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Abstract: The Gaza coastal aquifer (GCA) is the only source of water for about two million citizens
living in Gaza Strip, Palestine. The groundwater quality in GCA has deteriorated rapidly due to
many factors. The most crucial factor is the excess pumping due to the high population density.
The objective of this article was to evaluate the influence of excess pumping on GCA’s salinity using
10-year predicted future scenarios based on artificial neural networks (ANNs). The ANN-based
model was generated to predict the GCA’s salinity for three future scenarios that were designed based
on different pumping rates. The results showed that when the pumping rate remains at the present
conditions, salinity will increase rapidly in most GCA areas, and the availability of fresh water will
decrease in disquieting rates by 2030. Only about 8% of the overall GCA’s area is expected to stay
within 500 mg/L of the chloride concentration. Results also indicate that salinity would be improved
slightly if the pumping rate is kept at 50% of the current pumping rates while the improvement rate
is much faster if the pumping is stopped completely, which is an unfeasible scenario. The results
are considered as an urgent call for developing an integrated water management strategy aiming
at improving GCA quality by providing other drinking water resources to secure the increasing
water demand.

Keywords: Gaza coastal aquifer (GCA); hydrogeological modeling; salinity; future scenarios; water
resources; artificial neural networks (ANNs)

1. Introduction

The main source of drinking water in the Gaza Strip is a shallow aquifer, which is part of
the coastal aquifer. The quality of the groundwater has extremely deteriorated in terms of salinity
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and nitrate concentrations. Salinity in the Gaza coastal aquifer (GCA) is characterized by a high
chloride concentration, depending on the location and other hydrochemical processes [1,2]. Various
processes may cause salinization of the groundwater, including seawater intrusion, movement of
saltwater from the deeper layers of the aquifer, contribution from discharges from older formations
surrounding the coastal aquifer, and dissolution of soluble salts in the aquifer. The root cause of the
aforementioned GCA salinization processes is the unbalance of the groundwater system resulting
from overpumping in the Gaza area, which is considered among the most populated regions in the
world [3,4]. In addition, potential man-induced (anthropogenic) sources, including agricultural return
flows, wastewater seepage, and leachate from solid waste dumping sites, are involved in increasing
groundwater salinity [5–7].

Modeling groundwater quality using traditional numerical modeling techniques consumes a lot
of effort and requires a large amount of data. Therefore, artificial intelligence techniques have become
very popular and efficient tools for modeling complicated processes using relatively less cost and effort.
It thus provides an easy and efficient tool for groundwater quality modeling [2,8–10].

The decision to choose any of the modeling techniques mainly depends on two elements: First, the
available amount of understanding of the physical behavior of the process, and second, the availability
of hydrogeological data that describe the related variables. In the case of sufficient understanding of both
the physical process and the data, process-based models are the suitable modeling technique. The model
in this case is developed depending on the physical understanding of the process. The model may
then be calibrated using the available data. In the case of sufficient data but insufficient understanding
of the physical process, AI-based models are the suitable modeling technique. If both the data and
understanding of the physical process are insufficient, statistical methods can be applied only as an
initial tool to improve the general understanding of the groundwater salinization process [11,12].
After the data collection process in the study area, it was noticed that the description of the physical
characteristics of the groundwater and the related parameters have not been sufficiently addressed
and described yet. However, enough data have been successfully collected. Accordingly, AI-based
models are the most suitable modeling technique for groundwater prediction and modeling based on
the availability of sufficient modeling data.

As a result of the complex nonlinear relationship, there is no direct scientific formula that
correlates the effect of pumping on groundwater salinity. Therefore, the artificial intelligence approach
is considered a suitable option to model such a relationship [3,13]. The strength of AI techniques
originated from their ability to simulate the human brain’s behavior to solve complex problems [14].
As one of the AI techniques, artificial neural network (ANN) structures are composed of input, output,
and at least one hidden layer, each of which has one or more simple interconnected adaptive elements
called ‘nodes’ that have a high ability to perform a huge number of parallel computations.

Although the safe yield of GCA is only 50 to Mm3/year, the total consumption from the groundwater
resources in the Gaza Strip in is about 170 Mm3/year. In groundwater management, the concept of
safe yield has been used to state the limits of pumping rates from a groundwater basin. It is the
attainment and maintenance of a long-term balance between the amount of groundwater withdrawn
annually and the annual amount of recharge. Thus, it limits the pumping rate to the amount, which is
replenished naturally through precipitation and surface-water seepage. The soil recharge coefficients
for GCA have been estimated in the Coastal Aquifer Management Program (CAMP). The recharge rate
is then calculated based on the long-term annual precipitation [15,16]. This implies overpumping of
about three times of the safe yield, and consequently leads to the deterioration of the groundwater
quality [17,18]. Since the safe yield is expressed as a single annual average rate, associated limitations
on diversions in water allocation permits and on contractual obligations of water allocation permittees
should also be on an annual average basis. Because of the uncertainties inherent in safe yield estimates,
they should be rounded in accordance with standard mathematical practice to no more than three
significant figures. Each specific alternative, configuration, or scenario of a safe yield simulation model
should be run iteratively, for the period of record, with various trial annual average system drafts
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to determine the annual average system draft that would divert all usable storage volumes of water
from the system’s reservoir(s). For each specific alternative, configuration, or scenario of a safe yield
simulation model, simulated usable storage volumes of water normally vary over the period of the
record and the restrictive condition that limits the safe yield estimate is the diversion of all usable
storage volumes of water as described in the paragraph above during any one day of the period of the
record. The drought during which this restrictive condition occurs is the most severe drought of the
record [19,20].

The main source of the elevated concentration levels of chloride concentration Cl− in GCA is
the overpumping. During the last decades, GCA has been extensively overexploited due to the
increasing population growth, high rates of urbanization, and increased agricultural activity. Intensive
exploitation of groundwater in the Gaza Strip in the past years has disturbed the natural equilibrium
between fresh and saline water, and has resulted in increasing salinity. This has induced seawater
to flow towards the major pumping centers in urban areas leading, to continuous increasing of the
levels of Cl− in GCA, particularly in areas close to the coastline [7,21]. It has been found that seawater
intrusion extends about 2 km inland in many areas of Gaza Strip [7]. Lateral flow from the eastern
Eocene aquifer is another source of CL. Such an aquifer is characterized by high Cl− levels, and its
flow regime is normally to the west towards GCA. Consequently, water flux coming from the Eocene
aquifer worsens ground water quality by increasing Cl− levels, especially in the eastern parts of Gaza
Strip [22,23]. Saline lenses, which are found in many GCA locations particularly in the southern parts,
are salty water lenses existing at deeper layers. Hence, if the wells are near these lenses and the screens
are deep enough, these lenses participate in feeding these wells and the abstracted water from these
wells will have elevated Cl− concentrations [22–24]. Many other Cl− sources, such as the recharge of
irrigation water and percolation of landfill leachate, contribute to the deterioration of the ground water
quality [22,23].

The objective of this study was to evaluate the response of GCA to the excess pumping from
groundwater and analyze the future deterioration of groundwater salinity using three future scenarios
to predict groundwater salinity in 2030 by developing and generating an empirical model developed
using ANNs. Understanding the relationship between groundwater pumping and the deterioration of
salinity can contribute to integrated water resources management in the Gaza area.

2. Study Area and Modeling Tool

2.1. Geology and Hydrogeology of the GCA

The study area of this research was the Gaza Strip, Palestine. It is a narrow strip of land on
the Mediterranean coast. It is part of Palestine with an area of about 365 km2 and it is around
40 km long [25]. Figure 1 shows the regional and location map of the Gaza Strip. The Gaza Strip is
an area where the exploitation level of recourses exceeds the carrying capacity of the environment.
This is especially true for the water and land resources, which are under high pressure and subject
to overexploitation, pollution, and degradation. The salinity of the groundwater is a main difficult
issue in the Gaza Strip. GCA is part of the coastal aquifer that extends from GS in the south to Carmel
Mountains in the north along the Mediterranean coast line (about 120 km), as shown in Figure 1, which
illustrates the layout of GCA and the adjacent aquifers [25]. The width of GCA varies from10 km in
the north to about 20 km in the south [22,26]. The GCA thickness varies from about 120 m in the west
(at the shoreline) to a few meters in the east [27]. Meanwhile, the depth of the water level of GCA
ranges from about 60 m below the ground surface in the east to a few meters near the coastline in the
west [25].
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Figure 1. Regional and location map of Gaza Strip and the coastal aquifer and cross-section of the
coastal aquifer at the middle area of GCA.

Within Gaza Strip, the coastal aquifer overlies the saqiye group, which is considered to be
impermeable. The top of the saqiye group therefore marks the base of the coastal aquifer. Approximately
10 to 15 km inland from the coast, the saqiye group pinches out, and the coastal aquifer rests directly
on Eocene chalk and clastic sediments of Neogene age. The thickness of the entire coastal aquifer
is on average about 120 m. At the eastern Gaza border, the saturated thickness is about 60 m in the
north, and only 5–10 m in the south near Khan Younis and Rafah. The sand dunes are the top part of
Pleistocene marine sand and sandstone, which is interbedded with clayey layers making three or four
sub-aquifers as shown in the cross-section of the coastal aquifer in the middle area of GCA in Figure 1.
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The infiltration rate differs from one type of soil to another. However, due to increasing urban
development, the natural soil has been disturbed and covered by impermeable layers, such as paved
roads, or occupied by buildings. This, of course, reduced drastically the amount of infiltrated rainfall
that replenishes the groundwater. The decrease in infiltrated rainwater appears as surface run-off, or is
lost by either evaporation or diverted to the sea. The infiltrated water in Gaza Strip goes through the
soil at a rate of one to two meters per day in the areas where fine sand is found, and this rate increases
in the coarser formation, e.g., kurkar. However, the percolation rate decreases if it encounters a clayey
layer in the subsurface. Water goes horizontally above the non-permeable layer until it encounters a
disconnection in this layer and travels vertically downward to the groundwater reservoir [28].

The type of soil (sandy, silty, and clayey) can control the rate of infiltration. For example, a
sandy surface soil normally has a higher infiltration rate than a clayey surface soil. The soil texture
is important to identify the vulnerability of the artificial recharge basin to surface sealing, where a
thin lamina of fine particles covering the surface of the spread basin will decrease the infiltration, with
much more clogging [29,30]. The land use and soil type of Gaza Strip are shown in Figure 4. The
texture of six different soils in Gaza Strip are shown in Table 1. The model boundary has been defined
based on the political boundary of Gaza Strip based on 1948 United nation border lines. The portions
of the aquifer system outside of the study area are mainly an open area with some agriculture activities
that do not affect the GCA aquifer and scenarios [31].

Table 1. Texture and infiltration parameters of the different soil types in the Gaza Strip [29].

Soil Type Clay% Silt% Sand% Soil Texture
Initial

Infiltration
Rate mm/h

Basic
Infiltration
Rate mm/h

Soil
Parameter

(k)

Sandy regosol 08.5 01.8 89.8 Sandy 1263.0 401.4 0.24
Sandy loess soil over

loess 17.5 16.3 66.2 Sandy loam 357.6 97.2 0.08

Loessial sandy soil 18.0 25.0 57.0 Sandy loam 498.6 145.8 0.08
Dark brown/reddish

brown 25.3 12.8 61.9 Sandy clay loam 1051.2 208.8 0.11

Sandy loess soil 23.2 20.3 56.5 Sandy clay loam 270.6 66.0 0.06
Loess soil 06.0 34.0 58.0 sandy loam 428.1 121.5 0.08

2.2. Groundwater Salinity in Gaza Strip

GCA is extremely exposed to contamination and overpumping. The drinking water has started to
become more saline and the chloride concentrations in many areas of the Gaza Strip exceed 2000 mg/L
or more. Additionally, most of the water supply wells do not meet the terms of the World Health
Organization (WHO) standards of drinking water quality [32–34]. GCA is considered as a characteristic
case of a highly contaminated aquifer due to hydrogeological stresses in addition to insufficient water
resources management [23]. Recent studies reported that no ground water in Gaza Strip meets all
WHO drinking water standards; additionally, more than 90% of the ground water in Gaza Strip area is
not suitable for drinking due to the elevated concentrations of many chemical parameters, particularly
NO3− and Cl−, in addition to microbiological contamination, which exists in many locations within
GS [35–38].

It is clearly noticed that the chloride concentration increases significantly all over the Gaza Strip,
especially in the southeastern and the middle areas. The best water quality is found in the sand
dune areas in the north, mainly in the range of 50–250 mg/L. Figure 2 presents the average chloride
concentration of pumped groundwater of the Gaza Strip for the years 2002, 2007, and 2014, respectively.
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2.3. Modeling Technique, Artificial Neural Networks (ANNs)

ANNs is a data-driven modeling technique. It is proficient in modeling non-linear and complex
relations among input and output data sets without the need of full physical recognition of the
natural phenomena. The central theme of ANNs is borrowed from the analogy of highly simplified
mathematical models of biological neural networks and it is inspired by the functioning mechanism
of the brain. It has the capability to learn and generalize from historical data and previous examples
to create meaningful explanations of problems [39,40]. The structure of ANNs consists of three or
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more layers: One input layer, one or more hidden layer(s), and one output layer. The sole role of the
input layer of nodes is to relay the input data to the neurons of the first hidden layer. The output layer
is used to produce an output to the given input. The intermediate hidden layers may be only one
hidden layer, acting as a collection of feature detectors. The determination of the appropriate network
architecture is one of the most important and challenging tasks in the model building process [10,41–43].
Figure 3 demonstrates a schematic description of a general ANN model of three layers. There are
many methods to implement ANNs. Finding the best solution is a difficult task, as the modeler should
choose an efficient test of a large number of options to keep the model within manageable scales.
These assumptions are defined as network topology, training algorithm, and input selection [44].
There are many architectures and kinds of ANNs, such as multilayer perceptron network (MLP), radial
basis functions (RBFs), general regression neural network (GRNN), and probabilistic neural networks
(PNNs) [4,45,46].
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Figure 3. Schematic description of a three-layer ANN and of the elements of its (mathematical) neurons.

The MLP is the widely used neural network. Each neuron in the hidden or output layers receives
weighted inputs, from all neurons in the previous layer. This transformation of the inputs to output
within a single neuron is comparatively simple; the complexity of ANNs is eventually achieved by the
interaction between neurons in network layers [47–49]. ANNs, which belong to black-box models,
have been proven to be an effective alternative to conventional groundwater modeling tools. It has
been widely and successfully applied in various hydrogeological applications. Compared to ANNs,
the classical physically based numerical model requires a wide range of data and parameter values that
must be available as well as the time and the expertise needed for model calibration. On the downside,
the literature showed that ANNs have some limitations, including some unrealistic results compared
with physically based numerical models. In addition to this, a slow learning speed, local minima,
human intervention such as the learning rate, and the overfitting problem are also identified. ANN
modelers experienced difficulties in input pattern selection and used input optimization or trial and
error. Yet, ANNs is profound and characterized by their ability to quickly capture the behavior of a
hydrogeological system and provide suitable predictions accurately [50–52]. The application of ANNs
in engineering modeling has received gradually growing attention during the latest decade or so.
There are numerous applications of ANNs in many fields of water quality and hydrology [13,42,53–55].

3. Methodology

Modeling the response of coastal aquifers to the overpumping on groundwater and operating
future scenarios by using ANNs requires dealing with regular time series data to construct data
modeling and a training data matrix.
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3.1. Data Preprocessing and Variables Calculation

There are approximately 4000 wells in the Gaza Strip. Nearly all of these wells are privately
owned and used for agriculture. About 100 wells owned and operated by municipalities are used
for domestic supply. The data were collected from 56 wells, most of which are municipal wells and
they almost cover the total area of the Gaza Strip as presented in Figure 4. The choice of these wells
depends only on the availability of required data. Hydrogeologically, and depending on the case
study conditions, the change of the chloride concentration (salinity) was assumed to be affected by
many variables, such as infiltration, pumping, time duration of pumping from aquifer, aquifer depth,
and aquifer thickness [2]. The modeling data were extracted mainly from 56 domestic wells in the
Gaza Strip since they usually have records of the chloride concentration twice a year, in February and
October periodically. Many data sources were neglected because of the deficiency of complete required
data. Therefore, detailed pumping records were not obtained for years prior to 1996, the period of the
model that includes the modeling and calibration, starting from 1997 to 2006 [42].
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The selection of appropriate model inputs is extremely important. The problem definition was
achieved by specifying the input (independent) and the output (dependent) variables for the ANN
model. There are six input variables: Initial chloride concentration (Clo); recharge rate (R); pumping
rate (Q), which represents the total pumping quantities for each study well for 6 months, collected
from Palestinian Water Authority’s data bank, and then calculated for each time phase of 6 months;
and the hourly rate was considered as input variables. The pumping average rate of area (Qr) was
calculated for each governate in Gaza Strip separately by summation of all municipal abstraction
quantities and dividing it to each governate area for each time phase of six months. Lifetime (Lt) was
the total operation duration in years for each well. The aquifer thickness (Th) represents the saturated
aquifer thickness. It was calculated for each study well separately using the groundwater tables and
aquifers’ cross-sections shown in Figure 1 deepening on the depth from the land surface to the well
screen. The output was the final chloride concentration (Clf). Monthly pumping rates for the study
well were collected from Palestinian Water Authority’s data bank. The pumping average rate was
calculated for each governate in Gaza Strip by summation of all municipal abstraction quantities and
dividing it to the each governate area for each time phase [2,31].

Recharge from rainfall is perhaps the most difficult parameter to quantify in the Gaza Strip due
to all of the potential factors that affect the infiltration of rainwater. This includes land use, soil type,
as well as other influencing factors. The groundwater is recharged from different sources, including
rainwater, runoff, and return flow, which includes leakage from the municipal water distribution
system, sewage infiltration, and irrigation return flow. Moreover, recharge comes from inflow from
occupied areas and Egypt and from the Mediterranean Sea as a seawater intrusion. In this study, the
recharge rate was calculated based on the Coastal Aquifer Management Program (CAMP) model [16].

The time distribution divides the year into two phases, A and B. Phase A starts from April until
September, while phase B starts from October until March in the following year. For example, time
phase 1996-A extends from April 1996 to September 1996, time phase 1996-B extends from October
1997 to March 1997, and time phase 1997-A extends from April 1997 to September 1997, etc. Therefore,
all other factors were prearranged according to this time distribution. Considering only those cases that
had complete numeric values for all variables without any missing data, only 499 cases satisfied the
above-mentioned criteria from 1997 to 2004, and processed 56 municipal wells. These cases were the
dataset, which was split into 3 sets: Training, calibration, and test. These sets were selected randomly
by ANN model before starting the training process. The test set extraction was about 50% of cases
for training, 25% for calibration, and 25% for testing [56]. The test set provided a means by which
the network knew when to stop training and start using calibration and testing. The mean, standard
deviation, and ranges of different variables used to train the model are shown in Table 2. It is worth
mentioning that the settings of the model were set as a 95% confidence interval.

Table 2. Mean, standard deviation, and ranges of variables used to train the ANN model.

Variable Sym. Unit Mean Std. Dev
Range

Min. Max.

Initial chloride concentration Clo mg/L 333.07 253.94 28.00 1412.00
Recharge rate R mm/m2/month 18.19 24.44 0.00 83.07
Pumping rate Q m3/h 105.55 57.99 0.00 254.94

Pumping average rate Qr mm/m2/month 22.50 5.80 11.37 33.94
Life time Lt year 22.02 13.94 0.00 60.00

Aquifer thickness Th m 64.17 27.25 30.00 124.00
Final chloride concentration Clf mg/L 341.11 261.09 35.00 1744.10
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3.2. Scenarios Development

An evaluation of the effect of the overpumping on groundwater salinity was performed considering
three future scenarios. These scenarios were mainly designed to study the influence of pumping on
the chloride concentration of groundwater in the Gaza Strip and predict the chloride concertation after
10 years [32].

After the network was trained and tested, it was then examined against a set of cases withheld
from it during its training session. The ANNs model was then ready to be applied to any other cases.
Evaluation of the effect of the overpumping on groundwater salinity was performed for 10 years
considering three future scenarios. These scenarios were mainly designed based on the pumping rate
to study the influence of pumping and the pumping average rate on the chloride concentration of
groundwater in the Gaza Strip. The pumping rate remained as it is in the present conditions (no change
scenario), and the pumping rate was reduced to half and zero pumping conditions.

3.3. Performance Evaluation

The developed model’s performances were initially evaluated for training, validating, testing,
and overall datasets. The developed model performance was assessed based on different statistical
criteria. The coefficient of determination (R2) is a statistical measure used to indicate the strength of a
linear relationship between two groups of data representing two variables or observed and predicted
data [57,58]. R2 can be estimated using the following Equation (1):

R2 = (

∑n
i=1

(
ti − t

)(
yi − y

)
√∑n

i=1

(
ti − t

)2 ∑n
i=1

(
yi − y

)2
)

2

, (1)

where n is the number of data records, t is the actual/target output, and y is the modeled output.
However, t and y are the averages.

The R2 value falls between 0 and +1; R2 = 0 signifies no linear relationship between the variables,
and R is +1 in a perfectly increasing linear relationship circumstance. Although, in practice, the
correlation coefficient is a good indicator of performance, it also provides a simple way to evaluate the
model performance by comparing it to advanced indicators, such as the error mean and average error
(residual between target and actual output values) of the output variable; the average absolute error
(difference between target and actual output values) of the output variable; and standard deviation of
errors for the output variable. S.D. Ratio: The error/data standard deviation ratio.

4. Results and Future Scenarios Outcomes

After many training trials, the best neural network was determined to be the multilayer perceptron
network (MLP). Figure 5 presents the observed versus the simulated chloride concentration using
ANNs. A high correlation between the observed and the predicted values of the chloride concentration
exists, where the correlation coefficient (r) between the predicted and the observed output values of
the ANN model was 0.98. The values of regression statistics for the ANN model for all modeling data,
training data set, calibration data set, and test data set are presented in Table 3. The high value of
the correlation coefficient (r) showed that the modelled chloride concentration values using the ANN
model are in good agreement with the observed chloride concentration. While, the low value of the
error mean, Abs E. mean, and S.D. ratio showed that the error between the observed and simulated
chloride concentration values using the ANN model are small.
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Figure 5. Correlation between the observed and simulated chloride concentration using the ANN
model; (a) for the whole data set and (b) for the data set of October 2000.

Table 3. The values of the performance of indicators for the ANN model’s results.

Regression Statistics All Model Data Training Data Set Calibration Data Set Test Data Set

Data Mean 341.11 295.88 345.20 361.43
Data Standard deviation 260.83 247.43 262.66 263.60

Error Mean 3.24 5.016 8.43 −0.20
Error S.D. 45.37 45.13 47.31 44.20

Abs E. Mean 29.80 29.26 32.13 28.91
S.D. Ratio 0.174 0.182 0.180 0.168

Correlation (r) 0.9848 0.9832 0.9837 0.9860
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The developed model was utilized to predict the chloride concentration for October 2007. These
data were not modeled or trained by the model. The spatial distribution of the measured chloride
concentration is shown in Figure 6. The spatial distribution of the predicted chloride concentration is
shown in Figure 7. A visual comparison between the measured and predicted values of the chloride
concentration show a high degree of similarity between the predicted and the measured contour maps,
indicating the high prediction efficiency of the models and opening the door to applying it to the
evaluation of the effect of over pumping on groundwater salinity considering three future scenarios.
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Evaluation of the effect of the over pumping on groundwater salinity was performed considering
three future scenarios. These scenarios were mainly designed to study the influence of pumping on
the chloride concentration of groundwater in the Gaza Strip for 10 years ahead.

4.1. Scenario 1: No Change of Pumping Condition

This scenario assumed that the pumping quantity and pumping average rates remain the same as
in the current conditions. The ANN model was utilized to predict the chloride concentration in the
groundwater domestic wells in 2030. Figure 8 presents the predicted chloride concentration of pumped
groundwater in the Gaza Strip for scenario 1 2030. These figures show that the chloride concentration
increases very rapidly in most areas of the Gaza Strip and it well exceeds 500 mg/L in most areas of the
Gaza Strip in 2030. Only about 8% of the overall Gaza Strip area, particularly in the northern part,
is expected to have a chloride concentration less than 500 mg/L.
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Figure 8. Predicted chloride concentration in 2030 for scenario 1.

4.2. Scenario 2: The Total Pumping to Be Reduced by Half

Scenario 2 assumes that the pumping quantity and pumping average rates will decrease to half
of 50% of the current pumping rates for each well. This scenario can be achieved by utilizing other
sources of water, such as treated wastewater and stormwater harvesting. In addition, to control illegal
connections and decrease water consumption by public campaigns, Figure 9 depicts the predicted
chloride concentration of pumped groundwater in the Gaza Strip for scenario 2 in 2030. The figures
show that the chloride concentration decreased slowly in most areas of the Gaza Strip except for the
Khan Younis area, where the chloride concentration almost remained stable and will not improve like
other areas. It could be due to the relatively shallow aquifer thickness in this area compared with other
areas in the Gaza Strip. The thickness of the entire coastal aquifer is on average about 120 m, but it is
only 5–10 m in the south near the Younis area and Rafah. However, the worst appeared in the east area
of khan Younis area due to the soil profile in this area, which is sandy loam soil (17.5% clay, 16.5% silt,
66% sand), which have very small recharge rates as stated in the CAMP project outcomes [16,29].
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4.3. Scenario 3: Zero Pumping Condition

This scenario assumed that there is no pumping from groundwater and therefore pumping is
completely stopped. Despite this, this scenario is hypothetical and impossible to achieve; modeling
of groundwater salinity based on this scenario was performed to illustrate the differences among
scenarios. Figure 10 presents the predicted chloride concentration in 2030. It was observed that
the predicted chloride concentration of pumped groundwater in Gaza Strip in 2030 will reach very
acceptable levels and there will be almost no groundwater salinity problem in most areas of Gaza Strip.Water 2020, 12, x FOR PEER REVIEW 15 of 18 
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As the developed model shows a high accuracy, as described in Table 3, any future scenario can
be applied and modelled with accordingly accurate predictions. By the selection of the three applied
scenarios, it was intended to show the suitability of the model and to show the differences of the
future salinity among them. We recognize that a zero-pumping condition is a hypothetical scenario,
but we mention it just to prove that the aquifer can be recovered and rehabilitated by very strict
measures, such as a zero-pumping situation. Scenario 3 is a hypothetical scenario that is proposed
to stop abstraction from the aquifer since 2007. This scenario leads to complete aquifer recovery in
24 years (2007–2030), so the datum was the 2006 chloride concentration.

5. Conclusions

Based on the results obtained from this study, a new empirical model for groundwater salinity in
the Gaza Strip utilizing ANNs was successfully developed and applied. This empirical model provided
very accurate prediction, where the correlation coefficient (r) between the observed and predicted
output values of the model was 0.985. It was proven that the chloride concentration in groundwater
was proportional to the pumping rate. By studying the effect of overpumping on groundwater salinity,
it was proven that strong remedial actions to solve the groundwater deterioration problem in the
aquifer of Gaza Strip (salinity) have to mainly be based on reducing the pumping rate from the
groundwater at least by half.

The results showed that if the pumping rate is kept as the current pumping rates, the chloride
concentration will increase rapidly in most areas of Gaza Strip and the availability of fresh water will
decrease in disquieting rates by the year 2030. If the pumping rate is decreased by 50% of the current
pumping rates, the chloride concentration of groundwater will decrease slowly in most areas of the
Gaza Strip. This study is not only about the application of ANNs in the hydrogeological study to
model the groundwater quality. The most important contribution and the novelty of the study is
related to the use of the model outputs to predict future salinity levels based on selected scenarios
related to groundwater pumping. Given that the modeling process and future prediction were done
using a cost-effective approach, i.e., minimum input data, this is essential for any decision-maker.
Further detailed studies must be performed with more accurate physical models to address all related
variables that affect the ground water quality in GCA. The results are considered as an urgent call for
developing an integrated water management strategy aiming at improving GCA quality by providing
other drinking water resources in order to secure the increasing water demand.
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