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Abstract: For flood risk assessment, it is necessary to quantify the uncertainty of spatiotemporal
changes in floods by analyzing space and time simultaneously. This study designed and tested a
methodology for the designation of evacuation routes that takes into account spatial and temporal
inundation and tested the methodology by applying it to a flood-prone area of Seoul, Korea. For flood
prediction, the non-linear auto-regressive with exogenous inputs neural network was utilized, and
the geographic information system was utilized to classify evacuations by walking hazard level as
well as to designate evacuation routes. The results of this study show that the artificial neural network
can be used to shorten the flood prediction process. The results demonstrate that adaptability and
safety have to be ensured in a flood by planning the evacuation route in a flexible manner based on
the occurrence of, and change in, evacuation possibilities according to walking hazard regions.

Keywords: spatiotemporal flood fluctuations; inundation risk assessment; evacuation route; artificial
neural network; geographic information system

1. Introduction

Natural disasters threaten the lives and valuable assets of thousands of people every year [1],
and widespread destruction, economic loss, and loss of life are global phenomena. Korea is historically
vulnerable to flooding due to high precipitation (annual precipitation in Seoul is 1200–1600 mm)
compared to other regions of the same latitude [2]. Generally, flooding is caused by a complex
combination of meteorological and hydrological phenomena such as extreme rainfall and flowing
water [3]. Moreover, an impermeable layer such as a road or paved surface in an urban development
assigns much more vulnerability to any given rainfall runoff phenomenon. Losses due to flooding can
be reduced by better land-use planning, regulations, law enforcement, and non-physical mitigation
management such as the establishment of shelters and evacuation routes [4]. Disaster managers are
attempting to predict floods and flood management and establish action plans by utilizing prediction
materials. The main purpose of flood prediction is to eliminate or lessen the causal factors that trigger
flood disasters [5]. For example, successful prediction of rainfall and flood progress is utilized in
flood management by such means as the preparation of flood hazard maps, contributing significantly
to the reduction of casualties [6]. Representative models for predicting urban flooding include
deterministic models based on numerical analysis and data-driven models using artificial neural
networks that have learned the rainfall runoff relation. In the case of urban flooding prediction based
on a numerical analysis model, this provides accurate and precise results, but the problem is that
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pre- and post-processing takes quite some time. In the case of data-driven models, one possibility is
to employ a stochastic model that is based on data established in advance, including target values
and real-time simulation or prediction using an artificial neural network (ANN). In particular, if the
database used in a data-driven model is based on the result of deterministic model results, it carries
the advantage of enhancing the accuracy of the target value’s representation while simultaneously
securing sufficient time for evacuation [7].

To date, studies using artificial neural networks, genetic algorithms, and deep learning models
have been carried out variously with the purpose of predicting or controlling floods. According to
Mosavi et al. [8], the application of machine learning to hydraulic and hydrology has increased.
According to the same study, there is no absolutely predominant machine learning model, and it seems
that useful machine learning techniques differ depending on the purpose, data, and results of the study.
Jhong et al. [9] established an inundation prediction model by combining support vector machine (SVM)
and multi-objective genetic algorithm (MOGA) based on effective materials concerning typhoons,
and this made it possible to reduce the prediction time and to optimize input data. Granata et al. [10]
conducted post-rainfall overflow analysis through support vector regression (SVR) and compared
it with the results of the US Environmental Protection Agency’s Storm Water Management Model
(EAP-SWMM) to demonstrate that overflow had been overestimated in comparison to the SVR results.
Tehrany et al. [11] used the SVR to analyze flood susceptibility with different kinds of kernel function.
This research indicated that SVR could yield reliable assessment results for a flood susceptibility map.
Chang et al. [12] predicted flood depth, enabling sufficient time for evacuation by using rainfall and
stream runoff data and comparison with simulation results that indicated outstanding prediction
capability. A prediction of stream runoff was carried out by Zhou et al. [13], using the radial basis
function network (RBFN), extreme learning machine (ELM), and Elman network’s ensemble technique.
Empirical wavelet transform (EWT) was employed for data pre-processing, and the average monthly
runoff of the stream subject to study was predicted. Deep learning techniques have been adopted
in the water resource field to enhance floodgate predictions and to include more concepts in the
model. Hu et al. [14] used long short-term memory (LSTM) for rainfall runoff simulation with 86 items
of rainfall runoff pattern data. These results were compared with the ANN model to validate the
superiority of the LSTM neural network. Rahman et al. [15] developed a method by integrating artificial
neural network (ANN), logistic regression (LR), frequency ratio (FR), and analytical hierarchy process
(AHP) for flood susceptibility assessment. The integrated LR-FR model showed high predictive power.
This series of studies opens up new opportunities for planning and designing flood control measures.

Meanwhile, evacuation is an effective measure for minimizing damage and loss of life caused
by flooding [16,17]. However, according to studies on the lessons that can be learned from disasters,
it is apparent that, sometimes, evacuation to designated evacuation centers is not carried out [18–20].
The reasons for this were diverse and included problems in forecast and warning systems, in the
location of evacuation centers and evacuation routes, and in evacuation center functions. Such studies
throw doubt on the practicality of flood management policies, such as the preparation of evacuation
maps based on maximum inundation scope and flood depth. Meanwhile, the problem of assigning
location can be defined according to two factors—space and time—and, fundamentally, these two
factors must be analyzed simultaneously [21]. In addition, the impacts of spatial and temporal
changes in flooding can have significant consequences for the assessment of urban flood risks [22].
From this perspective, a few studies have recently conducted spatial and temporal analyses of urban
flooding. Huang et al. [23] analyzed the spatial–temporal patterns of urban floods during the period
of 2009–2015 in the central area of Guangzhou, China. Ahmad and Simonovic [22] mentioned that
although it is necessary to quantify the uncertainty of spatial and temporal changes in flood inundation,
this was hardly considered. Furthermore, they developed a map demonstrating the spatial and
temporal variation in reliability vulnerability, robustness, and resiliency indices through fuzzy analysis.
Chen et al. [24] integrated the flood risk factors for coastal lowland regions in 1970, 2004, and 2013
using a geographic information system (GIS) and analyzed flood hazard assessment maps for each of
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those years based on multi-criteria decision analysis. Results demonstrated that flood occurrence was
extremely variable in terms of time and space, depending on the associated flood risk factors. Therefore,
considering such circumstances in general, the appropriate solution to the problem of evacuation route
assignment should consist of real-time evacuation guidance following temporal and spatial inundation
progress. This study aimed to propose a methodology for designating such real-time evacuation route
guidance by analyzing spatial inundation progress following temporal inundation progress. We aimed
to predict flood overflow using a dynamic artificial neural network and to analyze expected flood
regions in advance through a two-dimensional submergence analysis of city regions. A methodology
then was proposed for designating an evacuation route based on inundation progress and evacuation
by walking hazard, and this was applied to the study area.

2. Materials and Methods

This study aimed to propose and apply a method for designating evacuation routes following
temporal and spatial inundation progress due to doubt in the practicality and utilization of the method
of preparing evacuation maps based on maximum inundation scope and flood depth.

The study comprised two stages, and the study flow can be seen in Figure 1 below.
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Figure 1. Flowchart of study methodology.

The first stage consisted of executing an inundation prediction for the study area. For this purpose,
various rainfall scenarios were analyzed and a one-dimensional runoff interpretation was carried
out with the SWMM provided by the EPA. SWMM is a one-dimensional urban runoff model based
on hydraulic calculation with consideration of the drainage network system. In this study, SWMM
was used to calculate the overflows in the urban basin, which were used as target data of the NARX
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(Nonlinear Auto Regressive with eXogenous inputs) neural network. Accordingly, dynamic neural
network input and learning were executed based on the accumulative rainfall–accumulative outflow
and established so as to enable the prediction of accumulative overflow in real-time for specific
rainfall instances. In this study, data concerning rainfall in the Gangnam region (Seoul city, Korea)
which lasted for 6 h on 21 September 2010 were used and the accumulative overflow was predicted.
A two-dimensional flood analysis was conducted based on predicted accumulative overflow and, in
turn, the flood depth and velocity of flow were calculated for every 10 min period during this 2010
occurrence of heavy rain in the study area.

The second stage involved the prediction of a safe evacuation route in consideration of spatial and
temporal demand change. Inundation scope by duration, flood depth, and flow velocity were utilized
to assign a flood hazard grade for inundation scope, using the risk calculation method proposed by the
UK Department for Environment, Food and Rural Affairs (DEFRA) and the Environment Agency [25].
The flood hazard grade classified the evacuation by walking possibility per duration by overlapping
with the pedestrian road network within the study area. In addition, a methodology for identifying
the shortest route from buildings within the expected flood region to the designated evacuation center,
or a detour route, was proposed.

The materials utilized for the methodology for the evacuation route prediction proposed in this
study are shown in Table 1 below.

Table 1. Required data.

Objective Data Properties Data Collection Source

A. Flood prediction

Rainfall scenario Rainfall data in 10 min
units, duration

Calculation of probable
rainfall and Meteorological

Administration Agency data
Overflow per manhole

point
Overflow, duration of

velocity of flow SWMM interpretation result

Predicted accumulative
overflow

Accumulative overflow,
duration of velocity of

flow

Prediction result of NARX
neural network

Digital elevation map
(DEM)

Grid coordinates and
elevation

LiDAR detailed topographic
map

B. Evacuation route
selection

Building Coordinates, purpose www.juso.go.kr
Evacuation shelter Coordinates, area https://safecity.seoul.go.kr

Pedestrian road data Coordinates www.juso.go.kr

Predicted flood data Maximum and hourly
flood depth per grid

Comprehensive analysis
results of NARX and 2D

immersion analysis program

3. Results

3.1. Study Area

In this study, the drainage sectors of Nonhyeon, Yeoksam, Seocho-3, Seocho-4, and Seocho-5,
including the Gangnam station region, were selected as the study area. The total area of the study area
was 7.4 km2 and the areas of each drainage sector were 1.8 km2 for Nonhyeon, 1.9 km2 for Yeoksam,
1.8 km2 for Seocho-3, 1.1 km2 for Seocho-4, and 0.8 km2 for Seocho-5 (Figure 2).

The study area, that is, the Gangnam station area, is relatively low in comparison with the other
regions, and with its complex sewer network, it can be considered a place with a high inundation
risk [26]. Moreover, it has a history of inundation in excess of 1.4 km2 as evidenced by an inundation
trace tap caused by heavy rainfall on 21 September 2010. The major manhole points selected in this
study, taking account of the SWMM, overflow, and frequency, are depicted in Figure 3.

www.juso.go.kr
https://safecity.seoul.go.kr
www.juso.go.kr
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3.2. Artificial Neural Network-Based Inundation Forecasting

In this study, the flood overflow prediction model was established for the subject regions with
sufficient lead time in order to provide two-dimensional inundation mapping for calculating the
evacuation center location and evacuation route by hour. The NARX was used as the neural network.
NARX is a circulation-type dynamic neural network with a feedback connection surrounding multiple
neural network layers and has high learning ability for times series-based input data [27]. In this
study, the NARX neural network consisted of an input layer, one hidden layer, and a layer for output.
A single hidden layer neural network was used because there was insufficient data to use more than
two hidden layers. The input layer contains rainfall input data and feedback target data.

The input rainfall data for NARX used 24 probability rainfalls with a duration of 1 h, 80 probability
rainfalls with a duration of 2 and 3 h, and 18 observed rainfalls. The 24 sets of probability rainfall data
correspond to durations of 1 h in 10 mm increments of rainfall, ranging from 50 mm to 100 mm in
total. In addition, for rainfall, a rainfall duration of 2 or 3 h and a total of 80 rainfall events were used
with Huff’s temporal distribution data on rainfall frequencies of 2, 3, 5, 10, 20, 30, 50, 70, 80, and 100
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year periods. Each accumulated rainfall event was made from a single sequence of data (Figure 4a).
The target value data was used by accumulating SWMM simulation results for each rainfall event
and making them into a single sequence of data (Figure 4b). Following this, the input value and
target value of the neural network can be seen in Figure 4. The exogenous input for NARX training is
accumulative overflow in this study. A total of 103 manholes were considered and over 122 scenarios,
actual rainfall event data, and accumulative overflow data for each manhole were used for learning.
Data for training, validation, and testing were used by randomly extracting 70%, 15%, and 15% from
all data. To avoid overfitting, all of the aforementioned 122 rainfall runoff data sets were applied to
NARX, and the datasets for training, validation, and testing were chosen randomly. The prediction of
accumulative overflow for each manhole point was conducted for the 21 September 2010 rainfall.
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The NARX neural network has two main parameters; one is the delay time of input data (p)
and the other is the delay time of target (feedback) data (q). In this study, the values of 1, 3, and 6
were applied to q parameter, and the value of 0 was used for p parameter. As the time delay of target
data increased, the number of feedback input data was more plentiful. The accumulative overflow
prediction by manhole point for the study region was conducted with prediction time delays of T + 1
(10 min), T + 3 (30 min), and T + 6 (60 min). The prediction time delay could be selected by the user. It
was performed to confirm the prediction result of NARX according to the time delay. When using
the T + 1 delay time, two target value data were fed back to the input layer, and when using the T +

3 delay time, four target value data were fed back to the input layer. When using T + 6 delay time,
six target value data were fed back to the input layer. As the number of feedback data increased, the
learning time increased. With regard to the 2010 rainfall event subject to prediction, the SMWW result
was calculated at seven manhole points, and the NARX prediction was also made for seven manhole
points (Figure 5).

The results from the NARX neural network were evaluated together with statistical analysis of
the previously constructed input data. The performance was evaluated using the root mean square
error (RMSE) to compare the SWMM results with prediction model results as a basic index, as defined
in Equation (1). The RMSE is an index that quantifies the error between the simulation value and
prediction result. The RMSE at each manhole is shown in Table 2.

RMSE =

√∑ (
Qsimulated −Qpredicted

)2

n
(1)
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Table 2. Root mean square error (RMSE) at each manhole (21 September 2010 event).

Classification

Root Mean Square Error (m3/s) at Each Manhole

Manhole
1

Manhole
40

Manhole
41

Manhole
51

Manhole
57

Manhole
64

Manhole
103

Time
delay

T + 1 0.606 2.44 4.702 1.008 2.992 4.626 1.134
T + 3 0.270 3.491 4.131 0.628 1.677 2.471 1.013
T + 6 0.285 3.918 3.157 1.375 1.945 2.059 1.532

RMSE observations standard deviation ratio (RSR) was also considered for more statistical error
analysis. RSR standardizes RMSE using the standard deviation in the observations, and it combines
both an error index and some additional information. RSR was calculated as the ratio of the RMSE to
the standard deviation of the measured data, as shown in Equation (2).

RSR =

√∑ (
Qsimulated −Qpredicted

)2√∑
(Qsimulated −Qsimulated.mean)

2
(2)

The coefficient of determination (R2) was analyzed in addition to quantitative error analysis.
The coefficient of determination is a square value of the correlation coefficient (R) and ranges from
0 ≤ R2

≤ 1. This indicates that the simulated and predicted values have some constant tendencies,
but the two values are not identical.

The Nash–Sutcliffe efficiency coefficient (NSEC) was used to evaluate the prediction performance
of the model presented in this paper. The NSEC is a standardized value of residual relative degree
that ranges from −∞ < NSEC ≤ 1. The closer the NSEC value is to 1, the more it indicates an accurate
result of the prediction model. In Equations (1)–(3), Qsimulated refers to the simulated flow result,
Qpredicted refers to the predicted flow result, and Qpredicted refers to the mean of the predicted flow
result. The values of RSR, NSEC, and R-square are represented in Table 3.

NSEC = 1−

∑ (
Qsimulated −Qpredicted

)2

∑ (
Qsimulated −Qpredicted

)2 (3)

Table 3. Total overflow error analysis.

Classification
RSR Nash–Sutcliffe R-Square

T + 1 T + 3 T + 6 T + 1 T + 3 T + 6 T + 1 T + 3 T + 6

Time delay 0.199 0.129 0.151 0.963 0.985 0.979 0.969 0.985 0.982

Accumulative overflow prediction results confirmed that, when compared to the results of error
by delay time analysis, the longer the predicted delay time, the better the prediction ability. In the
case of two-dimensional interpretation through predicted accumulative overflow, a 60 min prediction
result delay time was used as well as LiDAR’s detailed topographical data and composite roughness
coefficient. Two-dimensional interpretation was conducted using the established topographical data
and predicted overflow data, and a 10 min simulation of the 21 September 2010 rainfall event with 6 h
duration was conducted. The process involved is shown in Figure 6.
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The results of conducting two-dimensional interpretation based on accumulative overflow
prediction results are given in Figure 7, and the prediction result appropriateness was validated
through the National Disaster Management System (NDMS) and inundation trace map. The suitability
of the simulation results and the flooding trace was found to be 81%. Therefore, the inundation
simulation results applied in this study were deemed to be feasible for application as baseline data for
selecting evacuation routes by recurrence hour and evacuation center.
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3.3. Spatial and Temporal Flood Hazard Analysis

Studies aiming to estimate the scale of damage loss arising from flooding have been carried
out comprehensively, including such approaches as the development of the mortality rate function
(e.g., [28,29]). However, studies of evacuation under life-threatening circumstances caused by floods
are rare [30–33]. Studies of the direct and indirect effect of flooding on people have focused primarily
on the inundation depth and velocity for evacuation by walking [25] (Table 4).

Table 4. Hazards as a function of inundation depth and velocity [25].

d × (v + 0.5) Flood Hazard Degree Description

<0.75 Low Caution
“Flood zone with shallow flowing water or deep standing water”

0.75–1.25 Moderate Dangerous for some (i.e., children)
“Danger: flood zone with deep or fast flowing water”

1.25–2.5 Significant Dangerous for most people
“Danger: flood zone with deep fast flowing water”

>2.5 Extreme Dangerous for all
“Extreme danger: flood zone with deep fast flowing water”

DEFRA and the Environment Agency [25] mentioned the need for the classification of flood
hazards and proposed a classification of inundation hazards that can be seen in Table 4. Otherwise,
research into evacuation speed during inundation or risk classification have been carried out in
preceding studies such as Kang [20], OFAT et al. [30], Ishigaki [31], Ishigaki et al. [32], and Lee et al. [34].
In this study, DEFRA and the Environment Agency’s [25] risk classification method was applied based
on inundation depth per hourly progress and velocity of flow via artificial neural network, and the
flood hazard result obtained is shown in Figure 8 below. This method makes it easy to evaluate flood
hazards based on the depth and flow velocity of the two-dimensional flood analysis and NARX results.
Other previous research results mentioned above can provide data for categorizing flood hazards,
but it is difficult to generalize because there are few test subjects, and experiments are conducted at
characteristic places.

After 1 h, only a small district was flooded and there were no regions that exceeded 0.75 in terms
of risk classification. However, after 2 h, there were some regions that exceeded a risk classification of
0.75. As can be seen in Table 5, regions with inundation risk increased rapidly between 1~2 h and
2~3 h.

Table 5. Time-dependent changes in flood hazard area.

Classification 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h

Area (m2) 0 71,625 150,600 150,825 150,925 151,475 151,575 151,750

Increment (m2) - 71,625 78,975 225 100 550 100 175
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3.4. Evacuation Route Analysis

In order to designate an evacuation route, there must be a point of departure and a destination.
In this study, a building within the maximum expected flood scope was set as the demand point.
The destination was the flood evacuation facility designated within the subject site. The area of
maximum expected flood scope in the study area, Gangnam station region, is 772,425 m2, and 1153
buildings are distributed within the expected scope. Location–allocation analyses have been utilized
to establish evacuation plans, including evacuation routes in multiple preceding studies, but this study
excluded quantitative analysis of evacuation demand and evacuation facility capacity.

Furthermore, as the assumption was made that evacuees would evacuate to the closest evacuation
facility, the closest facility analysis was utilized to assign the evacuation route. In addition, prohibited
pedestrian sector by hourly progress was set by overlapping flood risk regions identified in Section 3.3
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with road data, and was utilized as a barrier of network analysis. The results of the evacuation route
temporal and spatial variable analysis are given in Figure 9.
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In the event that evacuation is not carried out prior to flooding, the pedestrian evacuation hazard
region increases with the inundation progress, and the number of buildings from which evacuation by
walking was deemed impossible (dangerous) is shown in Table 6 below. After 2 h, 200 of the 1153
buildings distributed within the maximum inundation scope were deemed dangerous for evacuation
by walking. The time when buildings would be predicted to have the highest ratio of evacuation by
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walking danger would be after 3 h (22.12%). Results further indicated that an average of 15.51% of
buildings would be expected to face difficulty in terms of evacuation by walking.

Table 6. Analysis results for buildings with possibility of evacuation by walking by hourly progress.

Classification

Number of Buildings in Flooded Areas

Buildings Where
Evacuation by Walking

is Possible (a)

Buildings Where
Evacuation by Walking

not Possible (b)

Percentage of Buildings
Where Evacuation by
Walking not Possible

(b/a + b)

1 h 1153 0 0.00%
2 h 953 200 17.35%
3 h 898 255 22.12%
4 h 957 196 17.00%
5 h 958 195 16.91%
6 h 958 195 16.91%
7 h 958 195 16.91%
8 h 958 195 16.91%

Analyzing the evacuation route under the assumption that evacuation by walking would cause a
detour into dangerous regions, leading to the closest evacuation facility, the evacuation by walking
distance by hourly progress results are shown in Figure 10 below. Buildings where evacuation by
walking is impossible have been excluded from the evacuation by walking distance analysis in Table 6.
Prior to flooding, the average evacuation distance from 1153 buildings to the closest evacuation facility
was 478.85 m, and the longest evacuation distance was 1183.30 m. In the event of evacuation by
avoiding regions where evacuation by walking is impossible (dangerous) as flooding progresses,
it was determined that there would not be a significant change in the average walking distance by
hourly progress.
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However, analysis indicated that the longest evacuation distance would increase significantly
after 2 ~ 4 h, and that the occurrence of evacuation by walking hazard region (inundated buildings)
following inundation progress increased rapidly between 90 ~ 160 min, and then dropped slightly.
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Accordingly, the average evacuation by walking distance reached its maximum value at 140 min,
but the maximum evacuation by walking distance occurred at 210 min. The number of buildings
where evacuation by walking was impossible following evacuation by walking hazard region reached
a maximum at 150 min.

4. Discussion

4.1. Inundation Forecasting

The purpose of this study was to identify an evacuation route with consideration of spatial
inundation progress following the time lapse related to flooding after heavy rainfall. Moreover,
inundation progress was predicted by using a dynamic artificial neural network because, ultimately,
the aim was to provide a real-time evacuation route. This is because urban flood predictions
based on numerical analysis models provide accurate and precise results, but the necessary pre-
and post-processing takes quite some time. The accumulative overflow for manhole points was
predicted through use of the NARX neural network, and after conducting two-dimensional inundation
interpretation with the predicted value, an inundation map by hour was created. Comparing the
inundation trace map and the NDMS resident report point concerning the two-dimensional
interpretation results, appropriateness was judged to be 81%. By predicting the two-dimensional model
input data with the NARX neural network, it was possible to save time following one-dimensional
urban runoff interpretation. In this study, the inundation prediction via NARX neural network was
completed within 3 s, and in the same computer environment, an inundation prediction via SWMM
takes approximately 10 min. It can be applied to other river basins or stream floods if rainfall, flood
data, and a spatial distribution technique of flood depth are provided. The rainfall, flood volume,
and flood depth data can be calculated through a numerical analysis model or can be obtained from
observed values. In this study, the flood depth was predicted through a flood volume prediction
system using NARX and by linking a two-dimensional flood analysis model. It can be applied to other
water basins or flood types if the data can be pre-processed sufficiently.

In this study, the total flood volume of the rainfall input data was predicted in real-time using
the NARX neural network. This was then inputted into a two-dimensional flood analysis program
to calculate the flood map. It is different from other studies that predict the flood volume only for
rainfall events. Also, it has an advantage in that the predicted total flood volume is the sum of the
flood volumes predicted for each of the manhole points and so the flood risk for each point can be
identified quickly. Since the time may be depicted in the two-dimensional flood analysis simulation,
if the spatial distribution of the flood depth can be predicted in real-time, it could be a very practical
method. However, for the preparation of a two-dimensional inundation map in this study, the real-time
provision of evacuation route information via numerical analysis was still poor.

4.2. Flood Hazard and Walking Evacuation

An evacuation route was selected under the assumption that buildings distributed within the
maximum inundation scope were set as representing evacuation demand, and that people would
evacuate to the closest evacuation facility. In the case of the study area, it was observed that buildings
where evacuation by walking became impossible following inundation progress increased significantly
after 2 ~ 3 h. Regarding the detour evacuation route distance, it was observed that this increased
significantly after 2 ~ 4 h. Such analysis results show that adaptability and safety have to be ensured
in inundated situations by planning in a flexible manner following the occurrence and change of
evacuation by walking hazard regions in the process of selecting an evacuation route. Considering such
results, the methodology of this study has been deemed usable for the purposes of establishing an
evacuation plan that takes into account the situation after a disaster occurs. Although it can serve
to contribute to the achievement of substantiation when establishing evacuation plans in the future,
integrated analysis of occurrence and change in the evacuation by walking hazard region, distribution
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of buildings within the expected inundation region (evacuation demander), and the road network
is required for this. Moreover, as 10 min and 1 h inundation prediction data were utilized to assign
evacuation routes by hour in this study, the inundation progress of each point was not analyzed in
detail. Therefore, it is recommended that studies such as the development of a methodology for
evaluating the flood risk of pedestrian evacuation in a road network by analyzing the flooding progress
in detail (e.g., trend analysis and space–time cluster analysis) be conducted. Such a methodology could
lead to the development of an evacuation decision model for buildings in the expected flooding area
according to the progress of flooding.

The flood hazard classification method applied in this study [25] can be applied to various flood
types such as flash floods, coastal floods, and urban floods because it uses the relationship between
flood depth and flow velocity. However, studies based on experiments [20,31,32,34] suggest that the
inundation depth of a specific location (e.g., underground or stairs) or water level that an adult can
walk in is 30 ~ 50 cm. Therefore, careful notice must be taken when applying the flood hazard risk
classification of DEFRA and the Environment Agency [25]. Also, it is necessary to modify the standards
related to flood hazard to people through the collection of experimental data related to the safety of
people during a flood according to the specific location or their gender, age, and disability.

Evacuees often choose the wrong direction (due to personal wrong choice or leader follow effect)
due to panic or lack of evacuation information. To prevent this, it is important to provide real-time
evacuation information to evacuees. In this respect, real-time evacuation guidance using mobile
applications is drawing attention from researchers (e.g., [35–37]). By applying the methodology
proposed in this study, it is possible to minimize the casualties caused during the evacuation process by
selecting the evacuation route when flooding occurs. However, for real-time evacuation guidance, the
role of IoT (Internet of Things) technologies is important because it is necessary to provide the evacuee’s
location-based evacuation routes. Evacuation guidance and information related to IoT technologies
have recently attracted the attention of researchers and have been studied by Krytska et al. [38],
Zualkernan et al. [39], and Yin et al. [40], for example.

Meanwhile, “in rapid-onset disasters the time needed for evacuation is crucial” [41]. However,
in large-scale evacuation situations, time delays occur due to congestion (e.g., bottleneck effect).
Phased evacuation was suggested in a simulation-based previous study [42–44] as a method to reduce
the time delay due to congestion in an evacuation situation. Since this study focuses on the prediction
of the changing pattern of urban flooding according to the progress of flooding, it can be used to
establish a phased evacuation strategy.

5. Conclusions

This study aimed to perform inundation map forecasting with artificial neural network-based
methodology. In addition, it proposed a methodology for selecting an evacuation route by considering
temporal and spatial evacuation by walking hazard. Previous studies have not focused on the necessity
of temporal and spatial changes in the flood evacuation route, but this study once again demonstrates
that need. In addition, the evacuation route is determined according to the hazard of walking
evacuation, thus minimizing the hazard for evacuees during the evacuation process. The proposed
methodology is not a field test-based or practical application method for establishing a flood evacuation
plan, but it shows great potential in terms of efficiency. For example, if a further study can predict
not only urban runoff but also inundation map, the evacuation route can be calculated more quickly.
In addition, the proposed methodology can be extended to a model for calculating the spatial and
temporal changes in evacuation demand according to the flooding progress. It is envisaged that this
research will provide a basis for future comprehensive and cohesive research on flood evacuation
strategies according to the progress of flooding. In turn, research will lead to better preparedness and
response to flood evacuation problems.
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