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Abstract: The saturated hydraulic conductivity (Ks) is one of the most important soil properties for
many hydrological simulation models. Especially in South Korea, analyzing the Ks of the forest
soil is essential for understanding the water cycle throughout the country, because forests cover
almost two-thirds of the whole country. However, few studies have focused on the forest soil in the
temperate climate zone on a nationwide scale. In this study, 1456 forest soil samples were collected
throughout South Korea and pedo-transfer functions employed to predict the Ks were developed.
The non-linearities of the soil and topographic features were considered with the pretreatment
of variables, and the variance inflation factor was used for treating the multicollinearity problem.
The forest stand and site characteristics were also categorized by an ANOVA and post hoc test due to
their diversity. As a result, the Ks values were different for various forest stands and site characteristics,
which was statistically significant. Additionally, the model performance was higher when both soil
properties and topographic features were considered. The sensitivity analysis showed that the Ks

was highly affected by the bulk density, sand fraction, slope, and upper catchment area. Therefore,
the topographic features were as important in predicting the Ks as the soil properties of the forest soil.

Keywords: pedo-transfer function; saturated hydraulic conductivity; forest soil; forest stand;
soil properties; topographic features; multiple linear regression model; sensitivity analysis

1. Introduction

The saturated hydraulic conductivity (Ks) is an important factor that represents the basic properties
of soil. It can represent the rate of infiltration, so it is essential for understanding the water cycle through
soil, such as water recharge, drainage, baseflow, and runoff generation [1]. To date, many hydraulic
simulation models, such as TOPMODEL, HYDRUS, and DHSVM, have been developed to simulate the
water flow in a catchment [2–4]. These models have several input variables for simulation, and the Ks is
included in the model equations, which means that the Ks can directly influence the model outcomes [4].
Therefore, the Ks, which is relevant to the infiltration rate, is one of the most important input factors
and highly affects the model output, such as runoff [5,6]. Moreover, in order to achieve the Sustainable
Development Goals (SDGs) related to ensuring the availability and sustainable management of water,
the estimation of soil properties that are closely related to the water yield simulation and forest water
management is important [7,8].
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Measuring the Ks of soil is, however, time-consuming. Therefore, to date, many pedo-transfer
functions have been developed. A pedo-transfer function (PTF) is an equation that estimates the
soil hydrological properties, such as Ks and soil water contents, based on soil property data that
can be easily collected, such as those related to the soil texture, organic matter, and bulk density [9].
Since PTFs aim to estimate the soil properties over a wider range, the input factors employed for PTFs
use variables that have already been investigated on a national scale or that can easily be investigated
or calculated [10]. For predicting the Ks, the soil size distribution has been used as input data in many
studies [11,12]. In addition, many attempts have been made to predict Ks more accurately by adding
the porosity and soil texture [13] and organic matter [14,15]. In particular, in South Korea, forest covers
about two-thirds of the land area of the whole country. Due to these geographical characteristics,
forest soil characteristics must be considered for water resource management in South Korea [16].
There have been many efforts to develop soil property databases on not only a national scale but
also different international scales [14,15]. However, there are few studies focused on the forest soil
in the temperate climate zone on a nationwide scale. Puckett et al. [12] and Dane and Puckett [17]
developed PTFs from ultisols found in unconsolidated sediments of the lower coastal plain. Jabro [11]
developed PTFs by using various soil series collected from nine regions in five countries, which were
in the Southern Cooperation Series Bulletins. Wosten et al. [15] used the soil database from HYPRES
collected from 20 institutions from 12 European countries, and Julia et al. [14] used soil data collected
from Spain. In this way, much research has been conducted with large database sets with various
land use types. However, there is little research specifying the land use types or only focusing on the
characteristics of the forest soil.

Forests comprise different kinds of trees and plants, which, in turn, affect the forest soil.
Additionally, because of their complex topographic features, forest soils exhibit spatial variability.
Differently from other soils such as cultivated land, grassland, and bare land, forest soils can be located
in steep slope regions, sedimentary or eroded areas, or high-altitude areas. Therefore, forest soil is
constantly affected by forest stand and site characteristics and it is essential to consider the forest stand
and site characteristics for analyzing the soil properties in forests.

PTFs for predicting the Ks can be used in many ways. Chirico et al. [18] used PTFs for conducting
a soil water budget simulation on a hillslope scale. Furthermore, Young et al. [19] estimated the soil
properties such as the Ks with PTFs and predicted the water budget and evapotranspiration with
a hydraulic simulation model. In this way, national-scale estimations of the Ks can be conducted.
From available databases, a hydraulic simulation model can be used and an assessment of the forest
water yield can be conducted.

To achieve this goal in South Korea, this study was conducted in order to present the characteristics
of the Ks in forest soil based on 1456 forest soil samples. The forest type and site characteristics affecting
Ks were analyzed. PTFs were employed to predict the Ks of the forest soil considering both the soil
characteristics and topographic features. Through a sensitivity analysis, we determined which factors
were highly involved in the Ks of the forest soil.

2. Materials and Methods

2.1. Geography of Study Sites

This study was conducted on forest soil throughout South Korea, and 1456 soil samples were
collected from 731 sites with topsoil and subsoil for the investigation (three replications of each soil
horizon, Figure 1). When the forest soil was sampled, the litter and humus layer was removed.
After that, topsoil was collected at the horizon depth of 10 cm, and subsoil was collected at the horizon
depth of 30 cm. South Korea is located at about 33 to 38 degrees latitude and 125 to 129 degrees
longitude, and in the humid temperate climate zone. It is also affected by the continental air mass
from the northern continent and the oceanic air mass because three sides of the whole country are
surrounded by the sea. The mean annual precipitation is about 1343 mm, and most of the rainfall is
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concentrated in June to September. The average temperature in summer is about 23 to 25 degrees
Celsius, so it is hot and humid, but the average temperature in winter is about −1 to 1 degrees Celsius,
so it is cold and dry. Considering this, there are a large mean annual range of temperature and four
distinct seasons.
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Figure 1. Distribution of collected forest soils in South Korea (1456 soil samples).

2.2. Soil Physical Properties and Topographic Features

Forest soil samples were collected through a 100 cc soil core sampler, and a total of 1456 soil
samples were collected throughout the forest nationwide. Six properties were analyzed through
laboratory experiments to investigate the physical properties of the soil. The analyzed soil properties
were the saturated hydraulic conductivity; bulk density; sand, silt, and clay fraction; and organic
matter (Table 1). The distribution of the 1456 soils across the USDA (United States Department of
Agriculture) textural classes and the range of saturated hydraulic conductivity (Ks) by textural class
are shown in Figure 2.
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Table 1. Descriptive statistics for forest soil properties.

Soil Properties Abb. Unit Min Mean Max Std. Skew. Kurt.

Logarithmized
Saturated
Hydraulic

Conductivity

Ln(Ks)
cm

day−1 0.37 6.57 8.98 1.21 −1.12 4.60

Bulk density ρb g cm−3 0.45 1.03 1.59 0.19 0.12 2.78
Sand fraction Sand % 6.24 43.64 90.96 15.39 0.22 2.62
Silt fraction Silt % 1.46 33.01 81.36 12.66 0.07 2.39

Clay fraction Clay % 3.21 23.35 86.72 9.96 1.47 7.56
Organic matter OM % 2.08 9.16 29.71 3.53 1.09 4.94

Abbreviations: Abb, abbreviation; Std, standard deviation; Skew, skewness; Kurt, kurtosis.
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Figure 2. (a) Distribution of forest soils used in this study (n = 1456) across USDA textural classes and
(b) ranges of the saturated hydraulic conductivity (Ks) and percent database by soil texture class.

The elevation, slope, topographic wetness index (TWI; Equation (2)), upper catchment area
(CA), plan curvature, and profile curvature were collected as the topographic features. The elevation
and slope indicate the altitude and local slope at the site where the soil was collected, respectively.
The topographic wetness index, also known as the compound topographic index (CTI), indicates the
steady state wetness index by topographic features. The TWI is calculated by the local upper catchment
area and local slope and is derived as follows:

TWI =
a

tanb
(1)

where a is the local upper catchment area draining through a certain point per unit contour length and
tanb is the local slope [20]. The plan curvature can represent the shape of the horizontal plane, and the
profile curvature can represent the shape of the vertical plane. The TWI, plan curvature, and profile
curvature were calculated with the GIS spatial analyst tool.

In addition, the characteristics of the forest stand and site from which the soil samples were
collected were investigated. The forest stand was divided into three categories: coniferous forest,
broadleaf forest, and mixed forest. Bedrock and landform were investigated as site characteristics.
Bedrock was largely divided into five types, including igneous, sedimentary, and metamorphic rock,
and landform was classified into five types, as defined in Table 2.
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Table 2. Landform classification.

Classification Definition

Flat A flat area with a slope of less than 5 degrees
Gentle slope A hill with a slope of less than 300 m

Lower concave segment The lower part of the mountain with a concave shape
Cliff face The middle part of the mountain with a slope

Upper convex segment The upper part of the mountaintop

2.3. Multiple Linear Regression for PTFs

2.3.1. Pedo-Transfer Functions (PTFs) in Previous Research

We selected PTFs that have frequently been cited in the literature for comparing the Ks of forest
soils in South Korea to the Ks from other international databases by estimating the saturated hydraulic
conductivity using our database. Six PTF models were selected, and brief explanations and references
are shown in Table 3. Subsequently, the forest soil characteristics of South Korea were compared with
other soil conditions by comparing the measured and predicted saturated hydraulic conductivity,
which were estimated by six PTFs with the measured soil physical characteristics as input data.

Table 3. Six pedo-transfer functions (PTFs; Equations (S1)–(S6)) of previous research used for estimating
the saturated hydraulic conductivity and their required soil properties.

Reference Ks Unit Required Soil Properties
for Estimation Land Use Types

Puckett et al. [12] mm h−1 Clay The lower coastal plain
Campbell and Shiozawa [21] mm h−1 Sand, Clay na

Jarbro [11] cm day−1 Silt, Clay, ρb na
Dane and Puckett [17] mm h−1 Clay The lower coastal plain

Wosten et al. [15] cm day−1 Silt, Clay, Organic matter, ρb na
Julia et al. [14] mm h−1 Sand, Clay, Organic matter na

Note: ρb is the bulk density and na is not available. Soil databases from many previous studies were based on
various land use types, so there was no clear information about land use types.

Six PTFs did not focus on the forest soil, and many previous studies were based on various land
use types. There was also no clear information about the land use types because previous research was
conducted primarily focusing on local regions in which soil surveys were carried out. The PTFs in
previous research have been empirical equations. Therefore, the ranges of the soil properties from
which each PTF was derived are represented in Table 4.

Table 4. Brief descriptive statistics for soil properties in previous research.

Soil Properties Puckett et al. Campbell and
Shiozawa Jarbro Dane and

Puckett Woesten et al. Julia et al. This Study

Sand
(%)

min 34.6 9.0 17.0 34.6 0.8 14.0 6.2
max 88.5 89.0 96.0 88.5 58.0 94.2 91.0

Silt
(%)

min 7.4 na 0.2 7.4 0 na 1.5
max 35.8 52.0 35.8 23.3 81.4

Clay
(%)

min 1.4 5.0 1.0 1.4 0 2.3 3.2
max 42.1 47.0 44.0 42.1 18.7 54.1 86.7

Bulk density
(g cm−3)

min 1.52 na 1.26 1.52 0.95 na 0.45
max 1.86 1.97 1.86 1.58 1.59

ln(Ks)
(cm day−1)

min na na −2.90 na −0.76 na 0.37
max 8.34 3.91 8.98

Note: na is not available.
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2.3.2. Preprocessing of Explanatory Variables

In this study, PTFs were developed with multiple linear regression analysis to estimate the
logarithmized saturated hydraulic conductivity (ln(Ks)). Since the saturated hydraulic conductivity
can have a non-linear relationship with soil characteristics and topographic features, logarithmized
(ln(x)), exponential (ex), squared (x2), and untreated (x) treatments were carried out, and linear
correlations with ln(Ks) were compared. Subsequently, the most linearly correlated variable type was
adopted as the explanatory variable for multiple linear regression. The Pearson correlation coefficient
was used to confirm the linear correlation.

2.3.3. Detecting Multicollinearity Using the Variance Inflation Factor (VIF)

In multiple linear regression, when there is a correlation between variables, coefficients in
the multiple regression equation can be unreasonable and unreliable values, which is called a
multicollinearity problem. Because this happens when a linear correlation occurs between the
explanatory variables, it is necessary to remove the highly correlated variable in order to produce a
reasonable result [22]. The variance inflation factor (VIF) is one of the best methods for identifying
the correlation between variables. Since the VIF is a numerical value after multiple linear regression
analysis is performed between explanatory variables, the higher the linear correlation between the
explanatory variables, the higher the value of the VIF. If the VIF is higher than 5, it is determined that
there is multicollinearity and the variable is removed [23]. The variance inflation factor (VIF) for one
explanatory variable (x1) is derived as follows:

VIFx1 =
1

1−R2
x1

(2)

where R2 is the coefficient of determination of the multiple regression equation, which is estimated
with one variable x1 as a response variable and other variables as explanatory variables.

2.4. Model Assessment

Seventy percent of the total data set was used for developing the PTFs, and the remaining
30%, the hold-out test data set, was used to verify the model. To assess the performance of the
PTF model developed in each process, the root mean squared log-transformed error (RMSLE),
mean log-transformed error (MLE), and coefficient of determination (R2) were used, and these are
defined as follows:

RMSLE =

√√√
1
N

N∑
i=1

[
ln

(
K̂s

)
i
− ln(Ks)i

]2
(3)

MLE =
1
N

N∑
i=1

∣∣∣∣ln(
K̂s

)
i
− ln(Ks)i

∣∣∣∣ (4)

R2 = 1−

∑N
i=1

[
ln

(
K̂s

)
i
− ln(Ks)i

]2

∑N
i=1

[
ln

(
Ks

)
i
− ln(Ks)i

]2 , (5)

where n is the number of observation samples, Ks is the measured saturated hydraulic conductivity,
K̂s is the predicted value from the PTFs, and Ks is the mean of the measured values. The RMSLE and
MLE represent the differences between the measured and predicted values as absolute values, and the
lower the performance of the model, the higher the values. The RMSLE is directly affected by the
scale factor and reacts more sensitively to outliers than the MLE. R2 is the dimensionless value that
represents the correspondence between the measured data and the predicted data. This has a value
between 0 and 1, and variables are more correlated as the R2 nears 1.
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2.5. Sensitivity Analysis

Sensitivity analysis can determine the effect of each explanatory variable on the response variable
by confirming the amount of change in the response variable as the explanatory variable changes [24].
The coefficient of multiple linear regression (MLR) can represent the sensitivity of the variable because
the explanatory and response variables have a linear relationship. Therefore, it is not necessary to
conduct sensitivity analysis if MLR is adopted as a model. However, in this study, several MLRs
were presented, not just one MLR, to estimate the saturated hydraulic conductivity. Additionally,
each explanatory variable had nonlinearity throughout the preprocessing.

Each explanatory variable was varied by total 10 multipliers: 0.1, 0.25, 0.5, 0.8, 0.9, 1.1, 1.2, 2, 4,
and 10. Each variable was multiplied while the others were kept constant. Moreover, the multiplied
variable was used as the input variable in PTFs, and the output, which was the modified saturated
hydraulic conductivity, was normalized (modified ln(Ks)/non-treated ln(Ks)) to determine the amount
of change. A sensitivity run was only implemented once for the PTF model, because there was no
variance between the output of each sensitivity run.

Statistical analyses, such as the Pearson correlation analysis, analysis of variation (ANOVA),
multiple linear regression, and p-value determination, were conducted using the SPSS software.
We confirmed that the result was statistically significant and rejected the null hypothesis when the
p-value was less than 0.05.

3. Results

3.1. Saturated Hydraulic Conductivity in Forest Soil

Six PTFs were analyzed to confirm the difference between the Ks of the forest soil collected in this
study and the Ks predicted by the PTFs in previous research. The Ks was calculated using 1456 soil
physical characteristics as input factors for the PTFs in previous research. Six PTFs did not focus on the
forest soil, and many previous studies were based on various land use types. There was also no clear
information about land use types. Figure 3 also shows the predicted Ks from the PTFs in previous
research and measured Ks in this study. Figure 3 shows the range of the logarithmized Ks on the left
side and its probability density function on the right side.

The averaged logarithmized Ks of the forest soil was 6.6, and the average logarithmized Ks from
the six PTFs using the same input data set varied from −2.1 to 3.6. The KS of the forest soil that was
observed in this study was about 10 to 103 times larger than the Ks predicted with the PTFs of previous
research. Additionally, most of the predictions exhibited negative ln(Ks), which means that the Ks was
between 0 and e cm day−1 and thus very low. In this study, however, no negative values were observed.
The ANOVA test also showed that the KS of the forest soil was higher than the Ks predicted by previous
research for forest soils, which was statistically significant. Considering the range of the soil properties
in Table 4, the range of the soil size distribution is different. In particular, the bulk density of the forest
soil is lower than the bulk density of the soils used in previous research. These discrepancies indicate
differences of Ks, and the PTFs were difficult to use to rationally explain the KS of the forest soil in
South Korea.

3.2. Explanatory Variable Selection

The most appropriate treatment of the explanatory variables was selected to estimate Ks through
soil characteristics and topographic features. For selecting the appropriate treatment, logarithmized
(ln(x)), exponential (ex), squared (x2), and untreated treatments (x) were carried out for each variable,
and the linear correlation with ln(Ks) of each treatment was compared. Table 5 shows the best results
of the correlation analysis of the explanatory variables. Among the soil properties, sand and organic
matter had a higher linear correlation when logarithmized, and silt and clay had a higher correlation
when squared (Table 5). In terms of the topographic features, the TWI was highly correlated with
logarithmized treatment and CA was highly correlated when squared after being logarithmized.
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The p-value of all the variables was statistically significantly correlated with the logarithmized
Ks (p < 0.05), and the bulk density and organic matter showed a strong linear relationship.Water 2020, 12, x FOR PEER REVIEW 8 of 19 
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Figure 3. Mean values and ranges of the observed logarithmized Ks (saturated hydraulic conductivity)
of forest soil in South Korea (this study), predicted logarithmized Ks based on PTFs presented in the
literature, and kernel probability density functions of these logarithmized Ks. Six PTFs did not focus on
the forest soil, and there are different ranges of the soil properties that previous research used.

Table 5. Relationship between ln(Ks) and the best treatment of explanatory variables.

Selected
Explanatory Variables PCC p-Value VIF before the

Removal Multi-Collinearity VIF after the
Removal

Soil properties

ρb (-) −0.46 <0.01 2.25 X 2.25
ln(sand) (%) 0.14 <0.01 16.67 O 1.67

Silt2 (%) −0.08 <0.01 12.78 O; removed -
Clay2 (%) −0.14 <0.01 7.87 O 1.48

ln(OM) (%) 0.26 <0.01 1.89 X 1.87

Topographic
feature

Elevation (m) −0.05 0.039 1.21 X 1.17
Slope (%) −0.23 <0.01 1.11 X 1.11

ln(TWI) (-) 0.09 <0.01 1.46 X 1.46
(ln(CA))2 (m2) 0.07 <0.01 1.07 X 1.07
Plan curvature −0.08 <0.01 3.77 X 3.77

Profile curvature −0.08 <0.01 3.84 X 3.83

Note: PCC is the Pearson correlation coefficient and VIF is the variance inflation factor. The silt variable was
removed because of the multicollinearity problem. After the removal, there was no multicollinearity in the variables
(VIF < 5).

The VIF is calculated with both soil and topographic features, and values greater than 5 were found
in the sand, silt, and clay fractions. This is because the sand, silt, and clay fractions are factors that are
organically related to each other, so one of these factors must be removed to solve this multicollinearity
problem. Sand was logarithmized, but silt and clay were squared, so sand might have a weaker linear
correlation with silt and clay. Therefore, silt was removed, since silt had higher VIF values than clay.
After removing silt, the VIF values of all the variables were less than 5, which indicates that there is no
multicollinearity problem.
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3.3. Categories with Statistical Analysis

Forest soil is affected by various forest stand and site characteristics, in addition to the soil
and topographic features given in Table 6. Therefore, we analyzed the differences in Ks by forest
type, bedrock, landform, and soil layer (Table 6). The forest types were divided into three types:
coniferous, broadleaved, and mixed forest. Moreover, bedrock was classified into igneous, sedimentary,
and metamorphic rock. Landform was classified into five categories (Table 2), and the soil layers were
classified as topsoil and subsoil.

Table 6. The Ks differences by forest type, bedrock, landform, and soil layer obtained by ANOVA.

Classification N Ks ln(Ks) Post Hoc
Analysis F-Value p-Value

Forest type
Coniferous 714 632.70 6.45 a

14.14 <0.01Broadleaf 550 796.32 6.68 b
Mixed 192 812.41 6.70 b

Bedrock
Igneous 331 658.52 6.49 a

13.46 <0.01Sedimentary 329 454.86 6.12 a
Metamorphic 796 888.91 6.79 b

Landform

Flat 175 454.86 6.12 a

20.38 <0.01
Gentle slope 209 550.04 6.31 a

LCS 633 992.27 6.90 b
Cliff face 237 658.52 6.49 a

UCS 202 487.85 6.19 a

Soil layer Topsoil 728 880.07 6.78 a
20.99 <0.01Subsoil 728 578.25 6.36 b

Note: LCS is the lower concave segment, UCS is the upper convex segment, and n is the number of samples.
Forest type, bedrock, landform, and soil layer exhibit significant differences in Ks (p < 0.01). Post hoc analysis was
conducted with Tukey’s method, and bold values have higher Ks than others. ANOVA was conducted with the
SPSS statistic software package.

According to ANOVA analysis and Tukey’s post hoc analysis, the soil located in broadleaf and
mixed forest had a higher saturated hydraulic conductivity than the soil located in coniferous forest
(p < 0.01). Furthermore, the soil with metamorphic rock as a bedrock had a higher saturated hydraulic
conductivity than the soil with igneous and sedimentary rock (p < 0.01). By landform classification,
the soil located in the lower concave segment was statistically significantly higher than that in others
(p < 0.01), with no statistical differences in the other four landforms except the lower concave segment.
Moreover, the topsoil had a higher Ks than subsoil (p < 0.01).

The overall data set was divided into several categories because there were statistically significant
differences in Ks by forest type, bedrock, landform, and soil layer, as shown in Table 6. As a result of
the post hoc analysis of the forest type, bedrock, landform, and soil layer, all of the four forest stands
and site characteristics could be classified into two categories: relatively fast Ks and relatively slow Ks.
The total data set, therefore, was classified into 16 categories, depending on the characteristics of the
forest type, bedrock, landform, and soil layer (Table 7).

Table 7. Sixteen categories based on forest stand, geological, and topographical features.

Categories Forest Type Bedrock Landform Soil Layer Number of Soil Samples

1 Coniferous I & S Other LF Subsoil 130

2 Coniferous I & S Other LF Topsoil 132
3 Coniferous I & S L.C.S. Subsoil 51
4 Coniferous I & S L.C.S. Topsoil 51
5 Coniferous Metamorphic Other LF Subsoil 84
6 Coniferous Metamorphic Other LF Topsoil 84
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Table 7. Cont.

Categories Forest Type Bedrock Landform Soil Layer Number of Soil Samples

7 Coniferous Metamorphic L.C.S. Subsoil 91
8 Coniferous Metamorphic L.C.S. Topsoil 91
9 B & M I & S Other LF Subsoil 109
10 B & M I & S Other LF Topsoil 110
11 B & M I & S L.C.S. Subsoil 39
12 B & M I & S L.C.S. Topsoil 38
13 B & M Metamorphic Other LF Subsoil 87
14 B & M Metamorphic Other LF Topsoil 87
15 B & M Metamorphic L.C.S. Subsoil 137
16 B & M Metamorphic L.C.S. Topsoil 135

Abbreviations: B & M, broadleaf or mixed forest; I & S, igneous or sedimentary bedrock; Other LF, four landforms
except the lower concave segment; L.C.S., lower concave segment (Table 2).

3.4. Development of the Pedo-Transfer Function

The soil data were classified into 16 categories, and multiple linear regression analysis was
conducted for each category. Since most PTF studies have only been conducted with soil characteristics
to date, multiple linear regression analysis was conducted twice: with soil characteristics only and with
soil characteristics and topographic features. Table 8 shows the results of multiple linear regression
analysis with only soil characteristics as the input data. Additionally, Table 9 shows the results of
multiple linear regression analysis with topographic features in addition to soil characteristics. Tables 8
and 9 show the regression coefficients of each variable according to multiple linear regression, and full
equations are available in the Supplementary Materials (Table S1 and S2).

Figure 4 shows the measured and predicted Ks with the developed PTFs with 16 categories.
The model was developed using 70% of the total data set and validated with the remaining hold-out
test data set. In the calibration phase, the coefficient of determination with only soil properties was 0.37
but increased to 0.43 when topographic features were added as input data. Moreover, the coefficient of
determination values, 0.37 and 0.43, are significantly different from 0. The model performance also
increased in the validation phase. The RMSLE and MLE, which show the deviation of the measured
and predicted values, also decreased from 0.931 and 0.724 to 0.920 and 0.709, respectively. The model
performance was improved when topographic features were taken into account in both calibration
and validation.
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Table 8. Regression coefficients of categorical PTFs for the logarithmized saturated hydraulic conductivity with only soil properties.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ρb −4.899 −3.988 −4.274 −2.890 −3.163 −3.452 −4.875 −1.325 −3.852 −3.939 −6.909 −4.797 −4.589 −2.265 −1.693 −0.666
ln(Sand) 0.803 0.748 1.553 0.690 0.634 0.889 1.867 1.269 0.858 0.543 −0.003 −0.248 0.731 0.502 0.768 −0.300
Clay2 * 1.752 1.094 6.362 0.004 1.129 2.227 −1.251 −1.255 2.435 1.116 −5.136 −6.104 1.064 3.735 2.554 −2.392
ln(OM) −0.158 0.314 1.201 −0.219 −0.516 −0.016 −0.470 0.073 −1.209 −0.852 −1.934 −0.766 −1.764 −0.659 −0.124 −0.019

Intercept 8.730 7.042 2.570 7.207 8.503 6.615 5.758 3.374 9.527 10.433 18.003 14.270 11.948 8.270 5.942 9.317

Note: Clay2 * is clay2 × 10−4. The regression coefficients of clay2 were too small, so the constant was multiplied to make them readable. In total, 16 categories were classified according to
Table 7, and these values are the regression coefficients from multiple linear regression.

Table 9. Regression coefficients of categorical PTFs for the logarithmized saturated hydraulic conductivity with topographic features in addition to soil properties.

Categories 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ρb −3.499 −2.753 −3.147 −3.531 −2.385 −3.157 −3.402 −0.991 −4.559 −3.945 −4.622 −3.496 −3.675 −2.469 −1.793 −0.774
ln(Sand) 1.018 1.168 0.955 0.793 0.524 0.637 1.159 1.029 0.930 0.724 −0.865 0.006 1.323 0.686 1.233 −0.118
Clay2 * 1.266 2.294 −3.235 −2.111 −2.267 −0.532 −4.992 −1.668 2.473 3.831 −9.888 −3.558 3.744 7.769 4.963 −1.178
ln(OM) 0.978 1.035 0.215 0.669 0.002 −0.386 0.186 0.204 −1.055 −1.368 −1.402 −0.412 −0.675 −0.927 −0.205 0.012

Elevation * −0.505 −1.193 0.348 −0.929 0.398 0.546 −1.006 −0.127 −0.466 −0.348 0.882 3.129 −1.409 −0.675 −1.291 −0.031
Slope −0.031 −0.041 −0.051 −0.060 −0.030 −0.027 −0.014 −0.019 −0.034 −0.007 −0.104 −0.060 −0.002 0.005 −0.017 0.000

ln(TWI) −0.078 −0.049 −0.263 −0.284 0.128 0.062 0.007 −0.079 0.133 0.047 0.205 −0.116 0.248 0.253 −0.006 0.039
CA2 * −0.208 0.530 1.136 1.097 0.354 1.449 0.754 1.232 0.021 0.615 −1.471 0.503 1.227 2.011 −0.418 0.207
Plan

curvature 0.903 0.281 −0.001 −1.342 0.921 −0.838 0.312 −0.124 −1.077 −2.362 −0.021 0.690 0.360 −0.388 −0.089 −0.560

Profile
curvature −0.448 −0.312 −0.392 0.574 −0.433 0.660 0.049 0.249 0.725 1.432 −0.642 −1.495 0.145 0.672 −0.170 0.182

Intercept 5.260 3.769 7.480 7.714 7.386 8.366 6.123 4.108 10.514 10.847 19.924 11.621 5.714 7.264 5.145 8.404

Note: Clay2 * is clay2
× 10−4; elevation* is elevation × 10−3; CA2 * is CA2

× 10−2. The regression coefficients of clay2, elevation, and CA2 were too small, so the constant was multiplied to
make them readable. In total, 16 categories were classified according to Table 7, and these values are coefficients from multiple linear regression.
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Figure 4. Relationship between the measured and predicted logarithmic Ks value. Multiple linear
regressions were conducted with the calibration data set, which represented 70% of the total data set,
and validated by the validation data set, which consisted of the rest of the data. (a,b) show analysis with
only soil properties, and (c,d) show analysis with topographic features in addition to soil properties.
The grayed-out parts are the ranges of the 95% prediction interval limits of the 1:1 lines.

3.5. Model Sensitivity

Ten variables were analyzed for sensitivity analysis, and four highly sensitive variables were
selected (Figure 5). All multipliers were not applied to variables having the upper limit. For example,
for the sand fraction, since the maximum value of the sand fraction is 100%, the sensitivity analysis
was performed up to multiplier 4. Sensitivity analysis showed that the bulk density and sand fraction,
which are soil properties, and the slope and catchment area, which are topographic features, had the
great effect on Ks. Ks was increased when the sand fraction and catchment area increased, and Ks was
decreased when the bulk density and slope increased. However, clay, organic matter, elevation, TWI,
plan curvature, and profile curvature did not significantly affect the Ks.
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line y = 1 indicate a relatively high sensitivity for estimating the saturated hydraulic conductivity.

4. Discussion

4.1. Different Characteristics of KS in Forest Soil

Figure 3 shows the use of the PTFs from previous research to estimate the Ks of the forest soil.
The measured Ks was more than 10 times larger than the Ks predicted by previous research. Using the
PTFs of previous research can therefore lead to the underestimation of the Ks of forest soil. Because they
did not focus on the forest soil and the ranges of the soil properties used for developing the PTFs were
different. Unlike the soil of cultivated land, grassland, or bare land, forest soil is not compacted and
large and small pores are widely distributed. Therefore, forest soil has a relatively low bulk density.
As presented in Table 4, the ranges of the soil size distribution in previous research and this study
are similar. On the other hand, the bulk density of the forest soil in South Korea was smaller and
beyond the range of previous research. This could be one of the reasons for the higher Ks of forest soil
in South Korea.

In forests, various types of plants are growing and have a great influence on the soil
hydrology [25,26]. Piaszczyk et al. [27] showed that dead trees in forests can have a great impact on
the soil’s physical properties. Furthermore, some studies have shown that organic matter produced
from the roots of trees or understory plants in forests has a significant impact on the physical structure
of forest soil [22,23,28]. Due to these characteristics, forest soil has a high permeability.
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4.2. KS Differences by Forest Stand, Geological, and Topographical Features

Forest soil can be affected by a number of topographical factors and the type of forest stand.
As shown in Table 6, it was found that differences in the Ks by forest stand, bedrock, and landform
were statistically significant. First, there was a difference in the Ks for different forest stands, where the
Ks of broadleaf and mixed forests was higher than that of coniferous forest. The type of forest can have
a great influence on the soil hydrology [25]. This can be explained by the root distribution difference
between coniferous and broadleaf trees. Burch [24] demonstrated that coniferous trees have straight
roots in a vertical direction, while broad-leafed trees spread wide in the lateral direction and produce a
large number of rootlets. In other words, in the case of broadleaf and mixed forests, it is assumed that
the pores of the soil are more advanced than those of coniferous forests due to the root system of trees,
and thus, broadleaf and mixed forests have higher Ks. Secondly, almost all of the broadleaf trees in
South Korea are deciduous trees, which can produce a thicker litter layer than coniferous trees. Litter
layers can produce higher organic carbon contents, which are related to lower bulk densities [27,29],
so the Ks increases.

Soil is made by weathering from the bedrock. Therefore, soil properties are highly affected by the
bedrock. Plaster and Sherwood [30] showed that soil from metamorphic rock can include a high rate
of the sand fraction. On the other hand, soil with fine particles is produced from sedimentary rock.
Table 6 shows that the soil from sedimentary rock had the lowest KS, and the soil from metamorphic
rock had the highest Ks. The 1456 samples of forest soil also showed that the sand fracture contents
were 40.6%, 35.6%, and 48.2% in igneous, sedimentary, and metamorphic rock, respectively, from which
it was confirmed that soil from metamorphic rock has the highest permeability. This is consistent with
the analysis of previous research [30].

The Ks of forest soil also differed, depending on the landform. The lower concave segment is the
part where the soil does not erode but is deposited, unlike other landforms. As the soil is deposited,
the soil is not compacted, so there is a lot of space for water to move in the soil, which is the reason
for the high Ks. The 1456 samples showed a lower bulk density in the lower concave segment than
other landforms. Martin [31] also identified that the soil property changes were those associated with
the downward movement of water and soil, and there was a deeper topsoil depth and higher organic
matter content in the lower concave segment, which is the lower part of the mountain. These differences
can lead to high Ks. Topsoil and subsoil also showed a difference in Ks. Subsoil is located below topsoil,
so the soil compaction derived from the gravity leads to lower Ks. The subsoil soil layer also has lower
organic matter contents than topsoil, which can lead to higher bulk densities and lower and lower
Ks [27,29]. In this study, topsoil contained 2.5% more organic matter than subsoil.

Forest soil is affected by various topographical factors, such as the forest type, bedrocks, and the
landform directly related to the erosion and sedimentation. Therefore, in order to understand the
characteristics of the Ks, all of these factors must be considered and analyzed.

4.3. Relationship between KS and Soil and Topographic Features

The relationship between Ks and soil and topographic features can be found in Tables 8 and 9.
If the coefficient is positive, the variable is positively correlated with the Ks. Therefore, Ks increases as
the sand fraction and upper catchment area increase, and Ks decreases as the bulk density, elevation,
and slope increase. The sand fraction and bulk density are directly related to the porosity. Therefore,
a higher sand fraction and lower bulk density result in a high porosity, which can lead to a higher Ks.
The lower the elevation, the higher the Ks, and this can be explained by the erosion and deposition
process in the mountain slope. In other words, a low elevation area is also the part where the forest
soil is deposited, so the soil layer is getting deeper and a higher porosity can be formed [32]. However,
it can be highly related to the relationship between the elevation and other topographic features. In the
lower concave segment, the Ks is higher than that of other landform types (Table 6). This could be
the major reason for the negative relationship between the Ks and the elevation, and further research
is needed to clarify the effects of the elevation on the Ks. The slope and catchment area can also
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be explained by similar reasons. The erosion progresses as the slope increases; on the other hand,
deposition progresses as the slope decreases. Additionally, as the upper catchment area increases,
more water and soil are transported down the hill. In other words, the lower the elevation and the
lower the slope, which is related to the bigger upper catchment area, the deeper the soil layer and the
lower the bulk density, which leads to higher Ks.

The organic matter, TWI, plan curvature, and profile curvature, however, did not significantly
affect the Ks. Nemes [33] explained that the organic matter in soil may increase the total porosity of the
soil, thereby increasing the hydraulic conductivity, but in contrast, it can reduce the Ks by retaining the
water. In other words, one measure of organic matter contents alone cannot fully explain the Ks since
the effect of organic matter on the Ks of forest soil is complex. The TWI, plan curvature, and profile
curvature were also used as important factors for estimating the moisture content of soil, which is one
of the most important soil properties [34]. However, it was found that these factors did not have a
significant role in explaining the Ks.

Figure 4 shows that the model’s performance increased when the topographic features were added,
which can be confirmed through the sensitivity analysis (Figure 5). Four highly sensitive variables are
the bulk density, sand fraction, slope, and catchment area, which can explain the Ks well. The bulk
density and sand fraction are soil properties, but the slope and catchment area, which are topographic
features, also highly affected the Ks. In other words, it can be seen that Ks is not only directly affected
by soil properties but also greatly affected by topographic features. Therefore, topographic features
should be considered when forest soil characteristic analyses are carried out.

4.4. Limitations and Suggestions for Future Research

In this study, non-linearity was considered by conducting the preprocessing of 10 soil and
topographic characteristic variables to estimate Ks. Furthermore, 16 categories were divided through
statistical analysis and the linear relationship with Ks was analyzed for each category. We confirmed
that the soil properties and topographic features highly affect the Ks of forest soil in this study.
In South Korea, a soil investigation is being conducted on a national scale. With these database and
topographic data, the Ks can be estimated on a national scale by using the PTFs. Because a lot of
hydraulic simulation models use the Ks as an important input variable, these PTFs can be useful for
running these models and for understanding the water cycle.

This model, however, still does not have a high performance. This is because the Ks of forest
soil is affected by more site and environmental factors than the above variables used in this study.
Moreover, it is difficult to explain all of these nonlinear relationships with simple multiple linear
regression. Therefore, it may be possible to construct a model with a higher performance when the
other factors highly related to the Ks are found and analyzed. Recently, machine learning has been used
to develop a model that predicts the Ks, in which case the performance of the model is increased [1,34].
However, the machine learning model is difficult to access for other researchers, so it is not easily
available for other researchers. For these reasons, the machine learning model was not covered in
this paper. Further research can use artificial intelligence and deep learning technology to check the
nonlinear relationship between the Ks and various topographical factors in forest soil, and then use
several nonlinear models to develop PTFs with a high performance. In addition, it is expected that a
more accurate prediction of Ks on a national scale can be conducted when artificial intelligence and the
deep learning model is developed using these forest soil data.

5. Conclusions

In South Korea, forest covers about two-thirds of the land area of the whole country. Due to these
geographical characteristics, understanding the soil properties in forests is important for sustainable
water management. The Ks is one of the most important input variables for running a hydraulic
simulation model. Therefore, developing PTFs for predicting the Ks is necessary. In this study, data
from 1456 sampling points were collected throughout South Korea, which are located in the temperate
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climate zone, and PTFs to predict the Ks from soil and topographic features were developed. The Ks of
the broadleaf and mixed forests was higher than that of the coniferous forests, which is because of the
root characteristic differences and the litter layer by forest type. The Ks of the soil based on igneous
and sedimentary rocks was higher than that of the soil based on metamorphic rocks. This is because
of the formation of sandy soil during the weathering of metamorphic rocks. In addition, soil located
in the lower concave segment had a lower bulk density and higher Ks because the soil located in
the lower concave segment is deposited rather than eroded, unlike other landforms. Furthermore,
the Ks of subsoil was lower than that of topsoil due to soil compaction by gravity and organic matter
contents. Many previous researchers have only considered soil properties to predict the Ks. However,
since forests display spatial variability, topographic features should be considered, in addition to soil
properties. The PTF model performance increased when topographic features were added. As a
result, the Ks of the forest soil was increased when the bulk density, clay, elevation, and slope were
decreased and the sand fraction and upper catchment area were increased. The organic matter, TWI,
plan curvature, and profile curvature did not highly affect the Ks of the forest soil. According to the
sensitivity analysis, the bulk density, sand fraction, slope, and catchment area highly affected the Ks.
Therefore, the topographic features were as important in predicting the Ks as the soil properties of the
forest soil.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/8/2217/s1,
Equations S1–S6: Six PTFs were selected (Table 3) and their equation were showed. Table S1: Regression equations
of categorical PTFs for the logarithmized saturated hydraulic conductivity with only soil properties. Table S2:
Regression equations of categorical PTFs for the logarithmized saturated hydraulic conductivity with topographic
features in addition to soil properties.
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27. Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of organic matter released from deadwood at different
decomposition stages on physical properties of forest soil. Forests 2020, 11, 24. [CrossRef]

28. Yue, C.; Huang, Y.; Wenjuan, S.U.N. Using organic matter and pH to estimate the bulk density of
afforested/reforested soils in northwest and northeast China. Pedosphere 2017, 27, 890–900.

29. Jonsson, B.G.; Ekström, M.; Esseen, P.A.; Grafström, A.; Ståhl, G.; Westerlund, B. Dead wood availability in
managed Swedish forests-Policy outcomes and implications for biodiversity. Forest Ecol. Manag. 2016, 376,
174–182. [CrossRef]

30. Plaster, R.W.; Sherwood, W.C. Bedrock weathering and residual soil formation in Central Virginia. Geol. Soc.
Am. Bull. 1971, 82, 2813–2826. [CrossRef]

31. Martin, W.K.E.; Timmer, V.R. Capturing spatial variability of soil and litter properties in a forest stand by
landform segmentation procedures. Geoderma 2006, 132, 169–181. [CrossRef]

32. Meinert, D.; Nigh, T.; Kabrick, J. Landforms, geology and soils of the MOFEP study sites. In Missouri Pzark
Forest Ecosystem Project Symposium: An Experimental Approach to Landscape Research; General Technical Report
NC-193; U.S. Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1997; pp. 56–68.

http://dx.doi.org/10.2136/sssaj1985.03615995004900040008x
http://dx.doi.org/10.2136/sssaj1986.03615995005000040039x
http://dx.doi.org/10.1016/j.geoderma.2004.02.011
http://dx.doi.org/10.1016/S0016-7061(98)00132-3
http://dx.doi.org/10.3390/w11112301
http://dx.doi.org/10.1016/j.geoderma.2009.06.008
http://dx.doi.org/10.1016/j.jaridenv.2009.01.015
http://dx.doi.org/10.5194/hess-10-101-2006
http://dx.doi.org/10.4141/CJSS06008
http://dx.doi.org/10.2136/sssaj2004.9430
http://dx.doi.org/10.1139/x97-126
http://dx.doi.org/10.1016/j.foreco.2017.06.038
http://dx.doi.org/10.1016/j.catena.2009.02.021
http://dx.doi.org/10.3390/f11010024
http://dx.doi.org/10.1016/j.foreco.2016.06.017
http://dx.doi.org/10.1130/0016-7606(1971)82[2813:BWARSF]2.0.CO;2
http://dx.doi.org/10.1016/j.geoderma.2005.05.004


Water 2020, 12, 2217 18 of 18

33. Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Influence of organic matter on the estimation of saturated hydraulic
conductivity. Soil Sci. Soc. Am. J. 2005, 69, 1330–1337. [CrossRef]

34. Jin, X.; Wang, S.; Yu, N.; Zou, H.; An, J.; Zhang, Y.; Wnag, J.; Zhang, Y. Spatial predictions of the permanent
wilting point in arid and semi-arid regions of Northeast China. J. Hydrol. 2018, 564, 367–375. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2136/sssaj2004.0055
http://dx.doi.org/10.1016/j.jhydrol.2018.07.038
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Geography of Study Sites 
	Soil Physical Properties and Topographic Features 
	Multiple Linear Regression for PTFs 
	Pedo-Transfer Functions (PTFs) in Previous Research 
	Preprocessing of Explanatory Variables 
	Detecting Multicollinearity Using the Variance Inflation Factor (VIF) 

	Model Assessment 
	Sensitivity Analysis 

	Results 
	Saturated Hydraulic Conductivity in Forest Soil 
	Explanatory Variable Selection 
	Categories with Statistical Analysis 
	Development of the Pedo-Transfer Function 
	Model Sensitivity 

	Discussion 
	Different Characteristics of KS in Forest Soil 
	KS Differences by Forest Stand, Geological, and Topographical Features 
	Relationship between KS and Soil and Topographic Features 
	Limitations and Suggestions for Future Research 

	Conclusions 
	References

