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Abstract: In this study, hexadecylamine (HDA) impregnated chitosan-powder activated carbon
(Ct-PAC) composite beads were successfully prepared and applied to adsorption of the anionic
dye reactive black 5 (RB5) in aqueous solution. The Ct-PAC-HDA beads synthesized with 0.2 g
powdered activated carbon (PAC) and 0.04 g HDA showed the highest dye removal efficiency.
The prepared beads were characterized using Fourier-transform infrared spectroscopy (FTIR) and
scanning electron microscopy (SEM). Various adsorption parameters, i.e., adsorbent dosage, pH,
and contact time, which affect the adsorption performance, were studied in a series of batch
experiments. The obtained adsorption data were found to be better represented by Freundlich
(R2 = 0.994) and pseudo-second-order (R2 = 0.994) models. Moreover, it was ascertained that the
adsorption of RB5 onto Ct-PAC-HDA beads is pH-dependent, and the maximum Langmuir adsorption
capacity (666.97 mg/g) was observed at pH 4. It was also proved that Ct-PAC-HDA beads were
regenerable for repeated use in the adsorption process.

Keywords: chitosan; powder activated carbon; hexadecylamine; hybrid adsorbent; regeneration

1. Introduction

In recent years, the unprecedented development of industrial and urban activities has led to a
significant increase in wastewater discharge into the environment, often contaminated with harmful
organic pollutants (e.g., dyestuffs). Therefore, the separation/elimination of these pollutants from water
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sources is a goal that must be accomplished to ensure human and environmental safety [1]. Due to their
high toxicity, chemical stability, and low biodegradability, dyes are a class of pollutants that are raising
increasing concern, since they cause severe problems to aquatic life and human beings [2]. In particular,
reactive dyes are being widely used in dyeing processes because of their notable properties such as
ease of application, high color fastness, bright colors, and a wide shade gamut from black to vibrant,
brilliant shades [3–5]. However, a low degree of fixation to the fabrics, high water solubility, and poor
adsorption ability are the main reasons for the intense color of the effluents that contain such kind of
dyes [6]. Discharge of such type of wastewater into the environment is known to threaten the ecosystem
due to high toxicity and reduction of sunlight penetration into the water, thus affecting aquatic biota
living functions [7]. Hence, the elimination of reactive dyes from aqueous effluents is a necessary action
that must be taken to prevent further spread in the environment and adverse effects. To date, different
treatment techniques have been developed for this aim. Among them, adsorption processes have
received much attention from researchers due to its cost-effectiveness, simplicity, and high efficiency [8].
The properties of materials that are used as adsorbents are key factors for adsorption efficiency [9].
In recent years, the development of adsorbents obtained from non-toxic, sustainable, and renewable
natural resources (e.g., biopolymers) has intensified [10].

Chitosan (Ct) is a suitable material in this area because of its non-toxicity, abundance, availability,
biodegradability, and ability to adsorb organic pollutants (including reactive dyes). This biopolymer is a
multifunctional cationic biodegradable polysaccharide produced by deacetylation of chitin. Because of
the presence of several functional groups (in particular, NH2 and OH) on the Ct backbone, this material
has a high potential affinity to dyes. However, low porosity, small surface area, scarce acid stability,
and limited adsorption capacity preclude its application at full-scale for wastewater treatment [11].
Also, raw Ct is available in powder form, thus it is not easy to separate from aqueous solutions after
the adsorption process. Its crystallinity and hydrophobicity are features that reduce the liquid-to-solid
mass transfer rate and induce column clogging and high pressure drops, thereby resulting in high
operation costs [12]. Modification of Ct is a feasible way to overcome these limitations and improve its
adsorption performance [13].

Among such modification methods, preparation of Ct-based hybrid adsorbents has received
significant attention and is considered as one of the most efficient ways to improve Ct properties.
The use of hybrid adsorbents is not only cost-effective, environmentally friendly, and safe, but also
can reduce shortcomings of constituent materials and consequently increase their value for practical
applications [14]. Hybridized adsorbents obtained from Ct and carbonaceous materials can fulfill these
criteria and, therefore, they have attracted the attention of researchers as potential materials for green
technology development. The combination of Ct and carbonaceous materials is an efficient method
to enhance its thermochemical and mechanical properties. Additionally, carbonaceous materials can
enhance functionality and pore properties of Ct and thus improve its adsorption capability [15]. It was
proved by Yadaei et al. [16] that Ct-activated carbon hybrid adsorbent possesses favorable strength
and porous structure. The development of hybrid adsorbents obtained from Ct and carbonaceous
materials has been reported in some studies [17,18]. Carbonaceous materials are extensively applied in
the purification of water as efficient adsorbents owing to their high functional group’s number, high
porosity, and large surface area [19]. Among them, powdered activated carbon (PAC) has been widely
used in water treatment to control odor, color, and taste because of its remarkable adsorption potentiality,
fast adsorption kinetic, availability, and low cost [20]. Despite such noteworthy characteristics, PAC
suffers from some critical drawbacks that limit its application: small particle size and powder form,
as well as difficulties in regeneration and separation from aqueous solutions [21].

The immobilization of PAC particles in some kind of matrix is one way to overcome the problems
mentioned above. Preparation of Ct-PAC hybrid adsorbent can combine the advantages of Ct and
PAC, showing strong adsorption capacity for different kinds of pollutants. This study combines PAC
with Ct in a bead shape, thus achieving its stabilization, prevention of carbon leaching, and improved
separability of the prepared adsorbent from the solution. However, the PAC would cover the surface of
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chitosan and occupy its active functional groups. It may negatively affect the dye removal efficiency of
the prepared hybrid adsorbent. Therefore, increasing the number of functional groups (mainly amino
groups) through chemical modification using different types of modification agents will improve the
adsorption properties of the prepared hybrid adsorbent. Impregnation with cationic surfactants is an
appropriate strategy leading to an increase in the functional groups and positive charge density of
the adsorbent.

The present study aims to further enhance the adsorption capability of the prepared Ct-PAC
hybrid beads using a cationic surfactant. Hexadecylamine (HDA) is a cationic surfactant possessing a
positively charged hydrophilic group (NH2) that can be applied to increase the number of amino groups
already present in Ct, as well as to augment the positive charge of the synthesized adsorbent [22].
Therefore, the main objectives of this study were the preparation of Ct-PAC hybrid beads, as well as
using HDA for increasing the functional groups and cationicity of the material for adsorption of reactive
dye from water. To the best of our knowledge, such modification has not been reported in the literature.
Thus, there is a necessity in understanding the behavior of this combination as an effective adsorbent
for improved reactive dye removal. In the present research, the anionic dye reactive black 5 (RB5) is
utilized as a model pollutant molecule to assess the adsorption performance of the prepared hybrid
adsorbent. The effect of preparation conditions (i.e., PAC and HDA concentration) and adsorption
parameters (i.e., pH of dye solution, adsorbent dosage, and contact time) on RB5 adsorption behavior is
investigated. Kinetic and isotherm studies also are conducted to reveal the adsorption behavior of RB5
onto the prepared adsorbent. Moreover, the regeneration of the Ct-PAC-HDA adsorbent is assessed.

2. Materials and Methods

2.1. Chemicals and Materials

Chitosan (medium-molecular-weight 75–85% deacetylation) and hexadecylamine (C16H35N, 98%)
were purchased from Sigma-Aldrich (Beijing, China). RB5, sodium hydroxide (NaOH), hydrochloric
acid (HCl) and acetic acid (CH3COOH) were all supplied by Beijing Chemical Works. A commercial
PAC was obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All chemicals in
the present study were analytical grade. The chemicals were used directly without further purification.

2.2. Preparation of Adsorbent

For the preparation of the Ct-PAC solution, Ct solution was mixed with PAC, as described
previously by Vakili et al. [10]. Briefly, Ct flakes (2 g) were dissolved into 100 mL acetic acid solution
(3% v/v) under continuous stirring (400 rpm) at room temperature (25 ◦C) for 5 h. Then, the desired
concentration of PAC (0.10, 0.2, 0.30, 0.40, and 0.50 g) was poured into the Ct solution and stirred for
3 h to study the effect of PAC concentration. Preparation of the HDA impregnated Ct-PAC beads
was conducted following the conditions reported by Vakili et al. [22]. Concisely, the desired amount
of HDA was mixed with the Ct-PAC solution at 400 rpm and 50 ◦C for 6 h. In the Ct-PAC solution,
the concentration of HDA was varied from 0.02 to 0.1 g. Then the prepared Ct-PAC-HDA solution
was poured dropwise into a 500 mL precipitation solution (NaOH, 2 M), followed by gentle stirring
overnight. For removing the residual NaOH, the prepared Ct-PAC-HDA beads were washed several
times using deionized water. Finally, all the beads were oven-dried at 60 ◦C for 12 h.

2.3. Characterization

For studying the functional groups of the prepared adsorbent, Fourier-transform infrared
spectroscopy (FTIR) spectra of the Ct-PAC-HDA beads were obtained at 500–4000 cm−1 using a
Thermo Nicolet NEXUS (Thermofisher, Waltham, MA, USA). The surface morphological features of
the adsorbent were assessed employing scanning electron microscopy (SEM) using a Phenom Prox,
Phenom-world, Holland.
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2.4. Adsorption and Desorption Experiments

Batch adsorption experiments were designed to study RB5 adsorption onto Ct-PAC-HDA beads.
A desired mass of the adsorbent was mixed with an RB5 solution (200 mL) in a 250 mL Erlenmeyer flask.
Then, the mixture was shaken using an orbital shaker at 150 rpm at room temperature (25 ◦C) for 24 h.
The optimum pH was determined by adding the prepared beads (20 mg) into 200 mL (50 mg/L) RB5
solution at different pH values ranging from 2 to 10. The solution pH was adjusted to the desired values
using NaOH (0.1 M) and HCl (0.1 M) solutions. The effect of adsorbent dosage on the removal of RB5
was studied in the RB5 concentration range between 10 and 50 g/L at 100 mg/L. All of the experiments
in this study were conducted in triplicate. For quantifying the residual RB5 concentration, after the
adsorption process, the spectrophotometric technique was applied using a UV–Vis spectrophotometer
(Hach DR 5000, Germany) at a wavelength of 597 nm. The adsorption capacity and removal efficiency
of the Ct-PAC-HDA beads were calculated using the following equations:

qe = ((C0 − Ce) × V) / W (1)

RE = (C0 − Ce/C0) × 100 (2)

qe = Adsorption capacity (mg/g)
RE = Removal efficiency (%)
C0 = Initial RB5 concentration (mg/L)
Ce = Equilibrium RB5 concentration (mg/L)
V = RB5 solution volume (L)
W = Adsorbent mass (g)

The effect of time and the adsorption rates of the dye were evaluated through adsorption kinetic
experiments, performed at an RB5 concentration of 200 mg/L. The obtained results were assessed based
on pseudo-first-order (PFO; Equation (3)) and pseudo-second-order (PSO; Equation (4)) kinetic models.

qt = qe (1 − e −kt) (3)

qt = (qe v0 t) / (qe + v0 t) (4)

qt = RB5 adsorption at time t (mg/g)
qe = RB5 adsorption at equilibrium (mg/g)
k = PFO rate constant (1/min)
v0 = PFO/PSO rate constant (g/mg/min)
t = time (min)

To assess the transmission of adsorbate from solution phase to the adsorbent phase at equilibrium
condition, adsorption isotherm experiments were performed at six RB5 concentrations (20, 40, 80, 120,
160 and 200 mg/L) at 25 ◦C and with contact time of 24 h. Two adsorption isotherms, i.e., the Langmuir
(Equation (5)) and Freundlich (Equation (6)), were applied to express the isotherm data.

qe = (qm Ce b) / (1 + b Ce) (5)

qe = KF Ce
(1⁄n) (6)

qt = Maximum adsorption capacity of the Ct-PAC-HDA beads (mg/g)
qm = Maximum adsorption capacity of the adsorbent (mg/g)
Ce = RB5 equilibrium concentration (mg/L)
B = Affinity of Ct-PAC-HDA beads towards RB5 (L/g)
KF = Freundlich constant (mg/g)
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N = Adsorption intensity

The reusability of the adsorbent was evaluated by mixing 30 mg of Ct-PAC-HDA beads with
200 mL of RB5 solution (100 mg/L) at pH 4 for 24 h. Afterward, saturated beads were separated and
regenerated using 0.1 M of NaOH solution. Then, the regenerated adsorbents were applied again
in the next adsorption experiment. The adsorption and desorption cycle was repeated until the RB5
adsorption capacity of the adsorbent dropped significantly, to study the regeneration performance of
the adsorbent.

3. Results and Discussion

3.1. Effects of the Reaction Conditions

Figure 1a presents the impact of PAC concentration on the adsorption of RB5 on Ct-PAC beads.
PAC had a positive effect on the RB5 adsorption performance of the Ct-PAC beads. Increasing the
amount of PAC into the Ct solution up to 0.20 g increased RB5 removal from a solution with RB5
concentration of 20 mg/L, to 78.91%. This enhancement could be caused by the increase in the beads’
surface area by the addition of PAC, which resulted in a broader availability of functional groups for
adsorption of RB5 molecules [23]. However, a further increase in PAC concentration (up to 0.40 g) led
to a decrease in the removal of RB5, to 67.29%. The presence of a high amount of PAC likely caused
the collapse of the structure and, consequently, a decrease of accessibility to functional groups in the
Ct-PAC beads [24]. Moreover, at higher PAC concentration (>0.40 g), the added dropwise Ct-PAC
solution into the precipitation solution could not solidify to form beads. This might be due to the low
entanglement rate and low polymerization of Ct in the Ct-PAC solution, caused by the existence of a
high amount of PAC in Ct solution [25].
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Figure 1. Effect of (a) powdered activated carbon (PAC) and (b) hexadecylamine (HDA) concentrations
on the adsorption efficiency of reactive black 5 (RB5) onto the adsorbents (20 mg of beads, 200 mL of
20 mg/L of RB5, pH = 6, 25 ◦C, 24 h).

The effect of HDA concentration on the RB5 adsorption performance of the Ct-PAC-HDA beads
was investigated, and results are displayed in Figure 1b. As noticed, the RB5 removal efficiency of the
beads is initially enhanced by an increase in the amount of HDA (up to a concentration of 0.04 g). Then,
a significant adsorption capacity decrease, along with the rise in the HDA concentration, is observed.
Specifically, the optimal RB5 removal percentage was 91.32%. This phenomenon is likely due to the
increase in the number of amine groups, as well as the positive charge of the beads attributed to the
presence of HDA molecules. This led to a rise in the adsorbate–adsorbent electrostatic interactions and,
thus, the higher RB5 adsorption capacity of the beads [26]. However, at higher HDA concentrations
(>0.04 g), the decrease in the RB5 adsorption onto the Ct-PAC-HDA beads can be attributed to the
self-aggregation of HDA molecules, by forming micelles at high concentration. These micelles can



Water 2020, 12, 2242 6 of 14

block the pores on the beads and decrease the accessibility of functional groups to RB5 molecules
(Figure 1b) [22].

3.2. Adsorbent Characterization

Relevant surface functional groups on Ct-PAC beads (before and after impregnation) were verified
by FTIR analysis, and the spectral data are presented in Figure 2. In the Ct-PAC beads, the main
overlapping area of stretching vibrations of amine and hydroxyl groups appears as a strong and
broadband in the region of 3070–3800 cm−1. The smaller peak at 2913 cm−1 is attributed to the stretching
vibration of the CH2 groups [27]. Moreover, peaks at 1635, 1378, and 1012 cm−1 could be assigned to
amide II band, N–H bending, alcoholic C–O, and C–N stretching, respectively. Compared to Ct-PAC,
the FTIR spectrum of Ct-PAC-HDA presents wavenumber shift of several peaks, as well as changes
in intensity. After HDA impregnation, the peaks at 3266, 2913, 1635, 1373, 985 cm−1 were shifted to
higher frequencies: 3415, 2915, 1646, 1380, 1000 cm−1, respectively. These changes might be owed to
the overlap of stretching bands of amine and hydroxyl groups of HDA, CH, and PAC. These findings
suggest that Ct-PAC beads chemically adsorb HDA through interaction between the amine group of
the HDA molecule and the hydroxyl group on the Ct-PAC beads [22].
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The surface morphology of the prepared beads is shown in Figure 3. In both before and after
impregnation, the adsorbents display a heterogeneous and uniform surface, which is favorable for
adsorption of RB5. However, the Ct-PAC-HDA bead (Figure 3b) shows a more uneven, rough,
and heterogeneous surface than that of the Ct-PAC bead (Figure 3a). These properties could be
attributed to the presence of HDA in the structure of the Ct-PAC beads, which in the end may increase
the contact area, number/availability of functional groups, and adsorption capacity of the beads.
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3.3. RB5 Adsorption Experiments

3.3.1. Effect of Adsorbent Dosage on RB5 Removal

The impact of the quantity of Ct-PAC-HDA beads on the removal of RB5 was analyzed, and the
results are illustrated in Figure 4. The adsorption capacity increased from 105.78 mg/g to 140.9 mg/g
for an increase in the amount of Ct-PAC-HDA beads from 10 to 30 g/L. Obviously, at higher adsorbent
doses, increasing the surface area, as well as augmenting the number of accessible, functional groups,
leads to a higher RB5 adsorption rate [28]. However, a further increase in the adsorbent quantity
(>30 g/L) reduced the RB5 adsorption capacity of Ct-PAC-HDA beads. The reduction in adsorption
capacity could be due to the conglomeration and interaction of adsorbent particles resulting from a
high concentration of adsorbent. This phenomenon likely reduces the total surface area and increases
the diffusional path length, leading to the unsaturation of the functional groups through the adsorption
process [29,30]. Thus, based on the maximum dye removal efficiency and minimum adsorbent mass,
the amount of Ct-PAC-HDA beads was fixed at 30 g/L.

Water 2020, 12, x 7 of 14 

 

3.3. RB5 Adsorption Experiments 

3.3.1. Effect of Adsorbent Dosage on RB5 Removal 

The impact of the quantity of Ct-PAC-HDA beads on the removal of RB5 was analyzed, and the 
results are illustrated in Figure 4. The adsorption capacity increased from 105.78 mg/g to 140.9 mg/g 
for an increase in the amount of Ct-PAC-HDA beads from 10 to 30 g/L. Obviously, at higher adsorbent 
doses, increasing the surface area, as well as augmenting the number of accessible, functional groups, 
leads to a higher RB5 adsorption rate [28]. However, a further increase in the adsorbent quantity (>30 
g/L) reduced the RB5 adsorption capacity of Ct-PAC-HDA beads. The reduction in adsorption 
capacity could be due to the conglomeration and interaction of adsorbent particles resulting from a 
high concentration of adsorbent. This phenomenon likely reduces the total surface area and increases 
the diffusional path length, leading to the unsaturation of the functional groups through the 
adsorption process [29,30]. Thus, based on the maximum dye removal efficiency and minimum 
adsorbent mass, the amount of Ct-PAC-HDA beads was fixed at 30 g/L. 

10 20 30 40 50
0

40

80

120

160

200

A
ds

or
pt

io
n 

ca
pa

ci
ty

 (m
g/

g)

Adsorbent dosage (g/L)  

Figure 4. Effect of adsorbent dosage on the adsorption of RB5. 

3.3.2. Effect of pH on RB5 Removal 

The adsorption of an anionic dye onto a cationic adsorbent is generally governed by the number 
of charged functional groups on the adsorbent surface, which is highly dependent on its 
environment’s pH [31]. Therefore, the effect of the solution pH on the removal of RB5 using Ct-PAC-
HDA was studied, and the results are presented in Figure 5a. It was observed that RB5 adsorption of 
Ct-PAC-HDA beads was significantly dependent on this parameter. RB5 adsorption was higher at 
acidic conditions, with the maximum RB5 uptake (187.08 mg/g) obtained at pH = 4. Around this pH 
value, the presence of appropriate quantities of protons (H+) induces protonation of amine groups on 
the Ct-PAC-HDA beads (NH3+) and changes the charge of the beads to markedly positive values [32]. 
On the other hand, in the aqueous phase the sulfonic groups (—SO3H) in the RB5 molecules are 
converted to their anionic form (i.e., sulfonate group, (—SO3−)) because the first dissociation acidity 
constant of sulfonic groups in reactive dyes is very low (pKa ≈ 2) [33]. These phenomena result in 
higher RB5 uptake due to the enhanced electrostatic interactions between positively charged beads 
and negatively charged anionic dye molecules (Figure 5b).  

RB5–SO3H + H2O → RB5–SO3— (7)

Adsorbent–NH2 + H+ → Adsorbent–NH3+ (8)

Adsorbent–NH3+ + RB5–SO3— → Adsorbent–NH3+ –3SO–RB5 (9)

Nevertheless, at very low pH values (pH < 4), the uptake of RB5 decreased. This is attributed to 
the protonation of higher amounts of amine groups, and thus inducing repulsion among Ct-PAC-
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3.3.2. Effect of pH on RB5 Removal

The adsorption of an anionic dye onto a cationic adsorbent is generally governed by the number
of charged functional groups on the adsorbent surface, which is highly dependent on its environment’s
pH [31]. Therefore, the effect of the solution pH on the removal of RB5 using Ct-PAC-HDA was studied,
and the results are presented in Figure 5a. It was observed that RB5 adsorption of Ct-PAC-HDA beads
was significantly dependent on this parameter. RB5 adsorption was higher at acidic conditions, with
the maximum RB5 uptake (187.08 mg/g) obtained at pH = 4. Around this pH value, the presence
of appropriate quantities of protons (H+) induces protonation of amine groups on the Ct-PAC-HDA
beads (NH3

+) and changes the charge of the beads to markedly positive values [32]. On the other hand,
in the aqueous phase the sulfonic groups (–SO3H) in the RB5 molecules are converted to their anionic
form (i.e., sulfonate group, (–SO3

−)) because the first dissociation acidity constant of sulfonic groups
in reactive dyes is very low (pKa ≈ 2) [33]. These phenomena result in higher RB5 uptake due to the
enhanced electrostatic interactions between positively charged beads and negatively charged anionic
dye molecules (Figure 5b).

RB5–SO3H + H2O→ RB5–SO3
− (7)

Adsorbent–NH2 + H+
→ Adsorbent–NH3

+ (8)

Adsorbent–NH3
+ + RB5–SO3

−
→ Adsorbent–NH3

+ –3SO–RB5 (9)

Nevertheless, at very low pH values (pH < 4), the uptake of RB5 decreased. This is attributed to
the protonation of higher amounts of amine groups, and thus inducing repulsion among Ct-PAC-HDA
components, and possibly dissolution of Ct because of glycosidic bond hydrolyzation [34]. Moreover,
at very acidic pH values, which are closer to –SO3H pKa, the sulfonic groups are shifted toward their
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protonated form, thus augmenting the positive charge of RB5 by conversion of anionic –SO3
− groups to

–SO3H. In the low-acidic/basic range (pH > 6), the Ct-PAC-HDA beads showed weak RB5 adsorption
capacity. At high pH values, massive deprotonation of the amine groups on the beads results in the
repulsion of anionic RB5 molecules [35].
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3.3.3. Kinetic Study of RB5 Adsorption

For estimating the removal efficiency of an adsorbent, the equilibrium time for adsorption of
adsorbate is considered as one of the most critical parameters. Hence, the variation of RB5 adsorption
onto the Ct-PAC-HDA beads as a function of contact time was studied (Figure 6). Results revealed that
by increasing contact time, the adsorption capacity of the Ct-PAC-HDA beads increased and reached
the maximum level within 10 h. Afterward, prolongation of the contact time led to a reduction of
adsorption rate until it remained almost stable after 15 h (equilibrium time). The high RB5 removal
rate at an initial 240 min is likely owed to a large number of unoccupied/free functional groups on the
adsorbent surface. Then, gradual occupation and saturation of functional groups on the Ct-PAC-HDA
beads by RB5 molecules result in a decrease in the adsorption rate until the equilibrium is reached [36].
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RB5, pH = 4, 25 ◦C, 24 h).

The obtained adsorption data were modeled in PFO and PSO kinetic models, and the calculated
parameters are presented in Table 1. By comparing the kinetic data, it is found that RB5 adsorption is
described better by the PSO kinetic model. The correlation coefficient (R2) and the Chi-square (χ2)
values of the PSO are higher and lower, respectively, than those of the PFO model. Furthermore,
the calculated adsorption capacity by the PSO model (260.12 mg/g) fits well with the experimental
adsorption capacity (256.01 mg/g). These results suggest that adsorption of RB5 onto the Ct-PAC-HDA
beads is mainly controlled by chemisorption [37].

Table 1. The constants obtained from the kinetic parameters for RB5 adsorption onto
Ct-PAC-HDA beads.

Kinetic parameters Values

Pseudo-first-order
C0 (mg/L) 200
qe (mg/g) 256.01

qcal (mg/g) 244.81 ± 5.939
k (1/min) 1.009 ± 0.0930

χ2 7.57
R2 0.968

Slope −0.366
Intercept 5.123

Pseudo-second-order
C0 (mg/L) 200
qe (mg/g) 256.01

qcal (mg/g) 260.13 ± 3.851
V0 (g/mg/min) 335.24 ± 18.29

χ2 1.26
R2 0.994

Slope 0.004
Intercept 0.003

3.3.4. Isotherm Study of RB5 Adsorption

For investigating suitable conditions for the optimized application of the prepared adsorbent,
as well as the study of the nature of RB5 adsorption on Ct-PAC-HDA beads, adsorption equilibrium
results were fitted by Langmuir and Freundlich isotherm models (Figure 7). Calculated model
parameters (Table 2) reveal that both isotherm models show a good fit with experimental data
(R2 > 0.99). However, the Freundlich model represents a better fit for the experimental results
(according to the higher R2 and lower χ2 estimated for the fitting of the Freundlich model, with respect
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to those of the Langmuir model). These findings suggest that the adsorption of RB5 onto the
Ct-PAC-HDA beads was controlled by multilayer adsorption, where the functional groups on the
external particle layers have a heterogeneous nature [38]. The calculated adsorption intensity (n = 1.3)
indicates a strong interaction between RB5 and Ct-PAC-HDA beads (i.e., a favorable adsorption
process) [39].

Water 2020, 12, x 10 of 14 

 

0.99). However, the Freundlich model represents a better fit for the experimental results (according 
to the higher R2 and lower χ2 estimated for the fitting of the Freundlich model, with respect to those 
of the Langmuir model). These findings suggest that the adsorption of RB5 onto the Ct-PAC-HDA 
beads was controlled by multilayer adsorption, where the functional groups on the external particle 
layers have a heterogeneous nature [38]. The calculated adsorption intensity (n = 1.3) indicates a 
strong interaction between RB5 and Ct-PAC-HDA beads (i.e., a favorable adsorption process) [39]. 

0 40 80 120 160 200
0

50

100

150

200

250

 Experimental data
 Langmuir fitting
 Freundlich fittingA

ds
or

pt
io

n 
ca

pa
ci

ty
 (m

g/
g)

Ce (mg/L)
 

Figure 7. Adsorption isotherms of RB5 onto Ct-PAC-HDA beads (30 mg of beads, pH=4, 25 °C, 24 h). 

Table 2. The constants obtained from the isotherm parameters for adsorption of RB5 onto Ct-PAC-
HDA beads. 

Isotherm parameters Values 
Langmuir  q  (mg/g) 666.97 ± 38.14 
b (l/mg) 327.82 ± 27.19 
χ2 0.225 
R2 0.997 

Slope 0.002 
Intercept 0.201 

Freundlich  K  (mg/g) 4.48 ± 0.495 
n 1.3 ± 0.038 
χ2 0.074 
R2 0.999 

Slope 0.686 
Intercept 2.279 

Moreover, a comparison of the maximum Langmuir adsorption capacity value of the adsorbent 
prepared in the present study with those of other adsorbing materials described in the literature 
suggests that Ct-PAC-HDA has relatively high RB5 adsorption capacity (Table 3). The adsorption 
capacity of Ct-PAC-HDA beads was found to be almost 1112 times higher than that achieved by using 
an Eichhornia crassipes/chitosan composite [39]. It showed 585 times higher capacity than macadamia 
seed husks [40] while performing 12 times better than the peanut hull [41]. The Ct-PAC-HDA 
outperformed the dolomite [42], activated carbon F400 [43], and polyethyleneimine/sodium dodecyl 
sulphate [44] by 8.20, 3.37, and 1.61 times better removals, respectively. A 33.10% higher adsorption 
was observed with the developed beads as compared to the pine-fruit shell activated carbon [28]. 
Thereby, Ct-PAC-HDA beads might be an effective adsorbent for the elimination of reactive dyes 
from wastewaters with satisfactory adsorption capacity.  

Figure 7. Adsorption isotherms of RB5 onto Ct-PAC-HDA beads (30 mg of beads, pH = 4, 25 ◦C, 24 h).

Table 2. The constants obtained from the isotherm parameters for adsorption of RB5 onto
Ct-PAC-HDA beads.

Isotherm parameters Values

Langmuir
qm(mg/g) 666.97 ± 38.14
b (l/mg) 327.82 ± 27.19

χ2 0.225
R2 0.997

Slope 0.002
Intercept 0.201

Freundlich
KF (mg/g) 4.48 ± 0.495

n 1.3 ± 0.038
χ2 0.074
R2 0.999

Slope 0.686
Intercept 2.279

Moreover, a comparison of the maximum Langmuir adsorption capacity value of the adsorbent
prepared in the present study with those of other adsorbing materials described in the literature
suggests that Ct-PAC-HDA has relatively high RB5 adsorption capacity (Table 3). The adsorption
capacity of Ct-PAC-HDA beads was found to be almost 1112 times higher than that achieved by using an
Eichhornia crassipes/chitosan composite [39]. It showed 585 times higher capacity than macadamia seed
husks [40] while performing 12 times better than the peanut hull [41]. The Ct-PAC-HDA outperformed
the dolomite [42], activated carbon F400 [43], and polyethyleneimine/sodium dodecyl sulphate [44] by
8.20, 3.37, and 1.61 times better removals, respectively. A 33.10% higher adsorption was observed with
the developed beads as compared to the pine-fruit shell activated carbon [28]. Thereby, Ct-PAC-HDA
beads might be an effective adsorbent for the elimination of reactive dyes from wastewaters with
satisfactory adsorption capacity.
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Table 3. Comparison of the maximum RB5 adsorption capacity of different adsorbents.

Adsorbent pH qm (mg/g) Ref.

Eichhornia crassipes/chitosan composite 3 0.60 [39]
Macadamia seed husks 3 1.14 [40]

Fly ash 7 7.18 [45]
Edible fungi activated carbon 2 19.6 [46]

Peanut hull 6.4 55.55 [41]
Pine-fruit shell 2 74.6 [28]

Dolomite 6.9 80.9 [42]
Bone char 5.2 160.0 [43]

Activated carbon F400 5.2 197.5 [43]
Chitosan/polyamide nanofibers 1 198.60 [47]

Polyacrylamide/silica nanoporous composite 2 389.58 [27]
Polyethyleneimine/sodium dodecyl sulphate 4 413.23 [44]

Bamboo activated carbon 5.2 441.7 [37]
Pine-fruit shell activated carbon 6 446.2 [28]

Ct-PAC-HDA beads 4 666.97 Present study

3.4. Desorption and Reuse of Spent Ct-PAC-HDA Beads

Reuse evaluation of adsorbent is very fundamental for potential full-scale application because it
permits the assessment of the adsorbent capability to recover after a cycle of utilization (i.e., adsorption–
desorption). The regeneration minimizes the need for new absorbents, recovers resources, reduces the
secondary waste, and decreases the process costs [48]. For assessing the reusability of the Ct-PAC-HDA
beads, regeneration experiments were performed by repeating several adsorption–desorption cycles.
According to Vakili et al. [49], the regeneration of chitosan-based adsorbents saturated with reactive
dyes was successfully conducted by NaOH solution; therefore, it was selected as an eluent for the
regeneration of RB5 loaded Ct-PAC-HDA beads. As can be seen in Figure 8, during the first five
subsequent regeneration cycles, the RB5 adsorption capacity showed only a 6% loss. Such a reduction
is possibly due to incomplete desorption of RB5 molecules. Afterward, adsorption capacity dropped
to 46.59 at the tenth cycle (75% loss), which might be attributed to the saturation of functional groups
on adsorbent [50].
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4. Conclusions

Ct-PAC-HDA beads were successfully prepared for the elimination of RB5 from aqueous solutions.
The maximum enhancement in the adsorption performance of adsorbent was achieved using 0.04 g
HDA and 0.2 g PAC. The removal of RB5 increased with decreasing pH. The isotherm and kinetic
study concluded that the adsorption data fitted better to the Freundlich and PSO models than the
Langmuir and PFO models. The results suggested that the adsorption of RB5 onto the Ct-PAC-HDA
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beads was a chemisorption process that occurred on multilayer heterogeneous surfaces. The maximum
RB5 adsorption capacity of Ct-PAC-HDA beads (666.97 mg/g) was obtained with 30 g/L of adsorbent,
at acidic condition (pH 4), 30 g/L of adsorbent mass, and during 10 h (equilibrium time). Moreover,
regeneration experiments demonstrated that the prepared beads have good reusability and can be
regenerated at least 5 cycles without significant adsorption capacity loss. Generally, the results revealed
the great potential of Ct-PAC-HDA as a promising adsorbent for the elimination of reactive dyes.
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