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Abstract: Due to highly complex membrane structures, previous research on membrane modeling
employed extensively simplified structures to save computational expense, which resulted in deviation
from the real processes of membrane fouling. To overcome those shortcomings of the previous models,
this study aimed to provide an alternative method of modeling membrane fouling in water filtration,
using auxiliary classifier generative adversarial networks (ACGAN). Scanning electron microscope
(SEM) images of 0.45 µm polyvinylidene difluoride (PVDF) flat sheet membranes were taken as
inputs to ACGAN, before and after the filtration of feed waters containing 0.5 µm diameter particles
at varied concentrations. The images generated with the ACGAN model successfully reconstructed
the real images of particles deposited on the membranes, as verified by human validation and particle
counting of the real and generated images. This indicated that the ACGAN model developed in
this research successfully built a model architecture that represents the complex structure of the
real PVDF membrane. The image analysis through particle counting and density-based spatial
clustering of application with noise (DBSCAN) revealed that both real and generated membranes had
an uneven deposition of particles, which was caused by the complex structures of the membranes
and by different particle concentrations. These results indicated the importance and effectiveness of
modeling intact membranes, without simplifying the structure using such models as the ACGAN
model presented in this paper.

Keywords: deep learning; generative adversarial network; membrane filtration modeling;
particle deposition; PVDF membrane

1. Introduction

Low-pressure membranes, namely microfiltration (MF) and ultrafiltration (UF) membranes,
are employed extensively in drinking and wastewater treatment systems [1], due to the better water
quality compared to conventional treatment with high removal rates of particulate matter, turbidity,
and microorganisms [2,3]. The high removal efficiency of particulate matter is achieved by size exclusion,
ca. 0.1 µm for MF and 2–100 nm for UF [4], and adsorption to the porous material. One critical issue
in the operation of membrane filtration systems is membrane fouling, wherein particles accumulate
gradually on and in the membrane structure, via internal, complete, and partial pore blocking, and
cake layer formation [5]. At the macroscale, fouling causes increased filtration resistance and decreased
flux at a constant pressure, drastically reducing the membrane performance [6].
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Modeling of the membrane fouling processes helps better understand the factors influencing the
membrane fouling process [7]. It contributes to design enhancement of membranes’ structures and
materials [8] and allows online monitoring, for a simultaneous control of the status of the membranes
and fouling-induced changes in performance [9].

Conventional modeling refers to the mathematical approaches at the pore and pore network scale,
which were widely applied in the past studies [10]. At the pore scale, colloidal internal fouling is
described through particle–particle and membrane–particle interactions in a cylindrical pore [11,12].
Such a detailed description of physical relationships requires high computational expenses, solutions
of complex equations, and a deep understanding of the process feed, membrane structure, solutes,
and solvent properties, which are not easily available. Pore network modeling with a physical approach
focuses on understanding how internal fouling affects the flux reduction and changes in porosity
by adsorption in the internal structure of the membranes [13]. The assumption of pores and throats
as simple geometrical structures is one of the main drawbacks of conventional modeling, as the
success of pore-network models depends on the adequate representation of the real pore space [14].
Alternatively, a stochastic approach describes the efficacy of particle removal, based on size exclusion
mechanisms [15]. However, both approaches fail to accurately describe the membrane structure and
filtration phenomena and were not well validated by experimental results [10].

Taking distance from these conventional methods of describing membrane filtration process on
the micro- and mesoscale, machine learning techniques, including deep neural networks (DNNs),
provide an appealing alternative by overcoming the needs for a simplified structural model and by
performing complex linear and non-linear operations with a great number of inputs and outputs [16].
DNNs are structured in subsequent layers of neurons, which resemble the layout of the human
brain and are expressed by mathematical functions that perform data classification and information
extraction. They are, thus, distinct from genetic algorithm, which aims to obtain a fitness function,
based on selection, crossover, and mutation, both in their objective and architecture [17].

DNNs are black-box models, as they adjust the great number of weights in the hidden layers not
based on chemical and physical mechanism, but based on backpropagation of the computed error
function; nonetheless, they can simulate processes with a high predictive accuracy, given large training
sets [18]. Traditionally applied for speech and object recognition tasks, image classification, and remote
sensing, DNNs are now slowly being implemented in the field of water membrane science [19]; however,
the number of journal publications remains limited. Park et al. built a deep neural network to describe
surface fouling on nanofiltration and reverse osmosis membranes, using in situ fouling images obtained
with optical coherence tomography (OCT) as input data [9]. By comparing the DNN estimation of
fouling thickness and flux decline with conventional pore blockage-cake formation models, they proved
the higher prediction accuracy and advantages of their DNN models, which overcame the difficulties
of finding optimum parameters for physical-structure-based mathematical models. An alternative
to OCT data is scanning electron microscope (SEM) imaging, which is a consolidated method in
membrane science to detect changes of membrane surfaces and structures, offering the possibility of
taking various images for thorough analysis [20]. The SEM’s capability of capturing both foulants and
membrane characteristics is very appealing when attempting to model particle deposition on complex
membrane surfaces [21], the destructive character of SEM being the only major drawback.

In the flow of increasing popularity of DNNs, this study aimed, for the first time, at expanding the
use of an auxiliary classifier generative adversarial network (ACGAN) for the description of surface and
internal fouling caused by particle deposition on the structures of porous membranes. This approach
overcomes two important drawbacks of the conventional membrane fouling models identified through
literature review—the limiting conditions of the experiments for parameter determination at nano and
micro scale, and the too simplified, and therefore, inaccurate descriptions of membrane structures.

ACGANs are unsupervised deep learning architectures trained for image generation. ACGANs
are increasingly implemented as data augmentation techniques for medical imaging, where input
data acquisition is mostly costly and time consuming [22]. A generative adversarial network (GAN)
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is composed of a generator and a discriminator, two nets training as adversaries, hence the name
adversarial. The generator is responsible for transforming a random array of numbers from the latent
space into an image, whereas the discriminator, working as a convolutional neural network (CNN)
binary classifier, discriminates between the real training images and the newly generated ones [23].

The objectives of this study were (1) to verify that ACGAN can generate images of PVDF membranes
with deposited particles, with comparable quality of the real images of the PVDF membranes and
(2) to provide novel understandings of the features of low-pressure water filtration membranes,
with and without particle deposition, using the image analysis methods, such as density-based spatial
clustering of application with noise (DBSCAN) applied to the SEM and ACGAN-generated images,
thus, maintaining faithfulness to the actual complex porous membrane structure.

2. Materials and Methods

2.1. Selection of the Membrane Filter

Hydrophilic PVDF flat sheet membranes with a nominal pore size of 0.45 µm and a diameter
of 47 mm (Merck Millipore HVLP04700, Darmstadt, Germany) were chosen for water filtration
experiments and SEM imaging. Unlike 0.1 µm membranes (Merck Millipore VVLP04700, Darmstadt,
Germany), 0.45 µm porous membranes presented a more open and thus heterogeneous structure on
the surface, allowing us to acquire information on the underlying pores (Figure 1a,b). The complexity
of the particle deposition within the pores, formation of particles clusters on the membrane surface,
and the effect of small difference of feed water concentration on the homogeneity of particle distribution
were observed on the 0.45 µm membranes, while all particles were retained on the membrane surface
forming a cake layer on the 0.1 µm membranes. Thus, the 0.45 µm membranes were selected to observe
intermediate stages of particle deposition on the membranes.

Figure 1. Scanning electron microscope (SEM) photos of virgin polyvinyl difluoride (PVDF) flat sheet
membranes (1280 × 960 pixels, 1500×, 10 kV, VE-8800, Keyence, Osaka, Japan); (a) pore size = 0.1 µm,
and (b) pore size = 0.45 µm.

2.2. Filtration Experiments and Image Acquisition

To obtain the SEM images of particles deposited on the aforementioned PVDF flat sheet membranes,
filtration experiments were carried out using the membrane filtration unit illustrated in Figure 2.
We filtered 250 mL of Milli-Q water containing particles (1–9 mg/L, red fluorescent beads d = 0.5 µm,
FluoroSpheresTM carboxylate, F8812, Invitrogen by Thermo Fischer Scientific, Tokyo, Japan) for 2 min,
through the membranes, at a constant pressure of 45 kPa. The feed water concentrations of 1–9 mg/L
represent the range of suspended solids concentration of river water used for public water supply in
Tokyo, Japan [24]. After the membrane filtration experiments, the membranes were taken out from
the filtration unit and kept in a desiccator until their SEM images were taken by mode of secondary
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electron detection (1500×, 10 kV, Keyence VE-8800, WD: 8.8–8.9 mm, coating: Pt, high vacuum
p = 10−3–10−4 Pa).

Figure 2. Experimental setup for the filtration of feed water particles through a flat sheet membrane.

2.3. Image Preprocessing

The used flat sheet membranes after filtration, as well as the virgin membranes, were observed
using the SEM, and 120 pictures (1280 × 960 pixels) were taken for each of the ten feed water
concentrations, bringing the total number of images to 1200. To increase the number of input data,
each image was split into 16 tiles (320 × 240 pixels), resulting in a total number of 19,200 images.

Image preprocessing was carried out to improve the feature extraction capacity and quality of
information. SEM images used as input data were preprocessed by applying the Contrastive Limited
Adaptive Equalization (CLAHE) algorithm of Open Source Computer Vision Library (OpenCV 4.0, Intel,
Nižnij Novgorod, Russia), to obtain histogram equalization. By flattening the intensity pixel values,
the contrast was enhanced, and the available image information was increased [25]. The OpenCV
Hough transform algorithm was used to detect particles on the membrane surface. Particles were
marked as black circles to enhance the model feature extraction capacity (Figure A1, Appendix A).

To initiate the training of the models, tiles (320 × 240 pixels) were reshaped (200 × 200) and
uploaded as arrays of three dimensions, width, height, and channels, and were read as matrices of
intensity values [26].

2.4. Particle Deposition Model Using ACGAN

To improve the stability of the generative adversarial network (GAN) training and the quality
of generated images, conditioning the latent space by adding labels to the input data was found to
be successful [27,28]. Auxiliary conditioning of ACGAN allows the generator to learn features faster
and to output generated images belonging to different classes, satisfying the interest of describing
particle deposition at different conditions of filtration. The four classes of membranes selected from
the real input images for auxiliary conditioning were those of a virgin membrane and feed water
concentrations of 2, 5, and 8 mg/L.

The ACGAN model architectures were developed using Keras, a high-level library written
in Python (version 3.7.3), which enables working with the Tensorflow backend (Google brain,
Mountain View, CA, USA).

The ACGAN model was structured according to the configurations shown in Figure 3 and reported
in Table A1 (Appendix A). The discriminator and generator were optimized for the specific type of
images, through hyperparameter tuning, namely through adjustments of the layer depth, the kernel
size, and the filter number, and by implementing regularization techniques, as suggested by Radford
and Chintala [29]. The final model structure was chosen, based on the stability of the training process
and on the quality of the output images.
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Figure 3. Auxiliary classifier generative adversarial networks (ACGAN) model structure configurations.

2.5. Performance Evaluation

Currently there is a lack of a universally applied and valid way to evaluate the output of GANs in
the literature [27]. Thus, in this study, among the proposed evaluation techniques, questionnaire based
human validation and quantitative evaluation through particle counting were applied to the outputs
of GANs. Human validation was carried out by setting up a google questionnaire form to evaluate the
similarities between the real and generated images. The participants (n = 37) were required to determine
if the displayed image (n = 20) was real or generated, after being given an example of both. The errors
in predictions made by the interviewees are shown by use of a cumulative confusion matrix, where real
images correspond to positive (1) and generated images to negative row (0). Thus, true positive
signifies correctly predicted real images, false positive incorrectly predicted real images, true negative
correctly predicted generated images and false negative incorrectly predicted generated images [30].
Particles on the generated images were counted both manually and automatically. Automatic counting
on the generated images was performed through binarization of the generated images and contour
detection (OpenCV) using pixel intensities and area as the thresholding values. Automatic counting
on real images was performed through circles detection, using the Hough transform algorithm.

2.6. Density Clusters Identification

The density-based spatial clustering of application with noise (DBSCAN) algorithm was used
to identify density clusters on real SEM images with deposited particles. DBSCAN is a machine
learning data clustering algorithm that can group nearby points, based on distance measurements and
a minimum number of samples [31]. Information on circle center coordinates were used as the input
data and the minimum number of samples was set at 37, through trial and error.
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2.7. Gini Index Equality Distribution and ANOVA

Gini index is a nonparametric statistical measure widely used in economics to assess the inequality
in distribution of income and wealth between individuals in a population or between countries around
the world [32]. Each of the 120 SEM images obtained at feed water concentrations of 1–9 mg/L were
cut into 16 tiles and the tiles were ordered from the smallest to the largest particle counts; then the tiles
of the same order were grouped so that each group had 120 tiles. Gini index and one-way ANOVA
were used to analyze the differences of particle counts among those groups.

3. Results

3.1. ACGAN Generated Images of PVDF Membranes with Deposited Particles

The ACGAN model was run for the maximum of 80,000 iterations, and the generated images
were checked every 2560 iterations. The training was stable, and no convergence failure was observed,
delivering images of impressive quality already, after 40,000 iterations (ca. 150 epochs). Figure 4
shows the plotted images for the four different classes (no particles, 2, 5, and 8 mg/L), after 74,240
iterations. The images represent the membrane structure quite accurately and the shapes, such as deep
pores, visible as darker pixels, circular surface pores of bigger diameter, and crystal geometries as
well as imperfection of the PVDF membrane structure, could be identified. In the images shown in
Figure 4, the four classes of membranes are well represented by the increasing number of black dots,
which indicate the deposited particles.

Figure 4. ACGAN generated images of the PVDF membrane structure and particles for four different
particle concentrations in feed water (a) 0, (b) 2, (c) 5, and (d) 8 mg/L (200 × 200 pixels).

The development and hyperparameter tuning of the ACGAN model were, therefore, considered
successful. Spotting particles as black dots in the preprocessing step resulted as an effective technique to
enhance discrimination of those against pixels of the underlying and surrounding membrane structure.
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3.2. Evaluation of ACGAN Generated Images of PVDF Membranes with Deposited Particles

3.2.1. Human Validation

The results of human validation were summarized in a cumulative confusion matrix (Figure 5).
The correct answers numbered 225 and 202 for the generated and real images, respectively, while the
incorrect answers numbered 144 and 168, respectively. Hence, the overall accuracy was 57%, while the
accuracies for the real and generated images were 54.6% and 61.0%, respectively, which indicated
that the margin of accuracies between the real and generated images was small for human judgment.
The results of human validation showed that their responses varied with the extent of randomness;
hence, it was difficult for humans to distinguish between the real and generated images.

Accuracy =
TP + TN

TP + TN + FP + FN
=

202 + 225
202 + 225 + 144 + 168

= 0.57

Figure 5. The cumulative confusion matrix of all responses (n = 739) for the discrimination of real and
generated ACGAN images questionnaire.

TP: True Positive, TN: True Negative, FP: False Positive, and FN: False Negative.
When looking at the replies to each image (Figure 6), for 30% of the images (two generated: ID 1

and 6; four real: ID 2, 3, 7, and 16), over 50% of the respondents identified the images incorrectly,
whereas two images (generated ID 17; real ID 13) had only one vote difference, which indicated the
same levels of difficulties of the real and generated images in finding the correct answers. Therefore,
the high quality of these generated images was confirmed. Among those, specifically the real images
(ID 3, 7, and 16), showed no visible characteristics that might have influenced the interviewees to
incorrectly identify them as the generated images. On the other hand, the high accuracy of responses,
70.3% and 78.4% for generated images ID 4 and 15, respectively, might be due to the slightly lower
quality of the displayed images, due to the mapping of random numbers drawn from the latent space
(refer to Introduction). Thus, overall, the generated images successfully reconstructed the real images;
however, there were a few generated images that needed to be excluded from further analysis.

When looking at the results of the human validation of real and generated images at 8 mg/L
(Figure 7), the majority of the respondents wrongly identified two out of three images (Image ID 7, 15,
and 16), meaning that humans were not able to correctly differentiate between the real and generated
images at 8 mg/L as well. Thus, ACGAN was able to generate images of real 8 mg/L membranes.
This is not evidence of the ACGAN model being capable of reproducing outlier images with smaller or
bigger particle counts, as discussed later in the discussion section.

3.2.2. Quantitative Evaluation through Particle Counting

Particles on generated images were counted both manually and automatically (Figure 8a).
The difference in the length of the bars, which represents the standard deviations, is due to the
difference in the numbers of counted membranes, namely, automatic (n = 1920) vs. manual (n = 50),
for each of the observed concentrations (0, 2, 5, and 8 mg/L). There was a linear relationship between
manual and automatic particle counting; however, automatic particle counting was overall 34.6% less
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than those by manual particle counting. This result indicated that automatic counting had the tendency
to underestimate the particle counts.

Figure 6. Interviewee (n = 37) responses to the discrimination of real and generated ACGAN
images questionnaire.

Figure 7. Examples of (a) real and (b) generated SEM images at 8 mg/L feed water concentration.

Figure 8. Particle counts on membranes at four different initial concentrations (0, 2, 5, and 8 mg/L,
n = 1920 for each concentration): (a) comparison between the manual and automatic counts on
generated images, and (b) comparison between the particle counts on the real and generated images by
automatic counting. The bars indicate the standard deviations.
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When comparing the mean number of particles on the real and generated images, several aspects
could be noted (Figure 8b). At a particle concentration of 0 mg/L, the generated images showed a
small number of particles, which might be interpreted as errors in the conditioning of the generator.
The overall particle counts on generated images were 5.8% less than the particle counts on real
images. The difference between the real and generated mean particle counts became greater when
the feed water concentration was increased (up to a 185,597 mean particle count difference at 8 mg/L).
Such an observation was partly explained by the application of two different methods for particle
counting—circle detection through the Hough transform algorithm and contour detection based on
pixel intensities and area thresholding for the real and generated images, respectively. The reason
for applying different particle detection techniques is the inapplicability of the Hough transform for
generated tiles, on which the particles did not appear as perfect circles, due to the lower quality of the
images. The standard deviation of the particle counts on the real membranes increased with the feed
water concentration, whereas the standard deviation of the generated images was significantly lower
than those on the real images. Cake and multilayer deposition processes, which occur mainly at higher
feed water concentrations, might explain the high variance in particle counts at higher feed water
concentrations on real images, for which particle counting might be less precise due to the overlapping
of circular elements. On the contrary, the standard deviation of the particle counts on the generated
images were smaller than the real images, which might be because the ACGAN generated standard
images rather than outlier images, far apart from the standard ones, while in the real membrane
filtration there was an uneven distribution of particles deposited on the membranes. Thus, it could be
said that the ACGAN model developed in this study was superb in reproducing particle deposition
on the membranes filtered with low concentration particles in feed water, while at high feed water
concentration, it tended to generate standard images of particles deposition, rather than outlier images
of extremely high or low particle deposition.

4. Discussion

4.1. Particle Deposition Patterns on Real and Generated Images

Considering particle counts on full sized SEM images (n = 120 for each concentration), the following
can be noted (Figure 9); at the feed water concentrations between 1 and 6 mg/L, the variance of particle
counts on SEM images was low, and the retention did not increase linearly with increasing particle
numbers in the feed water. However, at feed water concentrations greater than 6 mg/L, the number of
retained particles increased significantly. The ratio of deposited particles on the membrane at 5 mg/L
was the lowest (6.8%) in comparison to 2 mg/L (9.2%) and 8 mg/L (10.5%). We thus identified that
there was a range of feed particle concentrations (approximately 5–6 mg/L), at which particle retention
was smaller than at lower (1–4 mg/L) and higher concentrations (>6 mg/L).

Such a phenomenon was reported in stochastic-based modeling studies [15], mainly through
the flux variation approach, rather than variations of feed particle concentrations. This observation
could be further investigated through image analysis of the membranes deposited with particles at
different initial feed water concentrations of 0, 2, 5, and 8 mg/L (Figure 10a,b). The highlighted areas
on the top figures of Figure 10a (1280 × 960 pixels) indicate observed particle aggregates, whereas the
bottom figures of Figure 10a show the corresponding ACGAN generated images (200 × 200 pixels).
As the generated images represent only 1/16th of the real SEM size in Figure 10a, they are shown as
slightly enlarged.

The density clusters identified on the SEM images of PVDF membranes by density-based spatial
clustering of application with noise (DBSCAN) are shown in Figure 10b. The particle deposition
patterns, which were reported in previous studies obtained through experimental and mathematical
conventional approaches [5,8,12,15,30], were also recognized in these figures. Namely, at a low feed
water concentration of 2 mg/L, the exclusion and attachment mechanisms seemed to be prevalent,
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with particles rejected by the same or smaller sized pores and particles attached on the membrane
surfaces forming scattered small aggregates (Figure 10a,b far left).

Figure 9. Mean number of particles for 1–9 mg/L feed water particles concentrations detected per mm2

membrane area on equalized SEM photos of PVDF flat sheet membranes (n = 120 for each particle
concentration, 1280 × 960 pixels, 1500×, 10 kV, Keyence VE-8800).

Figure 10. The real and generated images of PVDF flat sheet membranes at feed water concentrations
of 2, 5, and 8 mg/L (from left to right)—(a) highlighted patterns of particle depositions on real (top:
1280 × 960 pixels) and generated images (bottom: 200 × 200 pixels), and (b) particle clusters on real
images identified by density-based spatial clustering of applications with noise (DBSCAN).

The distribution of particle aggregates was similar for the real and generated images (Figure 10a);
however, the differently colored images of particles identified by the DBSCAN showed more clearly
that the particles penetrated deeply into the pores. The majority of the image shows homogenous
and sparse distribution (light blue color in Figure 10b) that corresponded to sporadic attachments of
particles, both in deep pores, membrane edges, and crystal structures, while there were several small
aggregates, mostly on membrane surfaces, which suggested the prevalence of particle–membrane
interactions over particle–particle interactions (Figure 10b). This kind of attachment behavior was
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identified as the first step of the fouling process in the multi-mechanism fouling model proposed by
Griffiths et al. [8].

The density of the attached particles on the membrane surfaces increased further at 5 mg/L of
feed water on the real and generated images (Figure 10a middle), but they could not show the particles
deposited inside the pores. In contrast, the DBSCAN images successfully showed particles both deep
inside and on the surface of the membrane pores. In addition, the particles were mostly found in
aggregates, seemingly depositing on the initially blocked smaller pores or again surrounding larger
membranes structures (Figure 10a). DBSCAN analysis showed the highest and widest distribution in
cluster numbers, confirming the tendency of particles to assemble, as the particle–particle interactions
became stronger (Figure 10b).

As Park et al. [9] showed through their analysis of fouling formation on RO/NF membranes,
the influence of membrane properties on the fouling processes decreased as the membrane surface
became saturated with foulants. The similar patterns of particle deposition on the real and generated
images (Figure 10a) indicated that the particles first attached and aggregated on membrane surfaces
near small pores, which led to the clogging of small pores. Then, the share in the flux through larger
pores increased as they remained free of particles, as can be seen on the SEM and the generated images,
consequently increasing the probabilities of particles passing through the membrane. This process was
clearly seen at 5 mg/L—the small pores were blocked faster than at 2 mg/L, thus, enhancing the flux
through the larger pores, which resulted in lower particle retention rates. The experimental results by
Beuscher [15] for the filtration of a 50 nm beads suspension through membranes of different pore sizes
(0.02–0.04 µm) reported an overall decrease in the retention efficiency, which could not be explained
if size exclusion was the only phenomenon at play. Thus, it was estimated that the water flux was
diverted to large pores, due to the clogging of small pores.

At 8 mg/L, the particles deposited on the membrane formed a large aggregate, as observed by
DBSCAN, but the real SEM and generated images showed only the surface deposition of particles.
These results indicated that the DBSCAN is a useful tool to identify the total numbers of particles
attached or deposited on the membrane, while the SEM images were useful for the identification
of particles deposited on surfaces. Thus, a combination of SEM or ACGAN images with DBSCAN
analysis is a useful method to identify particles deposited on both membrane surfaces and inside
large pores.

4.2. Particle Distribution Analysis through Gini Index Calculation

As shown in Figure 7b, the particle counts on the real membranes had a higher variance than
the ACGAN generated membranes. To measure the deviation from the equal distribution of particles
deposited on the membranes, a total of 120 SEM images were cut into 16 cells and the particles on each
of the 16 cells were counted. Then, the 16 cells of each of the 120 SEM images were sorted from the
smallest to the largest. The averages and standard deviations were calculated for each of the 16 cells
for 120 images (Figure 11). At each feed water concentration, a sigmoidal trend could be seen from
cell 1 to cell 16, namely from the lowest to the highest number of retained particles. For all feed water
concentrations, except for 3 mg/L (p = 0.07), there was a statistically significant difference in the number
of deposited particles counted on the 16 cells (ANOVA, p < 0.05). If the membrane was produced
completely equally on all portions of the membrane, the number of particle depositions should be
equal among all 16 cells. This indicated that the ratio between the largest particle number of a cell (cell
number 16), over the smallest (cell number 1) could be an indicator of the variance in the retention
efficiency of the membrane at each feed water concentration. This ratio was the largest at 3.63 at 5 mg/L,
compared to other feed water concentrations. This conclusion agreed with the observations previously
carried out (Section 4.1) and those shown in Figure 10.
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Figure 11. Particle distribution on 16 cells of SEM images, ordered from the minimum to the maximum
particle counts. Error bars indicate standard deviation.

The cumulative particle counts on the 16 cells for different feed water concentrations were
further plotted to draw the Lorenz Curves and thereby to obtain the Gini Index equality coefficient
(Figure 12). For all feed water concentrations, the Gini Index did not surpass 0.20, indicating only a
slight unevenness in the particle distribution on the membrane surface. It could be noted, though,
that the Gini Index increased from 1 mg/L (GI = 0.160), reaching its maximum at 5 mg/L (GI = 0.193),
and then decreased to its minimum at 9 mg/L (GI = 0.091). The Lorenz curves for the SEM images at 2,
5, and 8 mg/L (Figure 12) could be related to the deposition patterns previously described and observed
for the real and generated SEM images, as well as to the density clusters identified using the DBSCAN
algorithm (Figure 10). At 2 mg/L (G = 0.152), higher equality in the distribution corresponded to
random attachments of particles on membrane materials and in deep pores. At 5 mg/L, the inequality
in distribution was the highest (G = 0.193) and so was the tendency of particles to cluster, giving in to
particle–particle interactions. As the pores were blocked and a cake layer started forming on the surface
of the membrane, at 8 mg/L, the distribution of particles drew near the line of equality (G = 0.10) and
was homogenous.

Observing the intermediate steps leading to internal fouling is a very helpful indicator of the
process of particle deposition and should be accounted for, with the aim of optimizing the porous
filtration processes, and cleaning practices and schedules. Special account should be taken regarding
particles, as the smaller particles were already reported as the main contributor of membrane fouling
and flux decline because they shorten the initial internal pore blocking phase [33].
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Figure 12. The Lorenz curve for the cumulative particle counts to cumulative cell numbers for SEM
images. Feed water concentration—2, 5, and 8 mg/L.

5. Conclusions

An auxiliary classifier generative adversarial network (ACGAN) model was developed to
reproduce membrane fouling by particle deposition, using SEM photos of PVDF 0.45 µm porous
membranes. We verified—by both human judgment and particle counting on the real and
generated images—that the ACGAN model developed in this study could regenerate the images
of particle-deposited membranes. There was a limitation, however, especially at a high particle
concentration, that the ACGAN model tended to produce standard membrane images with smaller
standard deviations rather than those of the real SEM images.

Furthermore, the particle deposition patterns of the real SEM and generated images proved
that these images had the same patterns of the particle deposition processes, which indicated the
effectiveness of ACGAN-generated images to simulate the particle deposition processes on filtration
membranes. The particle deposition and formation of aggregate on the membranes were compared to
the particle deposition and aggregation analysis through density-based spatial clustering of application
with noise (DBSCAN). It was found that, while the SEM and generated images were useful to identify
the particles deposited on the membrane surface, DBSCAN was able to identify the particles deposited
on both the surface and inside the pores of the membrane images. Thus, a combined use of these two
methods would make it possible to work with both membrane surfaces and inside pores.

To investigate the deviance of particle distribution on the real, rather than generated, membranes,
the membrane images were cut into 16 cells, and the number of particles were counted for each of
those cells. As a result, the inequality of particle distribution was the highest at the median feed
water concentration, with the clustering of particles on membrane surfaces. At lower and higher feed
concentrations, the particle distribution was more even, which might be linked to the random initial
attachment of the particles and homogenous cake layer formation, respectively. These results provided
insight into the different particle retention rates at various feed water concentrations.

The ACGAN model developed in this research was useful for feature extraction of the fouled
membranes and provided an alternative modeling method of membrane fouling in water filtration
that could represent the actual porous membrane structure, and thereby, overcome the constraints of
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over-simplification of the real membrane structures in the previous studies. The adaptability of the
deep neural network (DNN) models including ACGAN to model membranes of any structure is a
further strength, while the conventional physical models must be developed for each specific type
of membranes. Although the provided ACGAN model is readily available for data augmentation
applications, its potential has yet to be explored in further research, which should consider the
generations of images for which real SEM images are not available, such as at varied filtration
conditions, without the need of carrying out experiments. This would allow, with a minimum input of
real SEM images, actual sequence predictions of particle deposition. The satisfying quality and diversity
of generated images, as well as the capability to reproduce particle deposition patterns observed on
real SEM images, confirms the future need to explore diverse DNNs in the field of membrane science,
to improve our understanding of membrane fouling processes.
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Figure A1. Image preprocessing steps 19.
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Table A1. ACGAN Model configurations.

Operation Kernel 1 Stride 2 Feature Map 3 BN 4 Dropout 5 Activation Function 6

D
is

cr
im

in
at

or Convolution1 5 × 5 2 × 2 64 Yes LeakyReLU
Convolution2 5 × 5 2 × 2 64 Yes LeakyReLU
Convolution3 5 × 5 2 × 2 128 Yes LeakyReLU
Convolution4 5 × 5 2 × 2 256 Yes 0.5 LeakyReLU

Dense 256, 1 Yes 0.5 Sigmoid (+Softmax)

G
en

er
at

or

Dense 256 Yes LeakyReLU
Deconvolutional1 5 × 5 2 × 2 256 Yes LeakyReLU
Deconvolutional2 5 × 5 2 × 2 128 Yes LeakyReLU
Deconvolutional3 5 × 5 2 × 2 64 Yes LeakyReLU
Deconvolutional4 5 × 5 2 × 2 1 Yes tanh

Discriminator input 200 × 200 × 1 Classes 4 Samples 7680
Generator input 10 × 10 × 1 Output 200 × 200 × 1 Latent Space 100

Batch size 30 Iterations 80,000 Optimizer Adam lr = 0.0002
1 Kernel: Array of weights of set pixels dimension that filters the input images, performing elementwise multiplication
of own parameters and images pixel values to obtain a feature map. 2 Stride: Parameter defining how the kernel
slides on the input image. 3 Feature map: Output map of convolutional layers, composed of values for the specific
features detected on the input image. 4 Batch Normalization: Regularizing technique to standardize activations of
previous layers to zero mean and unit variance. 5 Dropout: Regularizing technique to drop out random sets of
hidden units according to an indicated probability. 6 Activation function: Activation of summed weighted input
from a node into the output. Can be linear (i.e., sigmoid, softmax, tanh) or non-linear (ReLU, Leaky ReLU) [26,34].
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