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Abstract: A reasonable rain gauge network can provide valid precipitation information that reflects
the spatial and temporal fluctuation characteristics for a given basin. Thus, it is indispensable for
designing an optimal network with a minimal number of rain gauges (NRGs) in an optimal location
as a means of providing reliable rainfall records, both in terms of the areal average rainfall and
the spatiotemporal variability. This study presents a methodological framework that couples the
ordinary kriging (OK) method and spatial correlation approach (SCA) to optimize current rain gauge
networks, which involves the deletion of redundant gauges and the addition of new rain gauges in
the ‘blank’ monitoring area of a basin. This framework was applied to a network of 38 rain gauges
in the Jinjiang Basin in southeast China. The results indicated that: (1) the number of rain gauges
was reduced from 38 to 11 by using the OK method to determine the redundant rain gauges, which
were removed to obtain the ‘base’ rain gauge network. The base rain gauges were mainly distributed
in the midstream of this basin. (2) The SCA and OK were employed for obtaining the number and
location of new rain gauges in the ‘blank’ monitoring region, respectively. Two new rain gauges in
the ‘blank’ monitoring region were identified. One rain gauge was located near the Anxi hydrological
station and the other was located in the lower reaches of Anxi sub-basin, respectively. The locations
of the two new rain gauges were proven to be reasonable. The number of optimal rain gauges in the
Jinjiang Basin was increased to 13. The method proposed in this study provides a novel and simple
approach to solve the problems of redundant rain gauges and blank monitoring areas in rain gauge
networks. This method is beneficial for improving the optimization level of rain gauge networks and
provides a reference for such an optimization.

Keywords: rain gauge network optimization; ordinary kriging; spatial correlation approach;
Jinjiang Basin

1. Introduction

The accurate estimation of rainfall in a given region (or basin) is an important and challenging
task [1,2]. And spatial distribution of the rain gauge is a vital factor in providing reliable areal
rainfall [3,4]. The rain gauge network provides the necessary real-time precipitation information. It is
not only essential for improving the accuracy of flood forecasting and hydrological model simulations,
but also for water resource management, including the risk assessment of regional freshwater resources,
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reservoir operation and prediction, and so forth [5]. The tools for measuring rainfall can be divided
into three categories: rain gauges [1], meteorological radars [6,7], and remote sensing satellites [8,9].
Meteorological radars and remote sensing satellites can describe the spatiotemporal variation of
large-scale rainfall by high-resolution measurements. However, there are some factors that influence
the measurement precision [6,10], such as measurement error, chaotic noise, and so on [11,12].
The precipitation records obtained from rain gauges are often used to verify the accuracy of rainfall
data estimated from meteorological radars and remote sensing satellites [1,2,10,13]. A reasonable rain
gauge network is important for rainfall estimation. However, due to the limitations of construction
and maintenance costs, the number and location of rain gauges in some basins are insufficient and/or
unsuitable [1]. Hence, it is necessary to redesign rain gauge networks in appropriate numbers and
locations for improving the precision of rainfall estimations in basins.

The optimization of rain gauge networks is largely focused on the removal of redundant stations.
The approaches that are widely used for deleting redundant gauges can be divided into three categories.
The first category is the multi-criteria method, which mainly optimizes the network according to a total
objective and multiple criteria [2,14,15]. The second category is the application of entropy, which is used
to: (i) measure the spatial information between rain gauges, (ii) evaluate the information that is sufficient
or insufficient, and (iii) subsequently optimize the gauge network [2,16–19]. The third category is
the ordinary kriging (OK) method, which aims to optimize a rain gauge network by identifying the
suitable variogram models according to different rainfall characteristics. Generally, the kriging error
is often used as the criteria for redesigning the rain gauge network [12,20,21]. Although the above
mentioned methods provide some reference for optimizing the rain gauge networks, they focus on
the removal of redundant rain gauges, and do not consider the existence of ‘blank’ monitoring areas
in a basin [16,17,22]. If some ‘blank’ monitoring areas exist, the error associated with the surface
rainfall in a basin can increase, thus affecting the accuracy of the hydrological simulations and flood
forecasting [15]. In view of this, the optimization of rain gauge networks should not only consider
the removal of redundant rain gauges but should also increase the installation of new rain gauges in
‘blank’ monitoring areas.

Recently, Nazaripouret et al. [23] used the spatial correlation approach (SCA) to optimize the rain
gauge network in Iran and found that the method could effectively solve the problems of monitoring
‘blank’ areas and obtaining new rain gauges in unsampled areas. However, this study was highly
subjective in determining the specific location of new rain gauges. The OK method, a widely used
spatial interpolation method, has a good performance for interpolation and prediction, and has been
widely used to determine redundant rain gauges and the location of new rain gauges [8,14,19,20].
At present, there are a few hybrid methods to determine the optimal rain gauge network for a given
region. Based on this, the coupling of the OK method with the SCA is proposed in this study as an
attempt to meet the requirements of a well-optimized network, which includes reducing the redundant
rain gauges and adding new rain gauges to blank monitoring areas. Accordingly, the objectives of
the study are to: (1) remove any redundant rain gauges using the OK method from the current rain
gauge network, (2) use SCA to identify the number of new rain gauges that should be set in the blank
monitoring areas, and (3) determine the location of new rain gauges using the OK method.

2. Material and Methods

2.1. Study Area and Data

The Jinjiang Basin (24◦31′–25◦32′ N, 117◦44′–118◦47′ E) is located in Fujian Province on the
southeast coast of China. The basin covers an area of 5629 km2 and includes two tributaries: the Dongxi
and Xixi rivers. The upstream of the Shilong hydrological station was chosen as the research region
for this study, which controls an area of 5042 km2 [24]. There are 38 rain gauges and 3 hydrological
stations in the study area (Figure 1). The study area is located in the subtropical monsoon climate zone,
which has average annual temperature of 20 ◦C and average annual rainfall of 1686 mm, 71.2% of
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which falls from April to September. The elevation varies from 10 m to 1580 m above sea level, and
the terrain trends from west to east. The dominant land cover types include forest, orchard, cropland,
and urban [25].

Water 2020, 12, x FOR PEER REVIEW 3 of 15 

 

region for this study, which controls an area of 5042 km2 [24]. There are 38 rain gauges and 3 
hydrological stations in the study area (Figure 1). The study area is located in the subtropical 
monsoon climate zone, which has average annual temperature of 20 °C and average annual rainfall 
of 1686 mm, 71.2% of which falls from April to September. The elevation varies from 10 m to 1580 m 
above sea level, and the terrain trends from west to east. The dominant land cover types include 
forest, orchard, cropland, and urban [25]. 

The monthly rainfall data for the period between 2001 and 2010 from the 38 rain gauges in the 
Jinjiang Basin were used in this study and were offered by the Meteorology Agency of Fujian 
Province. Of the 38 rain gauges, 14 are located in the Anxi sub-basin, 16 are located in the Shanmei 
sub-basin, and 8 are located in the Shilong sub-basin (Figure 1). The average basin area controlled by 
each rain gauge is 132.43 km2. 

 
Figure 1. Location of the rain gauges in the Jinjiang Basin. 

2.2. Methods 

In this section, we present the methodological framework of the OK–SCA to optimize the current 
rain gauge network in the research area. A brief step-by-step description is as follows, as illustrated 
in Figure 2: (1) remove any redundant gauges from the current rain gauge network to obtain the m 
base rain gauge network by random sampling and the OK method (see Section 2.2.1), (2) obtain the 
number of n new rain gauges that should be set in the blank monitoring region of the base rain gauge 
network according to the SCA (see Section 2.2.2), (3) obtain the kriging standard error (KSE) of the 
base rain gauges through the OK method, and determine the location of n new rain gauges and verify 
their rationality (see Section 2.2.3). Finally, the optimal network of (m + n) rain gauges is designed by 
the combined OK–SCA. 

Figure 1. Location of the rain gauges in the Jinjiang Basin.

The monthly rainfall data for the period between 2001 and 2010 from the 38 rain gauges in the
Jinjiang Basin were used in this study and were offered by the Meteorology Agency of Fujian Province.
Of the 38 rain gauges, 14 are located in the Anxi sub-basin, 16 are located in the Shanmei sub-basin,
and 8 are located in the Shilong sub-basin (Figure 1). The average basin area controlled by each rain
gauge is 132.43 km2.

2.2. Methods

In this section, we present the methodological framework of the OK–SCA to optimize the current
rain gauge network in the research area. A brief step-by-step description is as follows, as illustrated
in Figure 2: (1) remove any redundant gauges from the current rain gauge network to obtain the m
base rain gauge network by random sampling and the OK method (see Section 2.2.1), (2) obtain the
number of n new rain gauges that should be set in the blank monitoring region of the base rain gauge
network according to the SCA (see Section 2.2.2), (3) obtain the kriging standard error (KSE) of the
base rain gauges through the OK method, and determine the location of n new rain gauges and verify
their rationality (see Section 2.2.3). Finally, the optimal network of (m + n) rain gauges is designed by
the combined OK–SCA.
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2.2.1. Ordinary Kriging

The OK method is based on the theory of regional change, which can provide many statistical
approaches that quantify the degree of correlation between rain gauges [19,26–28]. It has been
widely used in the rainfall data interpolation in the large basins [29–31]. The OK method was
used for estimating the value of each unsampled points through the value at rain gauge around
it. According to the spatial position of the rain gauge along with the degree of correlation between
all gauges, we assigned different weights to each rain gauge, and used a sliding weighted average
for estimating the precipitation of the unsampled locations. The kriging estimation is defined as
Equation (1) [29,32]:

Z(x0) =
N∑

i=1

λiZ(xi) (1)

where Z(x0) is the value of estimation value at the unsampled point x0, which is a linear combination
of the observation at N neighbor rain gauges, Z(xi) refers to the observed rainfall value of rain gauge
xi; N refers to the NRGs, and λi represents the weighting of each rain gauge xi corresponding to
unsampled point.

In order to study the effect of various rain gauge numbers and the distributions for rainfall
accuracy, NRGs in eight levels were chosen for the study as: 10%, 20%, 30%, 40%, 50%, 60%, 75%, and
100% (Table 1). For each rain gauge number level, 100 sets of random rain gauge combinations were
determined by the geostatistical analyst module in ArcGIS 10.2 (ESRI, Redlands, CA, USA). Then,
the OK interpolation was performed for 100 sets of rain gauges for each number level based on the
average monthly rainfall of each rain gauge. Thus, the results were obtained from 100 sets of rain
gauges under each rain gauge number level.

Table 1. Number of rain gauges in different levels.

Density
Degree

Percentage of Rain
Gauges (%) NRGs Randomly

Selecting Times
Rain Gauges Density

(km2/Rain Gauge)

1 10 4 100 1258.10
2 20 8 100 629.05
3 30 11 100 457.49
4 40 15 100 335.49
5 50 19 100 264.86
6 60 23 100 218.80
7 75 29 100 173.53
8 100 38 1 132.43
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In this study, cross-validation statistics including the mean standardized error (MSE),
root-mean-square standardized error (RMSS), and average standard error (ASE) were computed
for assessing the interpolation precision of different NRG levels. The MSE, RMSS, and ASE can be
defined as:

MSE =

N∑
i=1

(Z(x0) −Z(xi)/σ(x0)

N
(2)

RMSS =

√√√√√ N∑
i=1

{
[Z(x0) −Z(xi)]/σ(x0)

}2

N
(3)

ASE =

√√√√√ N∑
i=1
σ2(x0)

N
(4)

where σ(x0) is the kriging variance for location x0. The MSE represents the deviation between the
predicted rainfall and the measured rainfall; when the value becomes smaller, the performance of
accuracy for forecasting model in describing the rainfall data is better. The RMSS indicates the standard
square-root to predict the error size of rainfall, whereby the closer to unity the value is, the better the
interpolation effect is. The ASE is used to evaluate the deviation between the predicted rainfall and
the measured rainfall, whereby the closer the numerical value is to zero, the smaller the deviation
is. The average value of each cross-validation statistic for the different numbers of rain gauges were
subsequently analyzed. Finally, the different NRGs and their corresponding cross-validation statistics
were used for a curve analysis. The NRGs corresponding to the curve inflection point m is the number
of base rain gauges in this research area [20]. According to the 100 sets of rain gauge using random
experiment, we selected the MSE that closed to 0 as the optimal distribution in the base rain gauges.

2.2.2. Spatial Correlation Approach

The SCA was first applied to the optimization of rain gauge networks by Kagan [33–35],
who suggested that the SCA can determine the number of additional rain gauges reasonably in
blank monitoring areas. Therefore, the SCA was adopted in the study to determine the optimal
NRGs. To ensure the effectiveness of the spatial correlation function, this method requires horizontal
uniformity and isotropy between the rain gauges in the study area. By meeting these criteria only,
the distance correlation between two rain gauges can be expressed as Equation (5) [34]:

ρ(d) = ρ0e−d/d0 (5)

where d0 is the theoretical distance; ρ(d) refers to the correlation between two rain gauges with their
distance of d (i.e., the correlation for a unit rainfall over a short distance); ρ0 is the correlation coefficient
corresponding to the zero distance. The correlation coefficient between the i-th rain gauge and the j-th
rain gauge is determined by the function of ρ(d). It is also found that the ρ0 is close to 1 for very short
distances between two stations; therefore, the value of ρ(d) is between 0 and 1. Moreover, the ρ0 and d0

provide a foundation for evaluating the precision of a rain gauge network [34].
In order to determine the number of new rain gauges, the spatial interpolation error (Ei) was

adopted as a criterion, which can be expressed as Equation (6) [23,35,36]:

Ei = Cv

√
1
3
[1− ρ0] + 0.52

ρ0

d0

√
S
n

(6)

where Cv is the coefficient of variation, n represents the number of new rain gauges in this basin, and S
refers to the total area of this basin.
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Supposing that there are m rain gauges in a basin with a total area of S, and that the spacing of the
rain gauges is a square grid, the edge length (r) of the square network is calculated by the following
Equation (7):

r =

√
S
m

2.2.3. Determination of the New Rain Gauge Location Based on the OK

By considering the possibility of areas in the basin that may not be monitored by the base rain
gauge network, this research employed the SCA to calculate the number of n new rain gauges should
be set up. The specific location of the new rain gauge was then determined by using OK. The detailed
process is illustrated in Figure 2, and the particular steps can be seen below:

Step 1: Based on average monthly rainfall from 2001 to 2010 of m base rain gauges, the KSE was
obtained using OK interpolation [18].

Step 2: Fishnets [23,28] were constructed with a specified side length of each grid, which was based
on the edge length (r) of the square grid (Equation (7)). The sum of the KSE of each grid within
the basin was then calculated.

Step 3: The center point of each grid within the basin was obtained by the Mean Center feature in
ArcGIS 10.2.

Step 4: The KSE of each grid was sorted from large to small, and the center points of the n grid with
the larger summed KSE were determined as the location of the new rain gauges.

In order to further verify the rationality of the location of the new rain gauges, we predicted the
average monthly rainfall of n new rain gauges by the OK interpolation based on the original rain
gauges. In the case of m and (m + n) rain gauges, step 1 was used to obtain their respective KSE
maps [18], and the three cross-validation statistics (i.e., MSE, RMSS, and ASE) for (i) m rain gauge
scenario, and (ii) (m + n) rain gauge scenario were then calculated, respectively. Finally, the trends of
each indicator for these two scenarios were analyzed. If the MSE is close to zero, the closer the RMSS is
to 1, the smaller the ASE is, and the more accurate rainfall estimation of the scenario is. If the statistic
result based on (m + n) rain gauges is better than that of the m rain gauge scenario, this indicates that it
is reasonable to determine the number and its location of new rain gauges using OK–SCA [20].

3. Results and Discussion

3.1. Selection of the Base Rain Gauge Network

Based on the monthly rainfall value of the 38 rain gauges, we adopted three cross-validation
statistics (MSE, RMSE, and ASE) to comprehensively compare the connection between different
numbers and interpolation errors, which enabled us to ascertain the optimum number of base rain
gauges. The relationship between the cross-validation statistics and the NRGs is presented in Figure 3,
which shows that the indicator values of MSE, RMSS, and ASE [20] generally exhibited downward
trends with the increase in the NRGs. This indicates that the NRGs had a greater impact on the accuracy
of the rainfall interpolation, which is similar to the findings of relevant studies [32,35]. Xu et al. [1] and
Wang et al. [32] suggested that the precision of hydrological simulation tends to be stable when the
NRGs reaches a certain threshold.



Water 2020, 12, 2252 7 of 13

Water 2020, 12, x FOR PEER REVIEW 7 of 14 

 

result based on (m + n) rain gauges is better than that of the m rain gauge scenario, this indicates that 
it is reasonable to determine the number and its location of new rain gauges using OK–SCA [20]. 

3. Results and Discussion 

3.1. Selection of the Base Rain Gauge Network 

Based on the monthly rainfall value of the 38 rain gauges, we adopted three cross-validation 
statistics (MSE, RMSE, and ASE) to comprehensively compare the connection between different 
numbers and interpolation errors, which enabled us to ascertain the optimum number of base rain 
gauges. The relationship between the cross-validation statistics and the NRGs is presented in Figure 
3, which shows that the indicator values of MSE, RMSS, and ASE [20] generally exhibited downward 
trends with the increase in the NRGs. This indicates that the NRGs had a greater impact on the 
accuracy of the rainfall interpolation, which is similar to the findings of relevant studies [32,35]. Xu 
et al. [1] and Wang et al. [32] suggested that the precision of hydrological simulation tends to be stable 
when the NRGs reaches a certain threshold. 

In order to further ascertain the optimal combination and location of the selected 11 rain gauges, 
we used the OK method to determine the distribution of the base rain gauges. The rain gauges with 
an MSE value close to zero were considered as those comprising the base rain gauge network. The 
specific distribution locations are displayed in Figure 4, which shows that 9 rain gauges were 
distributed in the upstream of the basin and the other two rain gauges were located in the lower 
reaches. 

4 8 11 15 19 23 29 38
1.0

1.2

1.4

1.6

1.8

M
SE

Rain gauge number

 

4 8 11 15 19 23 29 38
0.90

0.95

1.00

1.05

R
M

SS

Rain gauge  number

 

4 8 11 15 19 23 29 38
0.96

0.98

1.00

1.02

1.04

A
SE

Rain gauge  number

 

(a) MSE (b) RMSS (c) ASE 

Figure 3. Three cross-validation statistics of MSE (a), RMSS (b) and ASE (c) under different rain gauge 
numbers combination. 

Figure 3. Three cross-validation statistics of MSE (a), RMSS (b) and ASE (c) under different rain gauge
numbers combination.

From the perspective of the statistical indicators, a smaller MSE value in the results indicates a
better prediction effect of the interpolation. It can be seen from Figure 3 that the MSE, RMSS, and ASE
values vary significantly for 4 rain gauges in comparison to those for 11 rain gauges. The MSE values
fluctuated slightly from 11 rain gauges to 38 rain gauges. The closer the value of the RMSS is to 1,
the better the performance of the interpolation is. The RMSS values of the different rain gauge numbers
fluctuated around 1, and a significant declining trend was observed when the NRGs was increased
from 4 to 11. Moreover, the RMSS values remained stable when there were 11 or more rain gauges.
A smaller ASE value indicates a better interpolation accuracy. The ASE value was relatively small for
11 rain gauges. This is because we randomly selected 100 combinations for each rain gauge number
level, and the average statistical indicators were obtained for different rain gauge numbers. We found
that the ASE value based on the interpolation results of 38 rain gauges was not very small because the
rain gauges were unevenly distributed. However, the ASE value would have been larger for a network
with less rain gauges. This is similar to the study by Muhamad et al. [36], who found that the value
of evaluation index was not necessarily the smallest obtained at the maximum or minimum NRGs.
Actually, their lower values of these statistical indices generally occurred between the minimum and
maximum NRGs. Therefore, considering construction and maintenance costs, 11 was selected as the
optimal number of base rain gauges through the analysis of three cross-validation statistics.

In order to further ascertain the optimal combination and location of the selected 11 rain gauges,
we used the OK method to determine the distribution of the base rain gauges. The rain gauges with an
MSE value close to zero were considered as those comprising the base rain gauge network. The specific
distribution locations are displayed in Figure 4, which shows that 9 rain gauges were distributed in the
upstream of the basin and the other two rain gauges were located in the lower reaches.
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3.2. Number of New Rain Gauges Using the SCA

It can be seen from the results in Section 3.1 that, overall, the base rain gauge network could
meet the required rainfall accuracy. However, there was a large estimation error of rainfall in some
areas. For instance, the KSE value of some rain gauges in the basin reached a maximum of 1.20,
which indicates that there was still a local monitoring gap in the base rain gauge network.

Based on above network, the NRGs, the mean distance (MD), and the mean correlation (MC) of the
selected 11 gauges were calculated using the SCA. The statistics are shown in Table 2, which reveales that
the MC decreased as the MD increased, which was consistent with the results of Bakhtiaria et al. [34].
Hence, the results could be used to plot the correlation between gauges in this study area. Moreover,
we found that the MC value was largest (0.962) in the range of 12 km to 15 km, and that the MC
value was not lower than 0.900 within 51 km. The correlation between the rain gauges was higher
overall. In terms of the NRG value, the distance between the rain gauges with the maximum NRGs
was between 30 km and 45 km. However, there was no distribution of rain gauges in the intervals of
0–6 km, 15–18 km, and 39–42 km.

Table 2. Statistical result of the number of rain gauges (NRGs), the mean distance (MD), and mean
correlation (MC) at the rain gauges.

Distance (km) NRGs MD MC

0~3 0 0 0
3~6 0 0 0
6~9 2 8.080 0.959
9~12 1 9.826 0.958

12~15 4 13.869 0.962
15~18 0 0 0
18~21 2 20.250 0.953
21~24 4 21.788 0.937
24~27 2 25.956 0.923
27~30 4 27.956 0.934
30~33 6 31.138 0.933
33~36 1 33.616 0.905
36~39 6 37.004 0.917
39~42 0 0 0
42~45 6 42.758 0.908
45~48 5 46.567 0.910
48~51 4 49.973 0.902
51~54 1 53.172 0.836
54~57 3 55.934 0.845
57~60 2 58.028 0.896
60~63 1 61.890 0.875

As shown in Figure 5, the relationship between the MC and MD exhibited an exponential
relationship. The correlation coefficient (R2) of the fitting function reached 0.7691, thus indicating that
the MD and MC had a significant correlation. The correlation coefficient was similar to that reported
by Nazaripour et al. [23] (R2 of 0.810) and Bakhtiaria et al. [34] (R2 of 0.680). Additionally, according to
Equation (5), the spatial correlation function of the study area was obtained, whereby ρ0 was 0.9838
and d0 was 500 km.
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Figure 5. Scatter plots of the MC and MD between rain gauges.

In order to obtain the amount of new rain gauges, we used Ei error criterion. When Ei was set to a
confidence level of 85%, the average error of the region was 1.41% for the study area. This average error
was introduced into Equation (6) and the amount of new rain gauges n was equal to two, as shown in
Figure 6.
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3.3. Location of New Rain Gauges Based on the OK

Fishnet, OK, and KSE maps were adopted to determine the location of the two new rain gauges
(Figure 4). Xu et al. [19] indicated that it is instructive to locate unsampled rain gauges with the highest
error of each grid. In the study, one new rain gauge (P1) was located near the Anxi hydrological
station, and the other (P2) was located in the lower reaches of Anxi sub-basin. To verify the rationality
of location of the two new rain gauges (P1 and P2), the values of three cross-validation statistics
(MSE, RMSE, and ASE) for the networks of the base 11 rain gauges (N11) and the 13 rain gauges
which included the base 11 rain gauges, P1 and P2 (N13_P1), were calculated based on their KSE
values that obtained by the OK interpolation. Table 3 shows that the RMSS value for the N13_P1
was closer to 1 than that of the N11, whereas the MSE and ASE values were comparatively smaller.
Overall, the prediction result of N13_AX was better than that of the N11. Additionally, based on the
comparisons between the different rainfall gauge networks (Figure 7), it revealed that the two new
rain gauges were very important for the rainfall prediction across the entire basin, and significantly
reduced the interpolation error of the basin. The N13_P1 can better represent the rainfall distribution
of the entire basin, which confirms the rationality of the location of the new rain gauges.
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Table 3. Cross-validation statistics of the base rain gauge network and its optimal network.

Scenarios Description MSE RMSE ASE

N11 The network of base 11 rain gauges 1.5850 0.9503 0.9578

N13_P1 The network includes P1, P2 and the
base 11 rain gauges 1.4559 0.9620 0.8767

N13_AX The network includes Anxi, P2 and
the base 11 rain gauges 1.5173 0.9569 0.9207
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However, it is noteworthy that the new rain gauge P1 is located close to the Anxi rain gauge.
The values of three cross-validation statistics (MSE, RMSE, and ASE) for the network of 13 rain gauges
which included Anxi, P2, and the base 11 rain gauges (N13_AX) were also calculated. The interpolation
results (Table 3) indicated that there were significant improvements in the values of MSE, RMSE,
and ASE. The prediction result of the N13_P1 was better than that of N13_AX. Moreover, there are
significant differences in terrain between the P1 and the Anxi gauge. To be specific, the Anxi rain gauge
is located in the river valley, while the P1 is situated in the ridge with an elevation of 537 m. The study
area is located in the southeast coast of China, which is often affected by water vapor from the western
Pacific Ocean. The P1 is located in the windward slope and elevation is relatively high. The formation
of the heavy rain gets easier as the altitude becomes higher. In contrast, the Anxi rain gauge is located
at the bottom of the valley, which is unfavorable to the formation of precipitation. Furthermore,
rainstorms caused by tropical weather systems, such as typhoons (i.e., typhoon rainstorm) are one of
the main types of rainstorms in the Jinjiang Basin. Typhoon rainstorm centers are generally located on
the half–hillside of the mountain [35–38], and the location of P1 was close to the rainstorm centers of
the study area [39]. Therefore, based on the representative of stations and the requirements of disaster
prevention and mitigation, we consider that the location of the new rain gauge P1 is more appropriate
than that of the Anxi rain gauge.

In this study, the OK–SCA was used to optimize the current rain gauge network. It was found
that the overall accuracy and local precision of the 13 rain gauges based on N13_P1 could be satisfied.
For N13_P1, most of the rain gauges were distributed in the middle and upper reaches of the study
area. Xu et al. [1] combined the external migration kriging method with the random sampling method
to study the impact of the locations of the rain gauges on the hydrological calibration and application in
the Xiangjiang River basin. The results showed that the rainfall in the high-altitude region and terrain
fluctuation region was complex, and that more gauges were required to monitor the precipitation.
However, less rain gauges could reflect the rainfall in plain area. Similar conclusions have been
reached by Shafier et al. [12], Diodato et al. [40], and Chen et al. [41]. However, it was also found
that the northeast fringe area of the Shilong sub-basin that located in the plain area and occupied
almost 5% of the total area of the basin showed relatively higher errors (i.e., KSE was in range from
0.78 to 1.18). This is maybe due to the interpolation error induced by OK, the length of the period of
precipitation observations, and etc. Considering the N13_P1 could provide accurate estimates of areal
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mean precipitation for the majority of the entire basin, it is reasonable to conclude that the feasibility
and rationality of the OK–SCA for a rain gauge network optimization design. The local higher error
problem could be further explored and improved in future research.

4. Conclusions

The paper designed a coupled OK–SCA for the optimization of rain gauge networks, which aims
to remove redundant rain gauges and add new rain gauges to the blank monitoring areas of a basin.
The application of the OK–SCA was verified through a case study of the Jinjiang Basin in the southeast
coast of China. The following conclusions can be obtained from the study:

(1) The OK method could not only identify the blank monitoring region with the highest rainfall
error, but also determine the location of new rain gauges according to three cross-validation
statistics (MSE, ASE, and RMSS). The SCA allowed the number of new rain gauges to be obtained.
By coupling the OK and SCA, the redundant rain gauges were removed from the current rain
gauge network, and new rain gauges in the blank monitoring region were determined.

(2) The optimal rain gauge network provided more accurate rainfall estimates in comparison to the
base network that was determined by the OK. The coupled OK–SCA could be appropriate for
optimizing a rain gauge network in wet areas such as the Jinjiang Basin. A further study will
assess how the optimized rain gauge network affects the simulation of hydrological process and
the changes in hydrological model parameters.
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