
water

Article

An Improved Immersed Boundary Method for
Simulating Flow Hydrodynamics in Streams with
Complex Terrains

Yalan Song 1, Yong G. Lai 2 and Xiaofeng Liu 3,*
1 Department of Civil and Environment Engineering, Pennsylvania State University, University Park,

PA 16802, USA; yxs275@psu.edu
2 Technical Service Center, U.S. Bureau of Reclamation, P.O. Box 25007, Denver, CO 80225, USA; ylai@usbr.gov
3 Department of Civil and Environment Engineering, Institute of Computational and Data Sciences,

Pennsylvania State University, University Park, PA 16802, USA
* Correspondence: xzl123@psu.edu; Tel.: +1-814-863-2940

Received: 16 July 2020; Accepted: 5 August 2020; Published: 7 August 2020
����������
�������

Abstract: Three-dimensional (3D) computational fluid dynamic (CFD) simulations have gained
substantial popularity in recent years for stream flow modelling. The complex terrain in streams
is usually represented by a 3D mesh conforming to the terrain geometry. Such terrain-conforming
meshes are time-consuming to generate. In this work, an immersed boundary method is developed
in an existing terrain-conforming CFD model named U2RANS as an alternative, in which terrains
are represented implicitly in the Cartesian background mesh. An improved two-layer wall function
is proposed in the framework of the k-ε turbulence model, with the aim of producing accurate
and smooth wall shear stress distribution and paving the way for future model development on
sediment transport and scour modeling. The improvement overcomes the inherent discontinuity and
nonlinearity of the two-layer velocity profile, which causes error in the estimation of shear velocity.
The new algorithm utilizes a distance control on the image point in immersed boundary method and
a modification of velocity prediction in the laminar layer. The improved immersed boundary method
is tested with 1D, 2D, and 3D cases, and comparisons with flume experiments show promising results.
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1. Introduction

Traditional three-dimensional (3D) modeling requires a 3D mesh to conform to domain
geometry, termed the “terrain-conforming method” in this paper. Despite the widespread use
of the terrain-conforming method in Computational Fluid Dynamics (CFD) models, generation of a
high-quality mesh is still a challenging task in 3D modeling of flows over complex terrain. A very
refined near-wall mesh must be used to resolve the boundary layer to produce an accurate solution.
The stability and accuracy of the terrain-conforming method highly depend on the mesh quality.
In addition, the mesh size increases rapidly with the increase of Reynolds numbers [1].

In this work, we aim to present a user-friendly 3D CFD model for practical applications in hydraulic
engineering. An alternative way to the terrain-conforming method is the immersed boundary (IB)
method, in which terrains are embedded in a background mesh. The boundary conditions on terrain
surface are implicitly represented by modifying the governing equations of the flow. Such a method
is also referred to as the terrain-embedding method in this work. Special numerical treatments are
developed to implement the solid boundary conditions for turbulent flows near complex terrain and
solid objects. For example, a discrete-forcing term can be added in the discretized Navier-Stokes
equations to represent the embedded terrain [2,3]. The forcing term is calculated from the no-slip

Water 2020, 12, 2226; doi:10.3390/w12082226 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-3214-8494
https://orcid.org/0000-0002-8296-7076
http://dx.doi.org/10.3390/w12082226
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/8/2226?type=check_update&version=2


Water 2020, 12, 2226 2 of 14

condition and the moving velocity of the immersed surface if the boundary motion is considered.
This method is referred to as the Kinematic IB scheme [4].

With the IB method, mesh generation becomes relatively simple, as only a background mesh is
needed, and mesh quality is easy to control. A key issue of the IB method is the model accuracy in
simulating turbulent flows, although it has been demonstrated for laminar flows. Another advantage
of the IB method is that it can easily track terrain deformation, which is important in the simulation of
sediment transport and scour. With the terrain-conforming methods, the mesh has to be regenerated to
conform to the terrain or solid body movement in each morphological time step. The mesh regeneration
is difficult to perform and may lead to numerical instability and loss of accuracy due to the deterioration
of the mesh quality caused by large movement. With the IB method, terrain deformation is captured
by recalculating the discrete-forcing term and no mesh changes are necessary.

A key variable in sediment transport and scour simulation is the wall shear stress on erodible
beds. Existing algorithms of the IB method have demonstrated good performance in the prediction of
flow velocity [5,6]. However, the accuracy and smoothness of the wall shear stress in the IB method
need improvements. This issue is mainly caused by the poor prediction of the velocity profile between
the near-wall cell and the terrain boundary [7]. The other reason is the mass conservation problem
on the terrain boundary [7]. In addition, the implementation of a wall function in the IB method is
a significant challenge, especially for high Reynolds number flows. To avoid high mesh resolution
in the near-wall region, attempts have been made in the implementation of wall models in the large
eddy simulation (LES) framework [8,9]. For example, Roman et al. proposed a Reynolds-Averaged
Navier-Stokes (RANS)-like eddy viscosity to reconstruct the wall shear stress in LES [8].

Considering that there are drastically different time scales in hydrodynamics and morphodynamics
(the latter is much slower than the former) [10], a wall model in the RANS framework is more suitable
for real-world applications. Tamaki et al. proposed a Spalart-Allmaras (SA) wall model using the
IB method, and modified the eddy viscosity to balance the shear stress [11]. Capizzano adopted
a two-layer wall model in the near-wall region for k-ω and k-g turbulence models with a blending
estimation of ω and g [12]. Zhou applied a blending of Spalding’s law, Reichardt’s law, and log-law in
the SST k-ω turbulence model [13]. The key of the most existing wall functions is to avoid the transition
of the wall model between the viscous sublayer and the log-law sublayer by either using the blending
turbulence variables or using continuous velocity profiles.

Despite the progresses made in the IB methodology and its applications in river hydraulics,
mature models are yet to be developed to have the accuracy, stability, and efficiency needed for
real-world applications. In particular, a reliable sediment transport and scour model would hinge on
the accurate prediction of the bed shear stress. In this work, we present an improved IB algorithm
which is then implemented into the terrain-conforming model of [14] (named U2RANS). The aim is to
develop an IB-method based 3D model so that accurate flow and bed shear stress may be predicted.
This paper extends the work presented in [15,16]. Specifically, a two-layer wall function is implemented
in association with the k-ε turbulence model [17] and the IB method. The model is then verified to
produce an accurate velocity field, as well as a smooth and accurate wall shear stress distribution.
A key contribution of the present study is the improvement of the model accuracy through the control
of the image point position, which is a point used in the IB model to reconstruct the near-wall flow field.
In addition, a modification of the wall model in the laminar sublayer allows better handling of the
discontinuity between the viscous sublayer and the logarithmic layer. As a result, a better estimation
of wall shear stress can be achieved.

The new IB-method-based U2RANS model is validated and demonstrated using a number of
flow cases in the following. As discussed before, due to the limitations of the terrain-conforming
method, the terrain-embedding method is more suitable for modeling of real-world cases, particularly
for sediment transport and scour modeling. The scour modeling is under development and will be
reported in the future.
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2. Numerical Methods

U2RANS is a 3D CFD model using the unstructured mesh with arbitrarily shaped cells [14].
The flow is assumed incompressible, viscous, and Newtonian. The governing RANS equations are
as follows:

∇ ·U = 0, (1)

∂U
∂t

+ (U · ∇)U = υ∇2U +∇ · τ −
∇P
ρ

+ g, (2)

where t is time; ρ is the flow density; U is the mean velocity; τ is the turbulence stress; P is the mean
pressure; υ is the kinematic viscosity; and g is the gravity acceleration.

The Reynolds stress tensor τ is calculated with the standard k-ε model of [17]:

τ = υt
(
∇U + (∇U)T

)
−

2
3

kδ, (3)

where δ is the Kronecker delta (a unit tensor) and the eddy viscosity υt is calculated as:

υt = Cµ
k2

ε
, (4)

where Cµ = 0.09; k is the turbulence kinetic energy; and ε is the turbulence dissipation rate.
The transport equations for k and ε are:

∂k
∂t

+∇ · (kU) = ∇ ·

((
υ+

υt

σk

)
∇k

)
+ G− ε, (5)

∂ε
∂t

+∇ · (εU) = ∇ ·
((
υ+

υt

σε

)
∇ε

)
+ Cε1

ε
k

G−Cε2
ε2

k
, (6)

where G = τ : ∇U is the turbulence generation rate; Cε1 = 1.44; Cε2 = 1.92; σk = 1.0; and σε = 1.3.
A numerical solution to the above flow equations involves the use of a mesh to cover the model

domain, followed by discretization of the governing equations. With the IB method, only a background
mesh is needed. The background mesh itself, however, can be unstructured and assume polyhedral
shapes. Such a mesh is the most flexible and has the advantage of uniting various mesh topologies into
a single formulation. The cell-centered scheme is adopted with all dependent variables located at the
centroid of a mesh cell. The other alternatives include the cell-vertex scheme, with which all variables
are at the cell’s vertices, or a staggered scheme, with which the velocity and pressure are stored at
difference locations. The governing equations are discretized using the finite-volume approach using
the Gauss theorem. An advantage of the finite-volume method is that the conservation of any flow
property can be achieved locally and globally. The detailed numerical method was referred to in [14],
is and not repeated herein.

3. Immersed Boundary Implementation

The proposed IB method uses a discrete forcing approach, where the forcing term is cell-based for
an unstructured mesh. The IB cells are cells cut by the immersed surface, and their cell centers are
located on the fluid side (yellow cells shown in Figure 1). Three different points are identified: (1) the
IB cell center (IB); (2) the hit point (HP), which is the intersection of the immersed surface with its
normal line through the cell center; and (3) the image point (IP), which is the point on the extended
line of the normal vector through the cell center in the fluid field. Three different characteristic lengths
are identified: (1) wall distance yIB: the distance from the IB cell center to the corresponding hit point;
(2) image distance yIP: the distance from the image point to the corresponding hit point; (3) and IB cell
length l∗: the minimum dimension of all IB cells. To enforce the turbulence model conditions at the IB
cell centers, the following steps are carried out:
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1. The tangential flow velocity uIP at an image point is reconstructed by using a distance-based
weighting procedure with the neighboring cells around the image point.

2. Based on the log-law velocity profile, the dimensionless distance y+IB and y+IP are computed
(iteratively) as:

y+IP,n+1 =
y+IP,n +

κuIP yIP
υ

1 + ln
(
Ey+IP,n

) ; y+IB = y+IP
yIB

yIP
, (7)

where E = 9.8 and κ = 0.41.
3. The shear velocity uτ on the immersed surface is calculated as:

uτ =
y+IPυ

yIP
, (8)

4. The tangential flow velocity uIB, kIB, and εIB at the IB cell center are calculated based on y+IB:

unew
IB = uIP −

1
κ

uτ log
(

yIP

yIB

)
, (9)

kIB =
Ck log

(
y+IB

)
κ

+ Bk, (10)

εIB =
C3/4
µ kIB

3/2

κyIB
, (11)

where Ck = −0.416 and Bk = 8.366. The implementation of kIB and εIB are similar to the wall
functions for k and ε used in OpenFOAM [18].

5. Fix the values of flow variables on the IB cell centers when solving the momentum equation and
the transport equations for k and ε.

6. Adjust the flux balance on the faces of IB cell centers on the solid side for mass conservation.
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The key to the IB treatment is the estimation of the shear velocity 푢 , that is, the calculation of 
푦 . Considering the nonlinear and discontinuous nature of velocity profile between the laminar 
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Figure 1b. The numerical instability due to the small value of 푦  is avoided. A similar 
implementation has been used in [12] and [11] for the 푘 − 휔 model and SA model. 

Figure 1. A schematic illustrating the IB models using a two-dimensional (2D) mesh. (a) yIP = 3yIB;
(b) yIP = 3l∗.

The key to the IB treatment is the estimation of the shear velocity uτ, that is, the calculation of y+IP.
Considering the nonlinear and discontinuous nature of velocity profile between the laminar sublayer
and log-law sublayer, the result of y+IP converges to different values if different velocity profiles are
used. To keep the consistency when estimating the shear velocity uτ of all IB cells, Equation (7) assumes
that the image points are located within the log-law sublayer such that only the log-law velocity profile
is used in the iteration. Generally, the image point distance yIP is proportional to the wall distance yIB

(for example, yIP = 3yIB), as shown in Figure 1a [19,20]. However, the wall distance yIB is arbitrarily
distributed around the immersed surface, making it impossible to guarantee that the image point is
located in the logarithmic sublayer. In addition, an extremely small value of yIP may result in numerical
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instability and even divergence of the model. In this work, yIP is set to be proportional to the minimum
dimension l∗ of each IB cell (yIP = 3l∗). Consequently, the image points are uniformly distributed along
the immersed surface, as shown in Figure 1b. The numerical instability due to the small value of yIP is
avoided. A similar implementation has been used in [12] and [11] for the k-ω model and SA model.

Another problem in the near-wall treatment of the immersed boundary method comes from
the inconsistency when the IB cell center and its corresponding image point are located in different
sublayers of the velocity profile. Although all image points are designed to be in the log-law layer,
the wall distance yIB is still an arbitrary value and the IB cell center may be in the laminar sublayer.
Therefore, Equation (9), which assumes the IB cell center and its image point follow the same logarithmic
velocity profile, is not applicable in this situation. To address this problem, a modified velocity profile
is used when the IB cell center is in the laminar sublayer. We assume a linear velocity profile between
the wall and the image point, such that the first derivative of the velocity with respect to the wall
distance is still a constant (∂u/∂y = const.) (Figure 2a). This method was proposed in [11] to correct
the mass flux on the cell boundary by using a slip velocity boundary condition. Here, it is used to
extend the logarithmic velocity profile to the wall when the IB cell center is in the laminar sublayer.
The eddy viscosity is also modified to be a constant between the wall and the image point (Figure 2b).
Thus, kIB, and εIB are constant in this region. This modification is based on the balance of shear stress
on the boundary:

(υ+ υt)

(
∂u
∂y

)
= u2

τ = const. (12)
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The modified flow velocity uIB, kIB, and εIB at the IB cell center are calculated as the following:

unew
IB =


uIP −

1
κuτ log

( yIP
yIB

)
if y+IB > y+Laminar

uIP −

(
∂u+
∂y+

)
IP
(yIP − yIB) uτ if y+IB ≤ y+Laminar

, (13)

kIB =


Ck log(y+IB)

κ + Bk if y+IB > y+Laminar
Ck log(y+IP)

κ + Bk if y+IB ≤ y+Laminar

, (14)

εIB =


C3/4
µ kIB

3/2

κyIB
if y+IB > y+Laminar

C3/4
µ kIP

3/2

κyIP
if y+IB ≤ y+Laminar

, (15)

where ∂u+/∂y+ = 1/(κy+). In the following, this is called the modified wall model, and the one
presented before is called the original model.
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4. Result

The above IB method is implemented into the U2RANS model. In this section, a number of
turbulent flow cases are selected to verify the improved IB method. In particular, model accuracy is
examined and discussed.

4.1. Turbulent Flow over Flat Plate

The flow over a flat plate was used to investigate a 2D boundary layer without pressure gradient.
The case is used to verify the IB method implementation with the proposed wall function. The length
L of the plate is 2 m. The Reynolds number based on the plate length is ReL = 5× 106 and incoming
flow velocity is U = 2.5 m/s. The upper boundary is 0.1L away from the flat plate. The Cartesian mesh
is refined near the leading edge and the plate. The mesh arrangement is shown in Figure 3. A short
slip surface (0.1L) is added in front of the leading edge using the symmetric boundary condition.
The flat plate is modeled as an immersed boundary, and the wall boundary condition is applied on it.
We tested four different mesh sizes by using four different cell expansion ratios, Ry = 1, 5, 10, 20, in the
y-direction to change the mesh size of the first cell touching the wall. The cell expansion ratio, R, is that
of the size of the end cell ∆xN to the size of the start cell ∆x1 along the edge direction (R = ∆xN /∆x1).
Different mesh sizes change the value of yIB and yIP. For both original and modified wall models,
the computed local friction coefficient (C f ) along the plate compares well with the experimental data
from [21] (Figure 4a,b); the velocity profiles at 0.9L are in good agreement with the log-law (Figure 4c,d).
In addition, as y+IB decreases, the simulation results converge to the experimental data. The results
show that the proposed IB algorithm with an original or modified wall model is insensitive to the
image point distance yIP in the log-law layer.

To further investigate the stability of the algorithm and its dependence on wall distance, the mesh
above the flat plate is rotated, as shown in Figure 5. The top line of the grid has the same height to
maintain the same water depth throughout the length. The bottom of the mesh is rotated, and the
downstream end of the bottom is moved down by 0.0025L. The red line represents the position of the
flat plate. With this configuration, the mesh lines are not aligned with the flat plate. As the grid rotates
(stretches), the wall distance is not uniformly distributed along the plate. Other details of the mesh
arrangement are shown in Figure 5. Ny2 is the number of mesh refinement in the y-direction used in
the region between the bottom line and the line 0.1L away from the bottom. We changed the number
of Ny2 (Ny2 = 100, 200, 300) to show the mesh independence of this method. The cell expansion ratio
in the y-direction in the refinement zone is 1 to maintain the minimum dimension l∗ constant for each
IB cell, such that the image point distance is the same; but the wall distance distribution is nonuniform
over the plate. Figure 6a shows the numerical results of the local friction coefficient using the original
wall model. The predicted results are comparable with the experiment. However, there are some small,
semi-periodic oscillations due to the change of wall distance along the plate, especially when the value
of yIB decreases and the IB cell center is in the laminar sublayer. To suppress the oscillation from the
nonuniform wall distance, the modified wall model is applied and the simulated results are plotted
in Figure 6b. The modified wall model can predict the local friction coefficient more accurately and
the oscillation is greatly reduced. As the mesh is refined, the local friction coefficient converges to the
experimental data. In addition, velocity profiles in Figure 6b and d at 0.9L agree well with the log-law.
Both the original and modified wall models give a good prediction of velocity.
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Table 1 provides the computational cost in one iteration of the IB method with the modified wall
model. The calculation of the modified wall model includes the finding of IB cells, identification of
image stencil for reconstruction, and implementation of wall function. All simulations were performed
on a Dell Precision Tower 5810 with an Intel Xeon CPU ES-1620. The computational cost of the modified
wall model is about 60% of the total CPU time in one iteration for each case. However, considering the
boundary is immobile in this work, the IB cells and image stencil are only calculated in the first iteration,
and remain unchanged in the following iterations. The percentage of the computational cost of the
modified wall model greatly decreases over the whole simulation time. In addition, the modified wall
model avoids the computational cost required to fully resolve the near-wall flow in the laminar layer.

Table 1. Modified wall model performances on a single-core computer.

Grid

CPU Time in Modified Wall Model (s)
Total CPU

Time (s)
Percent (%)Definition of

IB Cells
Image
Stencil

Boundary
Condition

Ny2 = 100 20.68 1.281 0.0004 31.963 68.7

Ny2 = 200 23.61 1.678 0.0003 41.943 60.3

Ny2 = 300 16.43 2.155 0.0004 52.361 54.6

4.2. Turbulent Flow around a Cylinder over Scoured Beds

The proposed IB algorithm is verified next for its capability to simulate a case with an instream
structure—a turbulent flow around an instream cylinder over scoured beds. The modified wall model
is used. The simulated results are compared with the flume experiment by Jensen et al. [22]. Figure 7
shows the three bed profiles representing three scour phases observed in the experiment by Mao [23].
The cylinder has a diameter of 3 cm and is placed above three scoured bed profiles. The mean inlet
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flow velocity is 0.2 m/s. The computational domain is 1.1 m in the streamwise direction (x-direction).
The flow depth at the uneroded bed at the exit is maintained at 0.245 m (y-direction). Despite 2D flow
in nature, the modeling is carried out in a 3D model domain with the dimension of 0.03 m along the
cylinder (z-direction).
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Using profile 3 as an example, the Cartesian background mesh has 0.1 cm resolution near
the cylinder and scour bed, which is the finest resolution similarly used by Smith and Foster [24].
The background mesh has a total of 355,515 3D cells (71,103 2D cells in the xy plane and 5 cells along z).
The cylinder boundary and bed profiles are treated as the immersed boundaries. The fluid and IB cells
near the immersed boundaries are shown in Figure 8. The meshes for the two other profiles are similar.
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Figure 8. Close-up side views of the fluid mesh cells near the cylinder and bed profile 3.

Figure 9 shows the comparisons between simulation results and measured data from experiments.
It is seen that the computed streamwise (x) velocity profile approaching the cylinder is near-logarithmic,
although a constant velocity boundary condition is applied at the inlet. The IB method-simulated
velocity profiles agree well with the experimental data for all three profiles and at the eight streamwise
stations. The results show that the recovery from the cylinder is slow, even at the last measured
location about eight cylinder diameters downstream (x = 24 cm) where the wake effect of the cylinder
is still significant.
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Figure 9. Comparisons of the predicted streamwise velocity (Ux) with the measured data along eight
streamwise stations. Scaling of Ux is such that one unit of x is 10 cm/s. (a) Profile 1; (b) profile 2;
(c) profile 3.

4.3. Turbulent Flow over 3D Dunes

3D dunes were used to verify the model performance with the turbulence model in a 3D form,
especially the prediction of wall shear stress. The modified wall model is used in this case for a more
accurate and smooth wall shear prediction. The simulation results are compared with the experiments
of [25]. In the experiment, 14 fixed 3D dunes were placed on the bottom of the flume sequentially
and experimental data were measured on the 11th and 12th numbered dunes. Only six dunes were
simulated to reduce the computational cost, and the data were collected from the last two dunes,
as shown in Figure 10a. The length of the simulation domain is 5.0 m in the x-direction and the width
of the domain is 0.9 m in the y-direction. The bed elevation contour of the 3D dunes is shown in
Figure 10b. The incoming velocity is 0.261 m/s in the x-direction and the water depth is 0.561 m in the
z-direction.

The Cartesian background mesh is shown in Figure 11. The numbers of cells are 450, 90, and 70 in
the x, y, and z directions, respectively. The mesh is refined near the dunes, especially where the bed
elevation changes rapidly.
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Figure 11. Mesh for flow over 3D dunes.

Figure 12 is a comparison of results from the IB method and the experiment. The streamwise
velocities at different locations are well-predicted. The only noticeable deviation is downstream of the
measured two dunes at y = 0 m. In this slice, the bed elevation has the largest slope, such that a long
distance from the inlet is required for the flow to be fully developed. In the experiment, the measured
dunes are the eleventh and twelfth. However, the measured dunes in the simulation are at the fifth
and sixth, due to the limitation of computing capacity. Thus, the flow condition is slightly different.
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Comparison of bed shear stress is shown in Figure 13. The simulation results show that the new
IB algorithm can provide a smooth wall shear stress distribution. The normalized wall shear stress of
the measured data (Figure 13a) is estimated using the velocity 5 mm above the bed [25]:

|τb| = u2
τ =

∣∣∣∣∣∣ 30κU1

ln(z1 − η)/ks

∣∣∣∣∣∣2, (16)

where U1 is the velocity at 5 mm above the bed, the distance z1 − η is 5 mm, and ks = 1 mm is the
bed roughness.
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The wall shear stress u2
τ from the IB simulation is based on Equations (7) and (8) and shown

in Figure 13b. Even with the distribution of IB cells and image points changing arbitrarily with the
bed elevation, the predicted shear stress is smooth. A comparison with the experimental data in
Figure 13a shows the existence of mismatch between the two. This is mainly because the accuracy of
the simulation is limited by the computing capacity, such that the velocity prediction at the places with
large slope deviates from the experiment. However, the general characteristics of the wall shear stress
are captured by the numerical model. The wall shear stress is the highest at the crests of dunes and
relatively small elsewhere. The smooth distribution of wall shear stress is very important for modeling
the sediment transport and scours, which is currently under development.

5. Conclusions

This work proposes a new wall model algorithm for use by the IB method in association with
the k-ε turbulence model. It was implemented into the terrain-conforming U2RANS model of [14].
The aim was to develop a flexible IB-method-based CFD model so that turbulent flow field can be
simulated accurately and smooth wall shear stress can be generated. A key contribution is to use a
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consistent velocity profile—log-law velocity profile—to estimate the wall shear velocity. In addition,
a modification was proposed in the wall model for the laminar sublayer to suppress the oscillation
caused by the small value of wall distance yIB. In such a way, the discontinuity and nonlinearity of
the velocity profile between the laminar sublayer and log-law sublayer are avoided. The proposed
two-layer wall function has the same drawbacks of standard wall functions for non-equilibrium flow
with a large pressure gradient, such as stagnation point and separated flow. However, it provides a
relatively accurate prediction of a high Reynolds number and wall-bounded flow with an affordable
computational cost. The new method was tested and validated with selected 1D, 2D, and 3D flow cases.
Good results were obtained in each case. The proposed method produces an accurate and smooth
wall shear stress distribution, paving the way for the next stage of model development for sediment
transport and scour modeling.
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