SWR persistence dynamics. The characteristic
curves of SWR (MED or CA) as a function of soil moisture (θ) have been studied in reclaimed and
agricultural soil [17], pastures [18] and, forest ecosystems [20]. In a study of the relationship between
the SWR severity and water content in natural, reclaimed and agricultural soils, Chau et al. [17] revealed
that SWR severity showed different patterns in drying soils. Some soils showed a rapid decrease in the
contact angle when θ increased; this indicated less severity, regardless of the initial repellency. Other
soils showed a slow decrease in contact angle at higher water contents, which indicated high severity
and the need for more water or surfactants for remediation [17]. The SWR severity characteristic curves
are typically a unimodal curve where the contact angle increases with decreasing θ, reaches a peak
and then decreases again [8]. Other studies showed bimodal response curves, sigmoidal or irregular
patterns [17,18].

The SWR severity is a measure of the initial strength of the soil hydrophobicity and does not
describe how soil behaves in prolonged contact with water. Thus, SWR measured with MED or CA,
for example, does not permit the perception of how SWR influences natural hydrological processes.
The parameters controlling the SWR persistence response to drying are to date, still poorly understood.
The only study implicating modelling the persistence of SWR in drying soils was conducted on
artificially hydrophobized soils [21]. Data from this study showed a typical sigmoidal curve of WDPT
(θ) for sand and unimodal curves for finer textures. Artificially induced hydrophobicity has been
used in many studies to understand the impact of water repellency on hydrological processes at the
theoretical level. However, the stable characteristics of the artificial hydrophobic chemicals used for
this purpose make it difficult to compare results with naturally hydrophobic soils. Natural SWR
represents unique features because it results from a combination of natural hydrophobic materials
of different sources [22]. Modelling the SWR persistence characteristic curves is urgently needed for
naturally hydrophobic soils. This will help to understand and quantify the impact of SWR on runoff

and nutrients losses to waterways in agroecosystems.
Characterization of actual SWR and water content relationship was assessed in field conditions [23,24],

by adding water or drying soils in laboratory conditions [8,18,25]. Using air or oven-dry (65 ◦C) soils
gives an estimate of the potential SWR, which is the highest level that SWR can reach when soil dries out
completely [23,26]. Estimation of the potential SWR provides insight into the potential consequences
of soil hydrophobicity in an eventual drought situation. However, only in-situ measurement at field
moist conditions gives the actual SWR level [24]. Adding water would simulate the soil wetting phase
but does not give information about SWR dynamics during the drying phase [21]. On a drying soil
surface, the hydraulic potential is constantly changing, and hydrophobic compounds would not have
the same behaviour toward soil minerals, as if they remained at constant water content for 48 h. Thus,
understanding the SWR–moisture natural dynamics needs the closest possible scenario to field dry
conditions. Moreover, the drying temperature has a significant effect on the reestablishment of SWR
in sands [27]. The micromorphological investigation by Dekker et al. [27] showed that high drying
temperatures caused an increase in the formation of organic materials coatings responsible for SWR.
Hence, soil drying at 105 ◦C used in some studies can give an incorrect estimate of SWR. Air drying
was suggested as a laboratory approach to study the SWR–moisture relationship in different studies [3].
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Still, there was no systematic work on the effect of drying temperature on SWR reestablishment for
different soil textures.

Throughout the literature, there have been substantial advances in understanding the soil
properties affecting the potential SWR. There is a strong indication of organic compounds’ implication
on controlling the potential SWR [19,28]. However, a large body of research shows the implication of
soil texture as another important factor controlling SWR levels. Although SWR can occur in a wide
range of soil textures [26,29,30], sandy soils are more susceptible to coating by hydrophobic materials
because of their low surface area (SA) [31]. In a study of fire-induced SWR, DeBano et al. [32] reported
that the thickness of the hydrophobic layer increased with the decrease in clay content resulting in
significantly higher water repellency in sands compared to heavy textured soils. Soil specific surface
area (SA) would be a key factor controlling SWR occurrence in the pastoral systems in New Zealand.
Yet, a complete assessment of the SA influence on water repellency needs data that include a wide
range of SWR, soil C and SA. Hermansen et al.’s [18] survey on the South Island of New Zealand
included a wide range of soil C. Still, when it comes to texture, this survey included mainly silt,
silt loam and sandy loam (no clay and only one sandy textured soil) [18]. Thus, it is difficult to draw a
solid conclusion on the impact of soil texture and SA on the potential SWR.

This paper aims to:

(i) Model actual SWR persistence as a function of θ and the potential SWR in drying hydrophobic soils;
(ii) Examine the implication of soil particle size distribution and SA in controlling the potential SWR

through a combination of published datasets from New Zealand case studies.

2. Theory

Different models were suggested by Li et al. [21] for SWR characteristic curves for artificially
hydrophobized soil (e.g., Gaussian and Lorentzian models). However, measurements of SWR
persistence showed a consistent sigmoidal response to the decreasing θ in naturally hydrophobic soil.
A suitable form of equations that perfectly simulate the response of SWR persistence Ra to soil moisture
θ (g g−1) is the following reversed sigmoidal equation:

Ra(θ) =
Rp

1 + eδ(θ−θc)
(1)

where Rp is the potential persistence of SWR (Rp = Log WDPT(s) of dry soils) and the parameters θc and
δ are curve characteristics that need to be determined for each soil type through fitting experimental
data to the model. Factors controlling Rp, including soil C, texture and pH, will be discussed in
Section 4.2. The first and second derivatives of Equation (1) are

Ra
′(θ) =

−δRpeδ(θ−θc)

[1 + eδ(θ−θc)]
2 (2)

Ra
′′ (θ) =

δ2Rpeδ(θ−θc)[e2δ(θ−θc) − 1]

[1 + eδ(θ−θc)]
4

(3)

For θ = θc, Ra reaches its half potential, the first derivative Ra
′ is in its minimum and the second

derivative Ra
′′ is equal to 0 (inflexion point):

Ra(θc) =
Rp

2
(4)

Ra
′(θc) =

−δRp

4
(5)

Ra
′′ (θc) = 0 (6)
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The higher the factor δ, the lower the curve slope value at the inflexion point. Thus, this parameter
describes how SWR persistence changes with the drying rate. The higher δ, the faster the transition
from the wettable to the water repellent state when drying soils. Parameter θc is moisture at the
inflexion point that corresponds to half of the potential persistence. Dekker and Ritsema [7] introduced
the critical water content as the value above which the soil is wettable, and below is water repellent.
However, the repellency at this moisture level is easily reversible and not necessarily critical. Here,
we introduce a new definition of the critical water content θc that corresponds to the highest increase
in SWR persistence in drying soils, and it is significantly difficult to rewet hydrophobic soils past this
point. Determination of θc is essential for the prediction of soil moisture effect on the surface runoff

during rain events after dry periods.

3. Materials and Methods

In the present study, soil properties analysis was carried out as the following: SWR persistence
and severity was measured on nine soil samples from nine pastoral sites representing four soil
orders: Recent (Entisols, Inceptisols), Brown (Inceptisols), Pallic (Alfisols) and Pumice (Andisols)
(New Zealand Soil Classification [33] and Soil Taxonomy equivalent [34]). Water repellency persistence
vs. water content was measured on ten hydrophobic soils representing four soil orders and a wide
range of textures (Table 1). The actual persistence of SWR (Ra) was measured using the WDPT method.
The soil samples were brought to saturation, and gradually air-dried at room temperature (20 to 22 ◦C).
Five replicates of WDPT measurements were carried out using 40 µL drops of deionized water that
were placed on the soil smoothed surface, and the full drop penetration time was recorded in seconds
(s) [35]. Measurement of WDPT was carried out at different levels (around 10% reduction each step) of
gravimetric soil moisture (g g−1). When moisture reached a stable minimum, air drying samples were
dried at 105 ◦C for dry soil weight estimation. The estimation of the SWR degree was done by the
MED method. Ethanol concentrations of 0, 3, 5, 8.5, 13, 24 and 36% by volume were prepared, and five
droplets of 40 µL were placed on the smoothed soil sample surface. The molarity of the ethanol test
was represented by the ethanol concentration of the droplet that entered the soil surface in 5 s.

To assess the effect soil particle size, SA and C content on the severity and the persistence Rp,
we aggregated the published soil data from three recent New Zealand Studies [18,24,36]. Eight soils
and their respective particle size distribution data were sampled by Whitley et al. [37] from eight
dryland pasture sites, including three from the North Island and five from the South Island of New
Zealand. We measured the persistence and the degree of SWR on these soils.

Observed values of the actual SWR persistence (Log WDPT) and water content were used to find
the two parameters of the curve that best fit the experimental data and have the lowest RMSE:

RMSE =

√√
1
n

n∑
i=1

(Rai −Roi)
2 (7)

Roi are the observed values of SWR persistence and Rai are the fitted values using Equation (1).
The specific surface area of sand and silt fractions as, were estimated based on particles size

distribution using the following equation by [38]:

as =
6
ρs

∑(
fi

di

)
(8)

where fi is the mass fraction of particles with a diameter di and ρs is the respective particle density
(2.65 g cm−3 for sand and silt and 2.67 g cm−3 for clay were used). For clay fraction, surface area ac was
estimated using Equation (9) [38]:

ac =
2fc

ρsl
(9)
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where fc is the mass fraction of clay particles, l is the thickness of clay platelets assumed to have an
average of 4.10−9 m. Total soil specific area SA is then estimated as the sum:

SA = as + ac (10)

4. Results and Discussions

4.1. The Actual SWR (Ra) as Function Soil Moisture

The potential WDPT of air-dry soils varied between 38 and 8460 s (Rp from 1.57 to 4.2) (Table 1).
This means that water repellency classes varied from strong to severe according to the classification
suggested by Doerr [35]. Total carbon ranged between 3.6 and 12.9 % (Table 1). Water repellency
persistence (WDPT) increased significantly with decreasing soil moisture. All the studied samples
representing different soil orders, textures and potential SWR represented a sigmoidal response
to the decrease in soil moisture where WDPT attends a maximum for air-dry soils. This typical
sigmoidal response of WDPT to moisture decrease was observed in dunes sand [39], SWR in New
Zealand hydrophobic soils determined by sessile drop method [19], hydrophobic peat [40], post-fire
hydrophobic soils [41] and Portuguese sandy loam and loamy sand in a forest ecosystem study [3].
However, the present result is different from data reported by Li et al. [21], who established SWR
persistence curves for artificially hydrophobized soils using octadecylamine (C18H39N). Data from this
study showed that the SWR persistence curve represented typical sigmoid shape for sand samples
while it presented unimodal curves for loam, clay loam and silt loam samples. Results from studies
using artificially hydrophobized soils cannot be generalized as a universal model for hydrophobic
soil. Natural SWR is caused by a complex combination of organic materials (e.g., plants fragments,
roots) [2] and hydrophobic compounds [22]. The organic materials are a principal component in high
C soils. For these reasons, natural SWR is difficult to simulate by adding one hydrophobic compound
to the soil. Efforts have been made to understand the reestablishment of SWR. This theory fits well
with our experimental data showing a sigmoidal increase in SWR-persistence in drying soils. The
present data fit well with the conceptual model of SWR development [5]. From the sigmoidal curves
in the present study, three phases can be observed (Figure 1a–f). (i) The wettable phase where the
hydrophobic compounds are detached from the soil minerals (suspended in water). (ii) The transition
phase, which corresponds to the exposure of the mineral surfaces to the attachment of the hydrophobic
compounds (from the first SWR appearance to the inflexion point). In this phase, the increase in SWR
persistence is exponential. (iii) The saturation phase that extends from the inflexion point to a stable
maximum. This final phase represents the coating of soil minerals that is limited by the saturation of
the available surface area and the amount of the hydrophobic compounds.

After fitting the sigmoidal function (Equation (1)) to the experimental data and analysing the
relationship between the three parameters of the equation, the following patterns have been observed.
There was no evident relationship between the measured Rp and the critical water content θc (Table 2).
This means that the potential hydrophobicity does not control the level of moisture below; drying soils
become critically water repellent (peak in the Ra

′(θ)). Nevertheless, there was a strong correlation
between C and θc with R = 0.91 (R2 = 0.82). We theorize that θc is logically controlled by the amount
and the type of hydrophobic materials present in the C pool, as there are different compounds involved
in this process [22,42]. There was a relatively low determination coefficient (R2 = 0.19) for the linear
regression between the Rp and δ coefficient that is involved in the steepness of the slope at the inflexion
point. The higher Rp is, the lower the coefficient δ is and thus, the smoother the transition between the
wettable and the repellent phases when drying the soils. The lower Rp is, the higher δ is, and therefore,
the steeper is the increase in SWR persistence when water content drops near θc. When it comes to the
relationship between θc and the coefficient δ, there was a moderate linear relationship with R2 = 0.45.
The lower θc is, the steeper the slope is near the inflexion point (lower δ) and vice versa. However, one
Orthic Pumice soil diverged from this rule with a relatively low θc and δ (Figure 1d). This suggests
that SWR persistence develop smoothly when this soil dries out, without a sudden transition toward
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the potential value Rp. An investigation at the nanoscale is needed to understand how soil properties,
such as texture and soil order, affect the hydrophobic compounds’ behaviour toward soil minerals.

Table 1. Potential soil water repellency (SWR), C content and texture of different soil samples and
the fitted model parameters with their respective RMSE. Water drop penetration time (WDPT) was
measured on individual samples using five water drops at five to six decrements.

Sample NZ Classification WDPT
s Texture C

%
Rp

Log s
θc

g g−1 δ
RMSE
Log s

1 Pallic Orthic Brown 3900 Clay loam 12.89 3.68 0.35 18.69 0.18
2 Typic Orthic Pumice 3660 Sand 4.93 3.56 0.13 49.06 0.01
3 Typic Immature Pallic 168 Loamy Silt 3.6 2.23 0.13 57.28 0.00
4 Typic Orthic Pumice 8460 Sand 4.6 4.2 0.19 14.93 0.24
5 Mottled Argillic Pallic 782 Silt loam 8.65 2.78 0.26 33.46 0.11
6 Pallic Orthic Brown 604 Silt loam 6.69 2.78 0.17 48.84 0.13
7 Mottled Argillic Pallic 286 Light silt loam 7.4 2.42 0.29 27.75 0.24
8 Pallic Orthic Brown 604 Silt loam 6.69 2.78 0.21 37.32 0.22
9 Mottled Argillic Pallic 38 Light silt loam 4.92 1.57 0.16 33.29 0.14
10 Mottled Argillic Pallic 1800 Light silt loam 5.86 3.25 0.17 34.65 0.03

The present soils showed significantly different critical soil moisture θc going from 0.13 to 0.35 g
g−1 and different steepness curves at the inflexion point δ, going from 14.9 to 57.3 (Table 1). Data
from Dekker et al. [39] showed that the water content below which sand becomes repellent changes
with soil depth. This suggests different θc levels over the soil profile. The decrease in θc would result
from decreasing concentrations of hydrophobic materials in the C pool with depth if we assume that
they occur at the soil surface. Indeed, hydrophobic compounds can result from plant leaves and root
decomposition [2,22,43] that are probably the main source of hydrophobicity in the New Zealand
pastoral systems. The potential SWR persistence is controlled by many parameters, including soil C,
particle size distribution and the type and the amount of the hydrophobic materials in the C pool. In
the second part of the results (Section 4.2), a detailed analysis of the implication of C and particle size
on the distribution in the potential SWR is presented.

From the fitted curves of the studied soils (Table 1 and Figure 1a–f), we can differentiate three
SWR persistence patterns, representing three soils categories. Soils with low θc (0.13 to 0.17 g g−1)
and a steep slope at θc (δ from 48.8 to 57.3). These soils are less susceptible to persistent SWR in the
drying phase compared to soils with higher θc. However, the Ra rate increase in these soils is very high
when moisture drops near θc. This implies that a persistent water repellency can appear suddenly
when water content approaches θc in these soils. The second category represents a low δ and high θc.
These soils express a smooth increase in SWR persistence when going from saturated soils to the critical
moisture θc. However, the high θc (0.26 to 0.35 g g−1) means that these soils are more prone to SWR in
the early stages during the dry periods. The third pattern was observed in the soils with the relatively
higher θc and steepness at the inflexion point. In these soils, a persistent repellency would develop
promptly in the early stages of a dry period. Remediation strategies (e.g., surfactant application)
would be necessary for the second and the third categories to attenuate the agro-environmental effect
of SWR [44].
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soil texture in controlling R୮. In this combined dataset, carbon content ranged from 2.49 to 12.89% 
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Figure 1. Persistence of soil water repellency (SWR) (Log water drop penetration time (WDPT) (Log s))
as a function of water content θ (g g−1) measured during dying soil samples and corresponding fitted
curve using the Equation (1) for the first six soils from Table 1: (a) Pallic Orthic Brown, (b) Typic
Orthic Pumice, (c) Typic Immature Pallic, (d) Typic Orthic Pumice, (e) Mottled Argillic Pallic, (f) Pallic
Orthic Brown.

Table 2. Coefficient of determination of linear regressions between C (%) and the model parameters
Rp (Log s), θc (g g−1) and δ.

C Rp θc δ

C 1 0.06 0.82 0.24
Rp 1 0.04 0.19
θc 1 0.45
δ 1
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4.2. Soil Properties Controlling the Potential SWR (Rp)

Modelling the actual persistence of SWR (Ra) using the sigmoidal function (Equation (1)) needs
a determination of the potential SWR (Rp). Data from a wide range of soil textures from fine (34%
clay, 40% silt) to coarse (85% sand) (Table 3) showed a strong implication of soil C and soil texture
in controlling Rp. In this combined dataset, carbon content ranged from 2.49 to 12.89% (Table 3).
Soils showed different levels of SWR persistence ranging from wettable (Log WDPT = 0) to severe
persistence (Log WDPT = 3.95) and a MED from 0 to 27%. Podzol and Pumice orders represented a
higher severity (27 and 24%, respectively), while Ultic and Semiarid showed the lowest MED values
(3 and 1.5%, respectively). Although the significant positive correlation between WDPT and MED, the
reported persistence of Ultic soil from Müller et al. [24] was the highest (Log WDPT of 3.95), followed
by the Pumice order (Log WDPT of 3.83). Many studies demonstrated that high persistence does not
necessarily mean high severity of SWR [17].

Table 3. Soil characteristics from our study and other studies including pH, sand, silt, clay, C contents,
surface area (SA), molarity of ethanol drop (MED) and Log WDPT.

Soil Order
(NZ) n pH Silt

g g−1
Sand
g g−1

Clay
g g−1

SA
m2 g−1

C
%

MED
%

Log
WDPT
Log s

Study

Recent 1 5.3 0.36 0.55 0.09 1.84 2.49 0.00 0.00

This study:
Sampled by
Whitley et al.

[37]

Brown 1 5.2 0.39 0.34 0.28 5.31 12.89 13.00 3.73
Pumice 1 5.2 0.14 0.86 0.01 0.16 4.93 24.00 3.77
Pallic 1 5.6 0.32 0.62 0.06 1.17 2.74 0.00 0.00

Brown 1 5 0.39 0.48 0.13 2.52 6.18 5.00 1.54
Pallic 1 5.2 0.47 0.5 0.03 0.74 3.6 13.00 2.84

Brown 1 4.7 0.32 0.51 0.17 3.27 4.91 6.75 1.87
Pumice 1 5.1 0.14 0.85 0.01 0.18 6.7 24.00 3.89
Brown 21 5.3 0.58 0.34 0.08 1.66 6.3 7.50 − *

Hermansen
et al. [18]

Pallic 12 5.5 0.73 0.21 0.06 1.30 3.8 3.00 −

Podzol 12 5.4 0.62 0.29 0.09 1.89 9.5 27.00 −

Recent 18 5.2 0.67 0.25 0.08 1.66 4.2 9.00 −

Semiarid 9 5.6 0.48 0.40 0.13 2.52 4.1 1.50 −

Pallic 12 4.5 0.22 0.49 0.27 5.61 11.6 2.00 3.07 Müller et al.
[24]Ultic 9 4.9 0.41 0.25 0.34 6.53 8.1 3.00 3.95

Recent 6 4.5 0.64 0.32 0.04 0.96 9.06 11.50 3.65 Simpson et
al. [36]Brown 6 4.7 0.49 0.49 0.02 0.56 8.69 10.00 3.71

(*) not measured in the study.

The persistence of SWR estimated was significantly (R = 0.66; p < 0.05) correlated with soil C
(Table 4). The simple linear regression between Log WDPT and C had R2 of 0.44 and RMSE of 1.15 Log
s. Using both C and SA in multiple linear regression (MLR) improved the prediction of Log WDPT
(R2 = 52, RMSE = 1.12 Log s) (Figure 2d).

Log WDPT = 0.38 C− 0.029 SA + 0.60 (11)

This level of correlation is in agreement with previous results from a New Zealand North Island survey
on SWR, which showed an R of 0.61 (R2 = 0.37) between C and Log WDPT [26]. Hermansen et al. [18]
reported a high correlation between SWR severity (measured with MED) and organic C with an
R = 0.82 (R2 = 0.68) in the South Island of New Zealand survey. Unlike the aggregated dataset in
the present paper, soil dataset from this survey contains mainly coarse- and medium-textured soils
(sand, sandy loam, silt loam). Only six soil samples out of 78 soils were silty clay and silty clay
loam, and only one sand textured sample. Although MED had no significant correlation with soil
properties (Table 4), C content, sand, silt, clay and SA seem to affect the MED unobtrusively. The SA
was negatively correlated with MED, and C was positively correlated with MED (Table 4). As clay
contributed significantly to the estimated SA (R = 1 and p < 0.001), there is a strong indication that
there is an opposing contribution of SA and C in the expression of the severity of SWR. An increase in
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the amount of the hydrophobic compounds in soil C pool enhances the coating of minerals surfaces.
However, this process might be restricted by the high SA in clays.

MED = 1.41 C + 161.61 sand + 161.44 silt + 161.04 clay− 16148.23 (12)

MED = 1.89 C− 0.41 SA + 4.27 (13)

Carbon was moderately correlated with clay content and SA (p = 0.028; R = 0.53) (Table 4).
The estimation of SA was not 100 per cent accurate based on a coarse particle size distribution alone.
In soil with high variability in particle type, using the particle size distribution can underestimate SA
by one-two orders [45]. Thus, an accurate estimation of MED was possible based on C content and
improved estimation of SA.

5. Conclusions

The suggested equation enables modelling of the actual repellency persistence (Ra) to the moisture
decrease in drying hydrophobic soils using the potential repellency (Rp) and two shape parameters θc

and δ. The curve shape parameters give valuable information on how SWR persistence behaves in the
drying period. In the studied hydrophobic soils, three main patterns were observed in the response
curves Ra(θ). (i) The first pattern is associated with soils that have low θc and high δ (steep slope at θc).
These soils were less prone to express persistent SWR in the early stages of the dry period. Nevertheless,
SWR persistence increased suddenly when moisture drops near θc. (ii) The second pattern represents
soils with low δ and high θc (0.26 to 0.35 g g−1), which meant prompt development of SWR in the early
stages of dry periods, although there was a smooth increase in SWR persistence. (iii) The third pattern
showed a relatively higher θc and steepness at the inflexion point δ. This implies that a persistent
repellency would appear suddenly in the early stages of the summer period. A nanoscale investigation
of soil properties controlling the SWR persistence dynamics in drying soil is needed to understand
better these patterns and how they would affect the plant growth and hydrological processes.

When it comes to soil properties controlling the potential water repellency Rp, carbon and soil
texture showed strong implications in this regard. The present data from pastoral soils showed that C
has a significant influence on the potential severity of SWR and the critical soil moisture in hydrophobic
soils. Both the specific surface area and soil C contribute to controlling the potential SWR degree in the
studied soils. The present model and results will serve for better understanding of SWR behaviour in
drying hydrophobic soils and its hydrological implications.

Table 4. Pearson product moment correlation matrix of pH, silt (g g−1), sand (g g−1), clay (g g−1),
SA (m2 g−1), C (%), MED (%), Log WDPT (Log s).

pH Silt Sand Clay SA C MED Log
WDPT

pH 1 0.2 −0.03 −0.29 −0.29 −0.54 * −0.01 −0.49
Silt 1 −0.85 *** −0.15 −0.13 −0.06 −0.15 0.01

Sand 1 −0.4 −0.42 −0.23 0.34 −0.09
Clay 1 1 *** 0.53 * −0.38 0.13
SA 1 0.53 * −0.39 0.13
C 1 0.29 0.66 *

MED 1 0.65 *
Log WDPT 1

p levels: * 0.05, ** 0.01, *** 0.001. Multiple linear regression (MLR) modelling showed that C (p = 0.024), sand, silt,
clay (p = 0.022 each) similarly contribute at 70% of MED variation with an RMSE of 5.4% (Equation (9), Figure 2a).
In contrast, an MLR model based on C and SA showed that they contributed significantly (p = 0.009 and 0.005,
respectively) to 48% of MED variation with an RMSE of 6.59% (Equation (13), Figure 2b,c).
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