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Abstract: Global river monitoring is an important mission within the remote sensing society. One of
the main challenges faced by this mission is generating an accurate water mask from remote sensing
images (RSI) of rivers (RSIR), especially on a global scale with various river features. Aiming at better
water area classification using semantic information, this paper presents a segmentation method for
global river monitoring based on semantic clustering and semantic fusion. Firstly, an encoder–decoder
network (AEN)-based architecture is proposed to obtain the semantic features from RSIR. Secondly,
a clustering-based semantic fusion method is proposed to divide semantic features of RSIR into
groups and train convolutional neural networks (CNN) models corresponding to each group using
data augmentation and semi-supervised learning. Thirdly, a semantic distance-based segmentation
fusion method is proposed for fusing the CNN models result into final segmentation mask. We built
a global river dataset that contains multiple river segments from each continent of the world based on
Sentinel-2 satellite imagery. The result shows that the F1-score of the proposed segmentation method
is 93.32%, which outperforms several state-of-the-art algorithms, and demonstrates that grouping
semantic information helps better segment the RSIR in global scale.

Keywords: convolution; encoder–decoder network; feature extraction; remote sensing image of river;
semantic fusion; semi-supervised learning

1. Introduction

Rivers play an important role in both nature and the human civilization system, as they connect
surface water bodies and deliver fresh water to ecosystems and societies in different districts [1,2].
Monitoring rivers globally can help us identify extreme river events and climate change, such as
flooding and drought, that have a lot of implications for human–nature relationships [3–7].

With the recent development of satellite technologies, remote sensing data have become available
for large-scale monitoring [8]. However, obtaining accurate global knowledge of the spatiotemporal
dynamics of rivers still remains challenging for several reasons [9,10]. Firstly, in situ gauge river
data is rarely available, and it is also sparsely distributed over different regions around the world.
This requires the development of new methods in order to learn efficiently from limited labeled
data [11]. Secondly, traditional methods such as threshold classification cannot precisely map a river’s
extent due to its variability over time [12]. For example, Figure 1 shows a series of remote sensing
images of a typical river (an actual river located in the northern part of the Republic of Colombia) within
a year. We can easily observe its typical characteristics, whereby the river and its surrounding land
cover show different reflectance spectral features over time. The image visualization was generated
using Sentinel-2 imagery, in a false color composite style with Band #9 (Band name: Water vapour),
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#7 (Band name: Vegetation Red Edge) and #3 (Band name: Green) (the false color images shown in
the rest of this paper follow same fashion), which is one of the common visualization methods for
multi-spectral data. The challenges to water mapping caused by variability become even more serious
when we monitor rivers on a global scale, since the spectral features of rivers can vary both across
different regions and across different time periods [13].
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Many existing studies on river mapping use two-band water indices [14]. The idea is to enhance
the water representation based on the reflectance characteristics of water. Several index methods
have been proposed, such as normalized difference water index (NDWI) [15] and its variant, modified
normalized difference water index (MNDWI) [16]. The index values are thresholded to differentiate
between water and land. The reflectance characteristics are dependent on water quality, which varies
across different regions, and thus the threshold is highly dependent on the specific study region under
consideration [17]. Moreover, the use of a water index results in similar representations for water,
shadow and snow [18], making large-scale monitoring even more challenging.

Pixel-based machine learning algorithms [19], such as Support Vector Machine (SVM) [20–22],
Decision Trees [23], Random Forest [24,25] and Quantile Regression Forests (QRF) [26,27] have also
commonly been used to detect rivers. Compared with the water index, machine learning methods are
better able to represent water characteristics by leveraging multiple bands available for the river in
RSI [28]. However, pixel-based methods ignore the spatial relationship between pixels, and thus are
highly likely to be impacted by noise in an RSI [29]. Additionally, image-level information, such as
shape and compactness, is cannot be acquired to help with classification in pixel-based machine
learning methods [30].

CNNs have been used in computer vision and remote sensing [31–33]. Compared to machine
learning methods, the concept of the receptive field has significantly improved the performance deep
learning methods by capturing the space and time relationship between each individual pixel and its
neighborhood [34]. The CNN-based method has also shown better performance for water mapping in
selected regions [35,36].

Ideally, with sufficient training data for rivers distributed over different regions and different
periods, a single deep learning model can be built for water detection at a global scale [37,38]. However,
in practice, the data is only available at specific water sites, leading to low performance on an unseen
water region [39]. One possible solution could be to let the segmentation process follow the model,
using similar water regions to the unseen water region. This idea attempts to enhance a specific type
of water’s representation during water/land segmentation.

The algorithm in this paper first proposes a transform and clustering method to capture the
semantic relationship of the RSIR. Starting from a set of labeled and unlabeled RSIR, a simple
encoder–decoder network (AEN) is proposed to capture the representative information of each RSIR,
by transforming the RSIR from a multi-band feature to single band feature (SBF) using AEN. Then,
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in order to capture the semantic relationship between SBF, the flattened SBF is a secondary dimension
transformed using t-distributed stochastic neighbor embedding (TSNE) [40], and then the labeled RSIR
are clustered into groups of RSIR by K-means [41].

To generate accurate water masks of RSIR, we propose a new learning framework for training
deep learning models and fusing results from different groups of RSIR. Firstly, different CNN models
are trained based on corresponding groups of RSIR clustered based on the semantic relationship of the
RSIR. During this processing, we specifically address the few-shot issues within the RSIR group by
proposing a semi-supervised learning method. That is, we first train an AEN model using unlabeled
RSIR. Then we initialize the parameters of the segmentation model (the feature extraction part) using
the estimated parameters from the AEN model. This method achieves faster training speed and greater
robustness compared with other supervised training methods.

Finally, the unlabeled RSIR targets are segmented by all CNN models, and fused with all the
segmentation into a final segmentation result. Here, a similarity-based fusion method is proposed to
combine multi segmentation into single segmentation result. The idea is to segment the unlabeled
RSIR combing the knowledge from both the nearest model in semantic space, and the surrounding
semantic models.

In this paper, we propose an ensemble deep learning method for global water detection. Compared
with common machine learning, and deep learning models, our method shows better performance in
generating accurate water masks on a global scale.

The rest of this paper is organized as follows. Section 2 presents the proposed method. Section 3
reports the experiment results and discussion. Section 4 concludes this paper.

2. Materials and Methods

2.1. Study Area and Data

To collect river data globally, we first built a global RSIR dataset from the Sentinel-2 Imagery,
and spent several months manually marking accurate water surface areas of river as ground truth
within each river imagery. The Sentinel-2 Imagery contains accessible high-resolution remote sensing
images that range from 10 m to 60 m; more detailed information is shown in Table 1.

Table 1. Detailed information for Sentinel-2 satellite imagery.

Parameter Type Detail

Sources Sentinel-2

resolution temporal 10 days
spatial 10 m, 20 m, 60 m

spectral range 0.04–0.24 µm
orbital altitude 786 km

In total, the dataset we built contains about 15,000 river samples, along with 2700 manual
ground truths.

As shown in Figure 2, the dataset includes different types of river from all continents. Specifically,
the locations we selected in each continent were spread across very different climates, and belonged to
different hydrological regions. We constructed the dataset by selecting locations from the Google Earth
Engine, and acquired remote sensing images covering one square kilometer areas from the Sentinal-2
satellite collected in 2016.

Figure 3 shows a zoomed in detail from the black circle area in Figure 2, located in the Northern
part of South America.

Figure 4 shows an example of the sample visualization and manual ground truth in the dataset.
Each sample contains a 96 × 96 × 9 reflectance characteristics matrix and a 96 × 96 ground truth matrix,
which represents a 1 km × 1 km area. The reflectance characteristics matrix contains nine sentinel-2
bands, with a resolution of 10 m and 20 m. These band ids are bands #2, #3, #4, #5, #7, #8, #8A, #11, #12.
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2.2. Proposed Method

In this section, we present the proposed methods for the global river segmentation task. Firstly,
Figure 6 shows the proposed semantic fusion structure.
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The definition of the input for the method is as follows: X = (p1, p2, . . . , pi), which represents
samples from the global RSIR dataset, including Xa ∈ X, which were labeled using a water mask,
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and Xb ∈ X, which were not labeled using a water mask. During the training process, the semantic
features of the RSIR are extracted by a proposed multi-peak style AEN (MAEN) structure-based semantic
feature extraction structure, and clustered into serval semantic groups. Then, serval segmentation
models are trained based on the RSIR samples corresponding to the semantic features within each
semantic groups. During the River segmentation process, the testing RSIR sample is first transformed
into semantic feature through MAEN. Based on the proposed ensemble learning-based similarity
fusion method, multi-segmentation results are fused into a single segmentation result based on the
semantic distance between the testing RSIR samples and each semantic group.

The rest of this section is organized as follows. Firstly, we proposed an AEN-based semantic
feature extraction structure. Secondly, we design a clustering process based on extracted semantic
feature, and train the models based on the clustered samples from Xa. Furthermore, we present a
semi-supervised learning based on information transform method to better initialized the CNN model.
Finally, we propose similarity-based fusion method for global RSIR segmentation based on CNN.

2.2.1. Semantic Feature Extraction Based on MAEN

The goal of this method is to extract an SBF from the multi-band RSIR that contains general
information for each individual RSIR sample. To achieve this, the model learns to recover the input
multi-band RSIR using an SBF matrix, which allows the output of the AEN to be similar to the input.

In this paper, the proposed MAEN structure is an enhancement of the standard AEN concept.
In Figure 7, the AEN-9 structure corresponds to a normal AEN structure with nine convolutional layers.
One possible way of improving the reconstruction ability of the AEN model is to increase the number
of layers; therefore, we designed the AEN-15 model, which includes 15 convolutional layers. In the
meantime, we changed the order of the layers, resulting in a multi-peak style AEN structure, which we
called MAEN.

The detailed structure of MAEN in Figure 7 is shown in Figure 8. The proposed structure
follows the Image AEN, which uses convolutional layers to achieve the band dimension transform.
In particular, and distinct from the normal V shape AEN, whereby the series of the convolutional layer
kernel sizes first gradually increases and then decreases in a V shape, we propose a multi-peak style
AEN (MAEN) for the SRIR task. The MAEN structure consists of several 96 × 96 × R layers, connecting
by 3 × 3 convolutional kernel.

Suppose there are X samples from the global RSIR dataset, and that each of the samples has p
pixels. As described above, the aim is for the output X’ of the MAEN to be the same as X, and the
middle layer output will be used in the next step, below.
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Figure 8. Construction of the proposed MAEN. The middle layer output is extracted as a
semantic feature.

2.2.2. Manifold Learning-Based Clustering

Suppose an l*m*n matrix M comprising the middle layer outputs of the MAEN, where we obtain
the SBF, which is used for semantic feature clustering. The input of this step will be a l*p matrix(p = m*n).
This is referred to as M′, and includes Ma

′ and Mb
′ corresponding to Xa and Xb.

To obtain more relationship information for the clustering process, the MSF matrix is first
transformed by manifold learning into a higher dimensional space, resulting in an l*q matrix M′′ ,
which includes Ma

′′ and Mb
′′ .

Then, the K-means-based clustering algorithm method is applied to divide Ma
′′ into serval

semantic groups, G = (g1, g2, . . . , gi); the center of each group is defined as C = (c1, c2, . . . , ci).
Thus, the semantic relationship of X is observed using K-means clustering.

2.2.3. Semi-Supervised Learning Based on Information Transform

Based on the above-mentioned description, the semantic relationship is given in different
groups as G = (g1, g2, . . . , gi). To fully use the group relationship, we train multiple CNN models
D = (d1, d2, . . . , di) for each group within G.

Due to the few shot issue, there may be fewer samples within a group. Thus, we propose a
semi-supervised learning method for transforming additional information from unlabeled data in
order to help create a model for better initialization, as shown in Figure 9. The idea is described as
follows. For a segmentation CNN model waiting for training, we first only keep the encoding part of
the model and build a decoding part that is symmetrical with the encoding part rebuilt with a AEN
model. Then, we train this AEN model well and transform the encoding part to the segmentation
CNN model for parameter initialization.

Additionally, data augmentation is applied during the training process, which shifts the sample
both in the horizontal and the vertical direction.Water 2020, 12, x FOR PEER REVIEW 8 of 18 
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2.2.4. Ensemble Learning-Based Similarity Fusion

To segment an unlabeled RSIR sample within Xb, we propose an ensemble learning-based
similarity fusion (ELSF) method that combines the semantic segmentation information from the
semantic grouping space based on the distance.

Figure 10 shows the basic idea of measuring distances in a two-dimensional (2-D) space. In our
case, the semantic space dimension N is greater than 2.

As mentioned above, in order to test a sample Xbi within Xb for the final semantic result, we first
obtain the individual output D(Xbi) using D models. The distance Li ∈ L between a test sample and a
group center ci is defined by (1):

Li =

√∑n

j=0
(Mb

′′ j − ci j)
2 (1)

To obtain the weight matrix for the semantic fusion, the weight matrix Wi ∈W is obtained from
Li ∈ L using a reverse softmax transform, as defined in (2):

Wi =
e−Li∑m

j=0 e−L j
(2)

The final semantic result F(Xb), which fuses D(Xbi), is calculated using (3):

F(Xb) =
∑m

i=0
Wi D(Xbi) (3)
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2.3. Four Algorithms (SVM, UNet, MultiResUNet, NFL) Used for Comparison with ELSF

The algorithms to be compared are SVM [42], UNet [43], MultiResUNet [44], and a non-fusion
learning method (NFL) described in (4).

SVM is a traditional machine learning method that is widely used in classification tasks [45].
UNet is widely used for semantic segmentation. Other improved architectures that are based on UNet
have been proposed in recent years. Here, we compare with MultiResUNet, which is a popular and
state-of-the-art variant of the UNet architecture for handling multiple-resolution data.

In our proposed algorithm, the final fusion segmentation combines the segmentation from all of
the group models using the ELSF method, as shown in (3). To show the efficacy of information fusion,
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we select an NFL method for comparison, using (4). The NFL method only considers the nearest group
model during the test image segmentation, rather than combining all of the group model fusions.

F(Xb) = D(Xbi) (4)

3. Results and Discussion

3.1. Experiment Setup

The training and testing processes were implemented with the Window 10 Python3 GTX2080
environment. The algorithm training parameters are shown in Table 2. Here, we used same learning
rate and loss function for the deep learning models.

Table 2. Parameters for the algorithm training processes.

Algorithm Parameter Type Parameter Set

SVM Kernel Type RBF

UNet Learning Rate 0.0001
Loss function Binary Cross Entropy

MultiResUNet Learning Rate 0.0001
Loss function Binary Cross Entropy

NFL Learning Rate 0.0001
Loss function Binary Cross Entropy

ELSF Learning Rate 0.0001
Loss function Binary Cross Entropy

3.2. Semantic Feature Extraction Based on MAEN

Figure 11 shows the semantic feature extraction results using MAEN. The reconstructed RSIR
images are visualized in a false color composite style with Bands #9, #7 and #3. The semantic features
are obtained from the middle layer, as shown in Figure 8. As shown in Figure 11, the MEAN is
able to reconstruct the RSIR, and the semantic features are highly related to the RSIR. Furthermore,
the middle layer outputs of the MAEN between the first and second row, and the third and fourth
column are highly related to each other, as the river visualization colors in the RSIR images are similar.
The improvement in these mapping results means that the proposed MAEN is able to extract the
semantic features from the RSIR.

To validate the MAEN performance with respect to feature extraction, we further calculated
the image reconstruction ability among the proposed MAEN architecture and two normal AEN
architectures, AEN-9 and AEN-15, as shown in Figure 7. The image reconstruction ability is defined
as follows. Suppose an m×n×p matrix A is defined as an RSIR image. Then, a is used as the AEN
model input, and reconstruction image B is acquired from the AEN model output. Thus, the difference
between each corresponding pixel in A and B can be used to validate the image reconstruction
performance, which is calculated as follows:

Diff(A, B) =
∑m

i=0

∑n

j=0

∑p

k=0

∣∣∣Ai, j,k−Bi, j,k
∣∣∣ (5)

The smaller the Diff(A, B) value, the better the image reconstruction ability. Table 2 shows the
Diff(A, B) distribution using 2000 random unlabeled river samples from the proposed dataset, through
different AEN model structures. For each random sample, we acquired the reconstruction image
using the three AEN models, and calculated the difference using (4). Thus, for each AEN model,
2000 difference values were generated in order to measure the image reconstruction ability. Then,
we first sorted the 2000 difference values of each AEN model, and calculated the average and the
median for each AEN model. The smaller the average value and the median, the better the image
reconstruction ability. Table 3 shows the distribution of difference values.
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As shown in Table 3, the average and the median for the Diff(A, B) of the AEFCNN model is smaller
than for the two normal AEN models, which demonstrates the image reconstruction performance of
the purposed AEFCNN model. Furthermore, AEN-15 is better than AEN-9 based on the distribution
value. The reason that AEN-15 has better reconstruction performance than AEN-9 is the increase in the
number of layers. One possible reason for MAEN being better than AEN-15 could be the multi-peak
style of the layers, which is the significant difference between MAEN and the normal AEN models.
The multi-peak style structure transforms the feature into a different shape, allowing the middle layers’
output to become more stable.

Water 2020, 12, x FOR PEER REVIEW 11 of 18 

 

Table 3. Image reconstruction performance. 

AEN Model 
Distribution Value 

Average Median 
AEN-9 6215.76 4120.43 

AEN-15 4109.92 2052.95 
MAEN 3778.49 1540.60 

 

 

Figure 11. Figures of RSIR image visualization (column 1). Semantic features from the middle layer 
of the MAEN (column 2). MAEN image reconstruction (column 3) during the training process. 

3.2. Semi-Supervised Learning Based on Information Transform 

The semi-supervised learning pre-trained method is compared with a non-initialized (random) 
pre-trained method. Figure 12 shows the training accuracy and loss curves during the model 
training process.  

Figure 11. Figures of RSIR image visualization (column 1). Semantic features from the middle layer of
the MAEN (column 2). MAEN image reconstruction (column 3) during the training process.



Water 2020, 12, 2258 11 of 17

Table 3. Image reconstruction performance.

AEN Model Distribution Value

Average Median

AEN-9 6215.76 4120.43
AEN-15 4109.92 2052.95
MAEN 3778.49 1540.60

3.3. Semi-Supervised Learning Based on Information Transform

The semi-supervised learning pre-trained method is compared with a non-initialized (random)
pre-trained method. Figure 12 shows the training accuracy and loss curves during the model
training process.Water 2020, 12, x FOR PEER REVIEW 12 of 18 
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Figure 12. Figures of (a) training accuracy curves and (b) training loss curves using different supervised
learning algorithms.

We repeated training for the models 10 times with different parameter initialization methods,
and selected the most common situations, along with the statistical average curves. The ‘random-A’
curve represents a training process result with a reasonable loss, and the segmentation result is close
to the training set. The ‘random-B’ curve represents a training process that results in a badly trained
model in which the loss is not low enough to segment the RSIR training samples. The ‘init’ curve
shows a training process using the semi-supervised learning pre-trained method, resulting in a good
model that segments the RSIR training samples well. The ‘random-avg’ and ‘init-avg’ curves represent
the average performance, and show a similar trend to that of the individual separate results. Above all,
the results show that the semi-supervised learning pre-trained method helps the training process by
managing the local minimum.

3.4. Global River Segmentation

We compared the proposed ELSF method, with SVM, UNet, MultiResUNet, and NFL methods
using the proposed dataset, including 2265 samples for training, and 616 samples for testing, following
an 80% training and 20% testing rule through seed-based random selection. In addition, we applied
10-fold cross-validation on the training set for model validation. Furthermore, in order to avoid
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overfitting during the model training process, the drop-out technique was incorporated into the models.
The idea of this technique is to randomly drop units from the neural network during training, thereby
avoiding model overfitting [46].

Specifically, during the training and validation process, the average precision of the 10-fold
cross-validation for the proposed ELSF method was 93.24%, thus proving the stability of the proposed
ELSF model.

Next, we will explain the detail of the semantic fusion results during the testing process.
Figure 13 shows the semantic fusion process of ELSF method with a test sample. Each subplot

represents a test sample segmentation result that uses different clustering trained CNN model.
Each subtitle contains the information as ‘Group-ID__TestSample-to-Center-Distance__F1-score’.

For this test sample, Group-ID #5 shows the shortest distance between the test sample and the
clustering group center. The F1-score of the segmentation result using this model is 0.696, which is the
highest score among the groups, and shows the correlation between the semantic distance and the
distance-based segmentation performance. The NFL method F1-score of this test sample is taken from
the closest model, which is Group-ID #5, as shown in Figure 14. The ELSF method aims to combine the
segmentation results from all the models in order to gather all of the information in a reasonable way.
The ELSF result shows the F1-score for 0.7184, and the improvement can be seen in the center part of
these RSIR samples, compared with the other segmentation results in Figure 14.

Figure 15 shows the binary results of the same test sample from Figures 13 and 14. Since the CNN
model output is a value that ranges from 0 to 1, we consider values higher than 0.5 to be water pixels,
and those equal to or lower than 0.5 to be land pixels. Then, we are able to calculate the F1-score using
the segmentation results of different methods according to the ground-truth label of the test sample.
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ground truth, MultiResUNet, NFL, ELSF segmentation fraction results (row 2).

We also compare the F1-score of the proposed ELSF method with other methods, as shown in
Figure 16. Each point within the scatterplot figure represents the F1-scores of a test sample using ELSF
and a comparison method. The more the points are located on the top-left side of the diagonal dotted
line, the better the performance the ELSF in comparison with the comparison method. In the SVM vs.
ELSF and UNet vs. ELSF scatterplots, ELSF performs significantly better than the compared methods.
In the MultiResUNet vs. ELSF scatterplot, although the architecture improvement exists from UNet
to MultiResUNet, still more than half of the points have a higher F1-score in the UNet-based ELSF,
when compared with MultiResUNet. In the NFL vs. ELSF scatterplot, it can be seen that the points are
mainly located near the diagonal dotted line. Additionally, in the top-right corner of the NFL vs. ELSF
scatterplot, slightly more points appear on the top-left side of the diagonal dotted line. Additionally,
the point within the green circle represents a testing sample coming from the eastern coast of Brazil;
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this region does not appear in the training set, and the ELSF model has the better F1-score than the
comparison models for this sample. This proves that compared to NFL, the idea of the ELSF adding
the space information of the surrounding semantic models into the segmentation process helps with
the RSIR segmentation task.

Finally, the average performance of the proposed ELSF method and other comparison methods
is shown in Table 4. The results show that the NFL performs better than the UNet and UNet-based
MultiResUNet. NFL is better able to learn the semantic information from a similar RSIR clustering
deep learning model. Furthermore, the proposed ELSF outperforms the other methods, because ELSF
is able to combine the information from each semantic RSIR clustering deep learning model, and NFL
only contains the closest clustering model information. Thus, similar semantic information being
located in all the semantic groups helps the segmentation process of the ELSF method.
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Table 4. Comparison of segmentation among different algorithms.

Algorithm Precision Recall F1

SVM 85.61 95.61 87.63
UNet 90.42 95.71 91.27

MultiResUNet 92.56 94.03 91.59
NFL 92.01 95.73 92.76
ELSF 92.84 95.82 93.32



Water 2020, 12, 2258 15 of 17

4. Conclusions

We first presented an AEN-based semantic feature extraction structure. Then, a clustering-based
semantic process method was proposed in order to achieve better RSIR sample grouping. Thirdly,
a semi-supervised learning method based on information transformation was proposed to better
initialize the CNN model with the aim of improving the convergence rate with a minimum of local
handling. Finally, a similarity-based fusion method for global RSIR segmentation based on trained
CNN models was proposed with the aim of achieving a better segmentation result.

Most importantly, we proposed a framework for solving the segmentation challenge for various
types of RSIR at a global scale. The paper provides a solution that reasonably combines the semantic
information used for segmentation, and an enhanced training technique based on semi-supervision to
better handle local minima. Better ELSF performance can be expected, and river monitoring research
can be set up over long periods of time if larger numbers of ground-truth samples are available for
clustering and training process. Furthermore, higher spatial and temporal resolution satellite data
such as World View-2(WV2) data may help to achieve river mapping at higher resolution. This needs
to be explored through further research.
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